[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0761044B2 - Speech coding method - Google Patents

Speech coding method

Info

Publication number
JPH0761044B2
JPH0761044B2 JP61177089A JP17708986A JPH0761044B2 JP H0761044 B2 JPH0761044 B2 JP H0761044B2 JP 61177089 A JP61177089 A JP 61177089A JP 17708986 A JP17708986 A JP 17708986A JP H0761044 B2 JPH0761044 B2 JP H0761044B2
Authority
JP
Japan
Prior art keywords
information
code
information code
waveform
spectrum envelope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61177089A
Other languages
Japanese (ja)
Other versions
JPS6333025A (en
Inventor
健弘 守谷
雅彰 誉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61177089A priority Critical patent/JPH0761044B2/en
Publication of JPS6333025A publication Critical patent/JPS6333025A/en
Publication of JPH0761044B2 publication Critical patent/JPH0761044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To minimize a waveform distortion under a constant total information quantity by following a sound signal for an analyzing section to divide the sound signal for the number of plural samples and distributing adaptably the information quantity of a spectrum enveloping information code and the information quantity of a waveform information code. CONSTITUTION:Encoders 31, 32 and 33 composed of an estimation coefficient extracting part 12, an estimation residual extracting part 13, quantizing parts 14 and 17 and a reverse quantizing part 16 are provided, and in respective encoders, an input sound signal is quantized, for example, by three types of the information distributing method set beforehand as shown in the figure. Here, a total information quantity T per one analyzing section is fixed. Respective encoders are encoded respectively by the first, second, third information distributing methods in the figure. Respective encoding outputs are respectively encoded by a local decoding deciding part 34, the most desirable distributing method is obtained and a spectrum enveloping information code 35, a waveform information code 36 and a distributing information code 37 are transmitted to a decode side. The most desirable method means that a local decode signal and a local signal are compared, the quantizing distortion is obtained and this comes to be minimum.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は音声信号をスペクトル包絡の形状を示すスペ
クトル包絡情報と波形を示す波形情報符号とに分離して
符号化する方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method of separating a speech signal into spectral envelope information indicating a shape of a spectral envelope and a waveform information code indicating a waveform and encoding the speech signal.

「従来の技術」 従来から音声波形を能率よく符号化するために、音声信
号の近接サンプル値間の統計的相関を利用することが考
えられており、特に線形予測の手法が有効とされてい
る。この手法は基本的に音声信号を複数サンプル数ごと
に区間に区切りその区間ごとに音声信号のスペクトル包
絡の形状を反映する予測係数を求め、その係数をスペク
トル包絡情報符号として符号化し、その区間における音
声信号の予測残差をその区間の音声信号の波形を示す波
形情報符号として符号化し、これら両符号を復号器で合
成するものである。
“Conventional Technology” Conventionally, in order to efficiently encode a speech waveform, it has been considered to use a statistical correlation between adjacent sample values of a speech signal, and a linear prediction method is particularly effective. . This method basically divides a voice signal into sections for each number of samples, obtains a prediction coefficient that reflects the shape of the spectrum envelope of the voice signal for each section, encodes the coefficient as a spectrum envelope information code, and The prediction residual of the voice signal is encoded as a waveform information code indicating the waveform of the voice signal in the section, and these two codes are combined by a decoder.

