JPH0756354A - Silicon-containing high molecular compound and resist material using the same - Google Patents
Silicon-containing high molecular compound and resist material using the sameInfo
- Publication number
- JPH0756354A JPH0756354A JP5203126A JP20312693A JPH0756354A JP H0756354 A JPH0756354 A JP H0756354A JP 5203126 A JP5203126 A JP 5203126A JP 20312693 A JP20312693 A JP 20312693A JP H0756354 A JPH0756354 A JP H0756354A
- Authority
- JP
- Japan
- Prior art keywords
- resist
- resist material
- high molecular
- compd
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Materials For Photolithography (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繰り返し単位中にラダ
ー型ポリシロキサン及びこれとフェニレン基等を珪素エ
ステルで結合したものを含む高分子化合物及びそれを用
いたレジスト材料に関するものであり、詳しくは露光源
として300nm以下の遠紫外光、例えば248nmの
KrFエキシマレーザー光、193nmのArFエキシ
マレーザー光及び電子線、X線等を用いてパターンを形
成する際のレジスト材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ladder-type polysiloxane and a polymer compound containing the same and a phenylene group or the like bonded with a silicon ester in a repeating unit, and a resist material using the same. Relates to a resist material when a pattern is formed using far-ultraviolet light having a wavelength of 300 nm or less, for example, KrF excimer laser light having a wavelength of 248 nm, ArF excimer laser light having a wavelength of 193 nm, an electron beam, and an X-ray.
【0002】[0002]
【従来の技術】近年半導体デバイスを始めとする微細加
工を必要とする各種電子デバイスの分野では、デバイス
の高密度・高集積化の要求がますます高まっており、こ
の要求を満たすにはパターンの微細化が必須となってき
ている。パターンの微細化をとる方法の一つは、フォト
レジストのパターン形成の際に使用る露光光の波長を短
くする方法がある。一般に、光学系の解像度RSは、R
S=k・λ/NA(ここでλは露光光源の波長、NAは
レンズの開口数、kはプロセスファクター)で表すこと
ができる。この式から、より高解像度、即ちRSの値を
小さくするためにはリソグラフィーにおける露光光の波
長λを短くすれば良いことがわかる。2. Description of the Related Art In recent years, in the field of various electronic devices such as semiconductor devices that require fine processing, there is an increasing demand for high density and high integration of devices. Miniaturization is becoming essential. One of the methods for making the pattern finer is to shorten the wavelength of the exposure light used when forming the photoresist pattern. Generally, the resolution RS of the optical system is R
S = k · λ / NA (where λ is the wavelength of the exposure light source, NA is the numerical aperture of the lens, and k is the process factor). From this equation, it can be seen that the wavelength λ of the exposure light in lithography may be shortened in order to obtain a higher resolution, that is, the value of RS.
【0003】現在、例えば64Mまでの集積度を持つダ
イナミックランダムアクセスメモリー(DRAM)の製
造には最小パターン寸法0.35μmのラインアンドス
ペースの解像度が要求され、Hgランプのg線(438
nm)、i線(365nm)が光源として使用されてい
る。256M以上の集積度を持つDRAMの製造にはさ
らに微細な加工技術(加工寸法が0.25μm以下)が
必要となり、そのためにエキシマレーザー(KrF:2
48nm,ArF193nm)等のより短波長の光(D
eepUV光)が有効であると考えられており、特にK
rFリソグラフィーは盛んに研究されている。しかし、
光源の短波長化は、DOF=λ/NA2(DOF:焦点
深度)で表される焦点深度を減少させるという問題点を
生ずる。また、デバイスの先行開発試作において、基板
上の微細加工も複雑かつ精密になることにより、基板上
の段差が大きくなり、従来の単層プロセスではパターン
形成が困難になってきている。これらの問題点を解決す
る方法として、多層レジスト法が提案されている。この
方法は、フェノールノボラック樹脂或いはクレゾールノ
ボラック樹脂のように酸素プラズマにより容易にドライ
エッチングされる材料をスピンコートし基板上を平坦化
し、この上で耐酸素ドライエッチング性を持つレジスト
によりパターン形成を行い、その後、酸素プラズマによ
る異方性エッチングにより下層にパターンを転写する方
法である。さらに、この方法ではアスペクト比の高いレ
ジストパターンを得ることができるので、そのため酸素
プラズマエッチング耐性を有するレジスト材料が盛んに
検討されている。珪素原子を有するレジスト材料は、酸
素プラズマエッチング耐性に優れており、これまでにも
様々な珪素含有レジスト材料が報告されている。特にラ
ダー型ポリシロキサンは、珪素含有率が高く、また熱安
定性が優れている等の特徴を持つために、これを用いた
レジスト材料が盛んに研究されている。例えば、特開平
4−36755号公報等に記載されたアセチル基及び/
または水酸基を含有するアルカリ可溶性ポリシルセスキ
オキサンを主成分として含有するレジスト材料が挙げら
れる。Currently, for manufacturing a dynamic random access memory (DRAM) having a degree of integration of, for example, up to 64M, a line and space resolution of a minimum pattern size of 0.35 μm is required, and a g line (438) of an Hg lamp is required.
nm) and i-line (365 nm) are used as the light source. In order to manufacture a DRAM having a degree of integration of 256M or more, a finer processing technique (processing dimension is 0.25 μm or less) is required, which is why an excimer laser (KrF: 2) is used.