第6図にそのブロック図を示す。入力端子11から音声信
号の一定時間ごとのサンプル値を示すディジタル音声信
号が予測係数抽出部12及び予測残差抽出部13にそれぞれ
入力され、それぞれ一定サンプル数ごとの分析区間に区
切られ、その各分析区間ごとに予測係数抽出部12で音声
信号のスペクトル包絡の形状を示す予測係数が抽出さ
れ、その抽出された予測係数が量子化部14で量子化さ
れ、スペクトル包絡情報符号15が出力される。このスペ
クトル包絡情報符号は逆量子化部16で復号され、復号さ
れた予測係数で予測残差抽出部13が制御され、対応分析
区内の予測残差が抽出される。予測残差抽出部13は音声
合成フィルタと逆特性のいわゆる逆フィルタである。こ
の予測残差信号は量子化部17で量子化されて波形情報符
号18が得られる。
The block diagram is shown in FIG. Digital audio signals indicating sample values of the audio signal at fixed time intervals are input from the input terminal 11 to the prediction coefficient extraction unit 12 and the prediction residual extraction unit 13, respectively, and are divided into analysis intervals of a fixed number of samples, respectively. The prediction coefficient indicating the shape of the spectrum envelope of the audio signal is extracted by the prediction coefficient extraction unit 12 for each analysis section, the extracted prediction coefficient is quantized by the quantization unit 14, and the spectrum envelope information code 15 is output. . The spectrum envelope information code is decoded by the dequantization unit 16, the prediction residual extraction unit 13 is controlled by the decoded prediction coefficient, and the prediction residual in the corresponding analysis section is extracted. The prediction residual extraction unit 13 is a so-called inverse filter having an inverse characteristic of the voice synthesis filter. This prediction residual signal is quantized by the quantizer 17 to obtain the waveform information code 18.

スペクトル包絡情報符号15及び波形情報符号18はそれぞ
れ復号器側の復号部21及び22で復号され、復号部22で復
号された予測残差信号を合成フィルタの合成部23に駆動
音源信号として供給され、合成部23のフィルタ特性が復
号部21で復号された予測係数で制御され、合成部23から
音声信号が合成出力される。
The spectrum envelope information code 15 and the waveform information code 18 are respectively decoded by the decoding units 21 and 22 on the decoder side, and the prediction residual signal decoded by the decoding unit 22 is supplied to the synthesis unit 23 of the synthesis filter as a driving excitation signal. The filter characteristic of the synthesis unit 23 is controlled by the prediction coefficient decoded by the decoding unit 21, and the sound signal is synthesized and output from the synthesis unit 23.

予測係数すなわちスペクトル包絡情報の表現法、量子化
法、予測残差信号、すなわち波形情報の表現法、量子化
法に関しては従来よりさまざまな工夫がなされ、各種符
号化法が提案されている。例えば適応予測符号化(電子
通信学会編「ディジタル信号処理の応用」コロナ社1981
年刊183p〜),マルチパルス符号化(米国特許4472832
“Digital Speech Coder"1984年9月),適応変換符号
化(日本特許1258025号「音声の適応変換符号化方
式」)等はすべて第7図に示す構成が基本となってい
る。
Various methods have heretofore been made for the expression method of the prediction coefficient, that is, the spectrum envelope information, the quantization method, the expression method of the prediction residual signal, that is, the waveform information, and the quantization method, and various coding methods have been proposed. For example, adaptive predictive coding (edited by The Institute of Electronics and Communication Engineers, "Application of Digital Signal Processing", Corona Publishing Company, 1981.
Annual 183p-), multi-pulse coding (US patent 4472832)
"Digital Speech Coder" (September 1984), adaptive transform coding (Japanese Patent No. 1258025 "adaptive transform coding system of speech"), etc. are all based on the configuration shown in FIG.

これらの従来方式ではすべてスペクトル包絡情報符号15
と波形情報符号18とに配分される情報量は、平均的に最
も望ましいように固定されていた。
In all of these conventional methods, the spectrum envelope information code 15
The amount of information distributed between the waveform information code 18 and the waveform information code 18 is fixed to be most desirable on average.

しかし、現実の音声においては時々刻々波形のもつ統計
的性質が変化することや、量子化歪が変動することで最
適な情報量配分は分析区間ごとに変化している。つまり
ある二つの分析区間A,Bについてスペクトル包絡情報符
号と波形情報符号と総情報量を一定とし、1ビットきざ
みでスペクトル包絡情報符号の情報量を変化させたとき
のその分析区間A,Bの符号化音声のSNRはそれぞれ第7図
の曲線25,26となった。(256サンプル/分析区間,総計
256ビット/分析区間)。曲線25はスペクトル包絡符号
の情報量を増加するとSNRは増加する傾向にあるが、ス
ペクトル包絡符号の情報量16ビットに対し19ビットで2d
B以上も低下している。曲線26は比較的平坦であるが、
1ビットの差でも1dB程度の変動があり、ビット数が比
較的大きく異なると2dB程度異なっている。このように
もともとSNRは10〜20dB程度であるから、1dB,2dBの差は
可成り大きなものである。
However, in real speech, the optimal information distribution changes for each analysis interval due to the fact that the statistical properties of the waveform change from moment to moment and the quantization distortion changes. That is, with respect to a certain two analysis sections A and B, the spectrum envelope information code, the waveform information code, and the total amount of information are made constant, and the analysis sections A and B are The SNRs of the coded speech are the curves 25 and 26 in FIG. 7, respectively. (256 samples / analysis section, total
256 bits / analysis interval). The curve 25 shows that the SNR tends to increase as the information amount of the spectrum envelope code increases, but the information amount of the spectrum envelope code increases from 16 bits to 2 bits at 19 bits.
It is lower than B. Curve 26 is relatively flat,
Even a difference of 1 bit has a fluctuation of about 1 dB, and if the number of bits is relatively different, it is about 2 dB. Since the SNR is originally about 10 to 20 dB, the difference between 1 dB and 2 dB is quite large.

しかし従来の符号化法では、このような両符号に対する
情報量の配分によるSNRの変動を考慮しておらず、この
ことは符号化による歪をさらに小さくできる余地が残さ
れていると云える。
However, the conventional encoding method does not consider the fluctuation of the SNR due to the distribution of the information amount for both codes, which means that the distortion due to the encoding can be further reduced.

この発明の目的は総情報量一定のもとでできるだけ波形
歪、あるいは聴感的重み付けされた波形歪を小さくする
音声符号化法を提供することにある。
It is an object of the present invention to provide a speech coding method that minimizes waveform distortion or perceptually weighted waveform distortion under a constant total information amount.

「問題点を解決するための手段」 この発明は分析区間毎に、刻々変化していく音声信号に
追随させて、スペクトル包絡情報符号の情報量と波形情
報符号の情報量を適応的に配分する。
"Means for Solving the Problem" The present invention adaptively distributes the information amount of the spectrum envelope information code and the information amount of the waveform information code in accordance with the voice signal which is changing every analysis section. .

つまりこの発明ではスペクトル包絡情報を符号化する量
子化器及び波形情報を符号化する量子化器の両者を複数
種類の情報量で量子化できるようにし、またスペクトル
包絡情報の符号の情報量と波形情報符号の情報量との配
分を予め複数種類設定しておき、分析区間における量子
化歪が小さくなるように、設定された複数の配分から1
つを適応的に決定する。
That is, in the present invention, both the quantizer that encodes the spectrum envelope information and the quantizer that encodes the waveform information can be quantized with a plurality of types of information amounts, and the information amount and the waveform of the code of the spectrum envelope information A plurality of types of distribution with respect to the information amount of the information code are set in advance, and 1 is selected from the set plurality of distributions so that the quantization distortion in the analysis section becomes small.
One adaptively.

「実施例」 第1図はこの発明の実施例を示す。この例では第6図に
示した予測係数抽出部12、予測残差抽出部13、量子化部
14,17、逆量子化部16よりなる符号器31,32,33の三つが
設けられ、これら符号器31,32,33において、例えば第2
図に示すような予め設定された3種類の情報配分方法
で、入力端子11からの音声信号がそれぞれ量子化され
る。ここでは1分析区間あたりの総情報量Tは固定と
し、この例では256ビットとし、つまり T(総情報量)=E(スペクトル包絡符号情報量)+W
(波形符号情報量)+D(配分情報量) である。符号器31,32,33はそれぞれ第2図中の第1,第2,
第3情報配分方法で符号化される。
"Embodiment" FIG. 1 shows an embodiment of the present invention. In this example, the prediction coefficient extraction unit 12, the prediction residual extraction unit 13, and the quantization unit shown in FIG.
14, 17 and three encoders 31, 32, 33 including the inverse quantizer 16 are provided. In these encoders 31, 32, 33, for example, the second encoder
The audio signal from the input terminal 11 is quantized by three preset information distribution methods as shown in the figure. Here, the total amount of information T per analysis section is fixed and is 256 bits in this example, that is, T (total amount of information) = E (spectral envelope code information amount) + W
(Waveform code information amount) + D (distributed information amount). The encoders 31, 32, 33 are respectively the first, second, and third in FIG.
It is encoded by the third information distribution method.

これら符号器31,32,33の各符号化出力は局部復号化判定
部34でそれぞれ復号化し、最も望ましい配分方法を求
め、そのスペクトル包絡情報符号35と波形情報符号36と
配分情報符号37とを復号側に伝送する。ここでいう最も
望ましいとは局部復号信号と入力信号とを比較して量子
化歪を求め、これが最小となるものを意味する。その場
合用途によって聴感的重みづけを行った量子化歪を用い
てもよい。第3図Aに示すようにまず配分情報符号37を
送出し、これに続き、スペクトル包絡情報符号35、波形
情報符号36を順次送出する。なお配分情報符号としては
第2図の例のような一意解読可能な可変長符号をその頻
度に合わせて使うとさらに効果的である。つまり第2図
では3種類の配分方法があるから、各配分方法を表示す
るには2ビット必要であるが、この3種類のうち、発生
頻度が最も多い第3種類の配分方法を示す配分情報符号
“1"の1ビットとし、他の2種類の配分情報符号には2
ビットを用いる。
Each of the encoded outputs of these encoders 31, 32, 33 is decoded by the local decoding determination unit 34 to obtain the most desirable distribution method, and its spectrum envelope information code 35, waveform information code 36, and distribution information code 37 are obtained. Transmit to the decoding side. The most desirable here means that the locally decoded signal and the input signal are compared to obtain the quantization distortion, and this is the minimum. In that case, quantization distortion weighted perceptually may be used depending on the application. As shown in FIG. 3A, the distribution information code 37 is first transmitted, and subsequently, the spectrum envelope information code 35 and the waveform information code 36 are sequentially transmitted. It is more effective to use a uniquely decodable variable length code as shown in the example of FIG. 2 as the distribution information code according to its frequency. That is, since there are three types of distribution methods in FIG. 2, two bits are required to display each distribution method. Of these three types, distribution information indicating the third type of distribution method with the highest frequency of occurrence. 1 bit of code "1", and 2 for the other two types of distribution information codes
Use bits.

一方、復号化側ではまず配分情報符号37を復号部41で復
号する。この復号された配分情報に従ってスペクトル包
絡情報符号35、波形情報符号36をそれぞれ復号部42,43
で復号化され、これら復号出力を合成部44へ供給して合
成し出力音声を得る。
On the other hand, on the decoding side, the distribution information code 37 is first decoded by the decoding unit 41. In accordance with the decoded distribution information, the spectrum envelope information code 35 and the waveform information code 36 are decoded by the decoding units 42 and 43, respectively.
The decoded output is supplied to the synthesizing section 44 and synthesized to obtain an output voice.

情報配分のひな型を決定するには音声信号サンプルを使
って平均的に歪が小さくなるスペクトル包絡情報符号の
ビット数を選ぶ。この際次の2点で生じるトレード・オ
フを考慮すればよい。
In order to determine the model of information distribution, the number of bits of the spectrum envelope information code with which the distortion becomes smaller on average is selected using the voice signal sample. At this time, the trade-offs caused by the following two points may be taken into consideration.

配分情報符号をmビットとすると2m種類の配分ひな
型を設定することができる。
If the allocation information code is m bits, 2 m kinds of allocation templates can be set.

配分情報符号をmビットとすると総情報量Tが一定
のため、例えば波形情報符号がmビット減少する。この
際1分析区間Nサンプルの場合、SNRは平均的に10log10
(22m/N)〔dB〕=6.02m/N〔dB〕減少する。
If the distribution information code is m bits, the total information amount T is constant, so that, for example, the waveform information code decreases by m bits. In this case, SNR is 10 log 10 on average in the case of N samples in one analysis section.
(22m / N ) [dB] = 6.02m / N [dB] decreases.

第1図ではスペクトル包絡情報及び波形情報についてそ
れらをそれぞれ複数種類の情報量で量子化する量子化器
として、その各情報量の量子化器をそれぞれ設けたが、
両量子化器を各1つ設けそれぞれその情報量を情報配分
に応じて変更してもよい。このためには任意のビット数
に対応できる量子化器を必要とするが、これには例えば
ベクトル量子化とスカラ量子化とを組み合わせたベクト
ル・スカラ量子化(特願昭57−204849“ベクトル量子化
法”)をスペクトル包絡情報量子化と、波形情報量子化
に適用すればよい。
In FIG. 1, as the quantizers for quantizing the spectrum envelope information and the waveform information respectively with a plurality of kinds of information amounts, the quantizers for the respective information amounts are respectively provided.
One of each of the quantizers may be provided and the amount of information may be changed according to the information distribution. For this purpose, a quantizer capable of supporting an arbitrary number of bits is required. For this purpose, for example, vector / scalar quantization combining vector quantization and scalar quantization (Japanese Patent Application No. 57-204849 "Vector Quantization" The quantization method “) may be applied to the spectrum envelope information quantization and the waveform information quantization.

前記特許出願“ベクトル量子化法”に示すようにまずベ
クトル量子化し、次にスカラ量子化するように2段階の
量子化器を用いる場合には例えば第4図に第1図と対応
する部分に同一符号を付けて示すように抽出されたスペ
クトル包絡情報を量子化部14でまずベクトル量子化し、
量子化値から得られる暫定的スペクトル包絡特性から、
判定部51でスペクトル包絡情報符号の情報量を決定す
る。例えばベクトル量子化による暫定スペクトル包絡特
性が平坦であれば、スペクトル包絡に対する情報量を少
ない予め決めた値に設定し、その対応情報量でスペクト
ル包絡情報に対する第2段階目の量子化、この例ではス
カラ量子化を行う。また判定部51は予め決められた情報
量Tの残りの情報量を量子化器17に与えてその情報量
に、波形情報を量子化する。従ってこの場合は第3図B,
Cに示すように、スペクトル包絡情報符号35中の最初か
ら一定のビット数が第1段階目の量子化(この例ではベ
クトル量子化)符号であり、スペクトル包絡特性が平坦
な場合は第3図Bに示すように第2段目の量子化の情報
量は少ない予め決めた値とされ、スペクトル包絡特性が
変化の大きい場合は第3図Cに示すように第2段目の量
子化情報量は大きい予め決めた値となる。このように第
1段階目の量子化でスペクトル包絡情報符号の情報量が
決るため、配分情報は送出する必要はない。
As shown in the above-mentioned patent application “Vector Quantization Method”, when a two-stage quantizer is used such that vector quantization is performed first and then scalar quantization is performed, for example, a portion corresponding to FIG. First, the quantization unit 14 vector-quantizes the extracted spectrum envelope information as shown with the same reference numeral,
From the provisional spectral envelope characteristic obtained from the quantized value,
The determination unit 51 determines the information amount of the spectrum envelope information code. For example, if the provisional spectrum envelope characteristic by vector quantization is flat, the information amount for the spectrum envelope is set to a small predetermined value, and the corresponding amount of information is used for the second-stage quantization for the spectrum envelope information. Performs scalar quantization. Further, the determination unit 51 supplies the remaining information amount of the predetermined information amount T to the quantizer 17, and quantizes the waveform information into the information amount. Therefore, in this case, Fig. 3B,
As shown in C, a fixed number of bits from the beginning in the spectrum envelope information code 35 is the first-stage quantization (vector quantization) code, and when the spectrum envelope characteristic is flat, FIG. As shown in B, the amount of quantization information in the second stage is set to a small predetermined value, and when the spectral envelope characteristic has a large change, as shown in FIG. Is a large predetermined value. In this way, since the amount of information of the spectrum envelope information code is determined by the first-stage quantization, it is not necessary to send the distribution information.

第2段階量子化の情報量の設定は同一の暫定スペクトル
特性を持つ学習サンプルを集めて統計処理をすればよ
い。
The setting of the information amount of the second-stage quantization may be performed by collecting learning samples having the same provisional spectral characteristics and performing statistical processing.

復号化側では受信された符号列中の最初から一定長の符
号、つまりスペクトル包絡情報の第1段階量子化符号か
ら判定部52でその第2段階目の量子化符号の情報量(符
号長)を知り、これに応じて復号部42で第2段階目の復
号を行う。もちろんその前に第1段階目の復号を行う。
これと共に判定部52は波形情報符号36の情報量を復号部
43に与えてその復号を行う。
On the decoding side, a code having a constant length from the beginning in the received code string, that is, the information amount (code length) of the second-stage quantized code in the determination unit 52 from the first-stage quantized code of the spectrum envelope information. And the decoding unit 42 performs the second-stage decoding in accordance with this. Of course, before that, the first-stage decoding is performed.
At the same time, the determination unit 52 determines the information amount of the waveform information code 36 by the decoding unit.
It gives it to 43 and decodes it.

このようにスペクトル包絡情報を2段階で量子化する場
合にその1段階の量子化符号からスペクトル包絡情報符
号の情報量を制御するには次のようにしてもよい。すな
わち、スペクトル包絡特性に応じた情報配分表を例えば
第5図A,Bに示すように予め用意しておき、第5図中A
は平坦スペクトル特性に対するもの、Bは変化のあるス
ペクトル特性に対するものである。スペクトル包絡情報
に対する第1段階量子化(ベクトル量子化)で得られた
符号351で第5図A,Bの何れの情報配分表を用いるかを決
定し、その決定された情報配分表を用いて、この例では
その3通りの情報配分を行って、スペクトル包絡情報に
対する第2段階目の量子化(スカラ量子化)及び波形情
報の量子化を行い、この3通りの量子化符号中の量子化
歪が最も小さいものを判定し、その符号を、第3図D,E
に示すようにスペクトル包絡情報の第1段階量子化符号
351,配分情報符号37、スペクトル包絡情報の第2段階
量子化符号352,波形情報符号36の順に送出する。復号
側では符号351から使用する情報配分表を決定し、配分
情報符号37からその情報配分表中の情報配分を知って、
符号352,36を取出してそれぞれ復号する。
In this way, when the spectrum envelope information is quantized in two stages, the amount of the spectrum envelope information code may be controlled from the quantized code of the one stage as follows. That is, an information distribution table according to the spectrum envelope characteristic is prepared in advance as shown in, for example, FIGS.
Is for a flat spectral characteristic and B is for a varying spectral characteristic. The code 35 1 obtained by the first-stage quantization (vector quantization) for the spectrum envelope information is used to determine which of the information distribution tables in FIGS. 5A and 5B is to be used, and the determined information distribution table is used. In this example, the three types of information distribution are performed, the second-stage quantization (scalar quantization) for the spectral envelope information and the waveform information are performed, and the three types of quantization codes in the quantization code are used. The one with the smallest distortion is determined and its code is shown in Fig. 3D, E.
The first-stage quantized code of the spectral envelope information as shown in
35 1 , distribution information code 37, second-stage quantization code 35 2 of spectrum envelope information, and waveform information code 36 are transmitted in this order. On the decoding side, the information allocation table to be used is determined from the code 35 1, and the information allocation in the information allocation table is known from the allocation information code 37,
The codes 35 2 and 36 are taken out and decoded respectively.

なおスペクトル包絡情報を多段階に量子化する場合、ベ
クトル量子化とスカラ量子化に限らず、ベクトル量子化
又はスカラ量子化のみで多段階量子化を行ってもよい。
When the spectrum envelope information is quantized in multiple stages, the multistage quantization may be performed only by vector quantization or scalar quantization, not limited to vector quantization and scalar quantization.

「発明の効果」 以上説明したようにこの発明の方法によれば一定の情報
量のもとで、最終的な歪のより小さい符号化が実現され
る。
[Advantages of the Invention] As described above, according to the method of the present invention, encoding with a smaller final distortion is realized under a constant amount of information.

8kHzサンプル、1分析区間256サンプルの音声信号に対
し、配分情報符号を3ビットとする4.8〜9.6キロビット
/秒の符号化は、固定配分の符号化より0.5〜1.0dBSNR
が向上することが確かめられた。SNRはもともと10〜20d
B程度であるからこの向上は可成りよいものである。第
7図に示したようなSNRの変動の中で、配分情報符号3
ビットを使えば8種の中で最適のものを使うことができ
ることと、波形情報符号が3ビット減少することで最終
的SNRが平均的に約10log10(22×3/256)=0.07〔dB〕
しか減少しないことからも前記SNRの向上は予想できる
ことである。
For a voice signal of 8 kHz sample and 256 samples of 1 analysis section, 4.8 to 9.6 kilobits / second encoding with 3 bits of allocation information code is 0.5 to 1.0 dBSNR from fixed allocation encoding.
Was confirmed to improve. SNR was originally 10-20d
Since it is about B, this improvement is quite good. In the fluctuation of SNR as shown in FIG. 7, allocation information code 3
By using bits, it is possible to use the optimum one among the eight types, and by reducing the waveform information code by 3 bits, the final SNR is about 10 log 10 (2 2 × 3/256) = 0.07 [on average]. dB)
The improvement in the SNR can be expected from the fact that it is only decreased.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の符号化法の実施例を示すブロック
図、第2図は情報配分例を示す図、第3図はこの発明の
符号化法による符号化出力の各種例を示す図、第4図は
この発明の符号化法の他の実施例を示すブロック図、第
5図は情報配分例を示す図、第6図は線形予測を用いる
従来の符号化法を示すブロック図、第7図は総情報量一
定でスペクトル包絡情報符号量によるSNRの変化例を示
す図である。
FIG. 1 is a block diagram showing an embodiment of an encoding method of the present invention, FIG. 2 is a diagram showing an example of information distribution, and FIG. 3 is a diagram showing various examples of encoded output by the encoding method of the present invention. FIG. 4 is a block diagram showing another embodiment of the encoding method of the present invention, FIG. 5 is a diagram showing an example of information distribution, and FIG. 6 is a block diagram showing a conventional encoding method using linear prediction. FIG. 7 is a diagram showing an example of changes in SNR according to the amount of spectrum envelope information code while keeping the total amount of information constant.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】音声信号を複数サンプル数ごとの分析区間
に区切り、その分析区間の音声信号のスペクトル包絡の
形状を示すスペクトル包絡情報符号と、その分析区間の
音声信号の波形を示す波形情報符号とに分離して符号化
する方法において、 予め設定された複数種類の情報量で量子化できる上記ス
ペクトル包絡情報符号のための量子化器と、予め設定さ
れた複数種類の情報量で量子化できる上記波形情報符号
のための量子化器とを備え、 これら両量子化器に対する情報量の配分を予め複数種類
設定しておき、 上記各分析区間ごとに量子化歪が小さくなるように上記
情報量の配分を上記設定した複数の値から適応的に決定
することを特徴とする音声符号化法。
1. A speech signal is divided into an analysis section for each of a plurality of samples, a spectrum envelope information code indicating a shape of a spectrum envelope of the speech signal in the analysis section, and a waveform information code indicating a waveform of the speech signal in the analysis section. In the method of separating into and encoding, a quantizer for the spectrum envelope information code that can be quantized with a plurality of preset information amounts, and a quantizer with a plurality of preset information amounts A quantizer for the above waveform information code is provided, and a plurality of types of distribution of the information amount for both quantizers are set in advance, and the information amount is set so that the quantization distortion becomes small for each analysis section. A speech coding method characterized by adaptively deciding the distribution of the values from the plurality of values set above.
JP61177089A 1986-07-28 1986-07-28 Speech coding method Expired - Lifetime JPH0761044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61177089A JPH0761044B2 (en) 1986-07-28 1986-07-28 Speech coding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61177089A JPH0761044B2 (en) 1986-07-28 1986-07-28 Speech coding method

Publications (2)

Publication Number Publication Date
JPS6333025A JPS6333025A (en) 1988-02-12
JPH0761044B2 true JPH0761044B2 (en) 1995-06-28

Family

ID=16024935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61177089A Expired - Lifetime JPH0761044B2 (en) 1986-07-28 1986-07-28 Speech coding method

Country Status (1)

Country Link
JP (1) JPH0761044B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170200A (en) * 1988-12-23 1990-06-29 Nec Corp Multipulse encoding and decoding device
JPH02278300A (en) * 1989-04-19 1990-11-14 Nec Corp Multi-pulse type voice encoding/decoding device
JPH04114516A (en) * 1990-09-04 1992-04-15 Matsushita Electric Ind Co Ltd Sound encoding device
JP3308764B2 (en) * 1995-05-31 2002-07-29 日本電気株式会社 Audio coding device
EP1440432B1 (en) 2001-11-02 2005-05-04 Matsushita Electric Industrial Co., Ltd. Audio encoding and decoding device

Also Published As

Publication number Publication date
JPS6333025A (en) 1988-02-12

Similar Documents

Publication Publication Date Title
US7539612B2 (en) Coding and decoding scale factor information
KR101278805B1 (en) Selectively using multiple entropy models in adaptive coding and decoding
US20020049586A1 (en) Audio encoder, audio decoder, and broadcasting system
US7684981B2 (en) Prediction of spectral coefficients in waveform coding and decoding
US7693709B2 (en) Reordering coefficients for waveform coding or decoding
US6636830B1 (en) System and method for noise reduction using bi-orthogonal modified discrete cosine transform
CN101601087B (en) Device for encoding and decoding
AU716982B2 (en) Method for signalling a noise substitution during audio signal coding
US5692102A (en) Method device and system for an efficient noise injection process for low bitrate audio compression
US7289951B1 (en) Method for improving the coding efficiency of an audio signal
US7792679B2 (en) Optimized multiple coding method
KR100889750B1 (en) Audio lossless coding/decoding apparatus and method
WO2006000842A1 (en) Multichannel audio extension
US5956686A (en) Audio signal coding/decoding method
CN102124655A (en) Method for encoding a symbol, method for decoding a symbol, method for transmitting a symbol from a transmitter to a receiver, encoder, decoder and system for transmitting a symbol from a transmitter to a receiver
KR100968057B1 (en) Encoding method and device, and decoding method and device
CN1458646A (en) Filter parameter vector quantization and audio coding method via predicting combined quantization model
KR20070046752A (en) Method and apparatus for signal processing
JP3353868B2 (en) Audio signal conversion encoding method and decoding method
JP3255022B2 (en) Adaptive transform coding and adaptive transform decoding
Liebchen An introduction to MPEG-4 audio lossless coding
JPH0761044B2 (en) Speech coding method
US5875424A (en) Encoding system and decoding system for audio signals including pulse quantization
KR100327476B1 (en) Vector quantization method of split linear spectrum pair
JP2683734B2 (en) Audio coding method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term