48nm, ArF193nm) shorter wavelength light (D
eeep UV light) is considered to be effective, especially K
rF lithography has been actively studied. But,
The shortening of the wavelength of the light source causes a problem that the depth of focus represented by DOF = λ / NA 2 (DOF: depth of focus) is reduced. Further, in the advanced development and trial manufacture of the device, the fine processing on the substrate becomes complicated and precise, so that the step difference on the substrate becomes large, and it becomes difficult to form a pattern by the conventional single layer process. A multilayer resist method has been proposed as a method for solving these problems. In this method, a material that is easily dry-etched by oxygen plasma, such as phenol novolac resin or cresol novolac resin, is spin-coated to flatten the substrate, and then a pattern is formed with a resist having oxygen-resistant dry etching resistance. Then, the pattern is transferred to the lower layer by anisotropic etching using oxygen plasma. Furthermore, since a resist pattern having a high aspect ratio can be obtained by this method, a resist material having oxygen plasma etching resistance has been actively investigated. Resist materials having silicon atoms have excellent resistance to oxygen plasma etching, and various silicon-containing resist materials have been reported so far. In particular, since ladder-type polysiloxane has characteristics such as high silicon content and excellent thermal stability, a resist material using the same has been actively researched. For example, the acetyl group and / or the acetyl group described in JP-A-4-36755 and the like.
Alternatively, a resist material containing an alkali-soluble polysilsesquioxane containing a hydroxyl group as a main component can be used.
【0004】さらに、微細加工に用いられるレジスト材
料には、加工寸法の微細化に対応する高解像性に加え、
高感度化の要求も高まってきている。これは、光源に高
価なエキシマレーザーを使用するためコストパフォーマ
ンスの向上を実現する必要があるためである。現在、光
酸発生剤を用いた化学増幅型レジストは、感度の飛躍的
な向上が期待できるため盛んに研究されている(例え
ば、ヒロシ イトー、C.グラント ウィルソン、アメ
リカン・ケミカル・ソサイアティ・シンポジウム・シリ
ーズ(Hiroshi Ito,C.Grant Wi
llson,American Chemical S
ociety Symposium Series)、
242巻、11頁〜23頁(1984年))。この方法
は、露光により光酸発生剤より生成したプロトン酸を加
熱処理によってレジスト固相内を移動させ、それによる
レジスト樹脂への化学変化を触媒反応的に数100〜数
1000倍に増幅させることを特徴とする。Further, the resist material used for microfabrication has high resolution corresponding to the miniaturization of machining dimensions,
The demand for higher sensitivity is also increasing. This is because the use of an expensive excimer laser as the light source requires improvement in cost performance. Currently, chemically amplified resists using photoacid generators are being actively researched because they can be expected to dramatically improve sensitivity (eg, Hiroshiito, C. Grant Wilson, American Chemical Society Symposium. Series (Hiroshi Ito, C. Grant Wi
llson, American Chemical S
(Ociety Symposium Series),
242, pp. 11-23 (1984)). In this method, a protonic acid generated from a photo-acid generator by exposure is moved in a solid phase of a resist by a heat treatment, and a chemical change to a resist resin caused thereby is catalytically amplified several hundred to several thousand times. Is characterized by.
【0005】[0005]
【発明が解決しようとする課題】しかし、これまでラダ
ー型ポリシロキサンあるいはラダー型ポリシロキサンを
分子中に含む高分子化合物は、化学増幅型レジストとし
て使用された例は少ない。その理由は、光酸発生剤から
生成するプロトン酸による化学変化で現像液への溶解性
が変化するものがこれまでほとんどなかったためであ
る。However, there have been few examples of ladder-type polysiloxanes or polymer compounds containing ladder-type polysiloxanes in their molecules, which have been used as chemically amplified resists. The reason is that there has been almost no change in solubility in a developer due to a chemical change due to a protonic acid generated from a photo-acid generator.
【0006】本発明の目的は、光酸発生剤から生成する
プロトン酸により溶解性が容易に変化するラダー型ポリ
シロキサンあるいはラダー型ポリシロキサンを分子中に
含む高分子化合物を開発することである。An object of the present invention is to develop a ladder-type polysiloxane or a polymer compound containing a ladder-type polysiloxane in its molecule, the solubility of which is easily changed by a protonic acid generated from a photoacid generator.
【0007】[0007]
【課題を解決するための手段】発明者らは鋭意研究の結
果、上記技術課題は下記一般式(I)で表される新規な
高分子化合物で解決されることを見いだし本発明に至っ
た。As a result of earnest research, the inventors have found that the above technical problems can be solved by a novel polymer compound represented by the following general formula (I), and completed the present invention.
【0008】[0008]
【化2】 [Chemical 2]
【0009】式中、R1 、R2 は、同一もしくは異なっ
ていてもよく、炭素数1〜10の飽和アルキル基を表す
(より具体的には、メチル基、エチル基、n−プロピル
基、sec−プロピル基、n−ブチル基、sec−ブチ
ル基、iso−ブチル基、tert−ブチル基、ペンチ
ル基、ヘキシル基、ヘプチル基、オクチル基、デカニル
基等を表す。)。R3 は、芳香族炭化水素4価基、炭素
数4〜7の環状飽和炭化水素4価基(より具体的には、
以下のような構造をもつ基いを表す。)、In the formula, R 1 and R 2 may be the same or different and each represents a saturated alkyl group having 1 to 10 carbon atoms (more specifically, a methyl group, an ethyl group, an n-propyl group, It represents a sec-propyl group, n-butyl group, sec-butyl group, iso-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, decanyl group, etc.). R 3 is an aromatic hydrocarbon tetravalent group, a cyclic saturated hydrocarbon tetravalent group having 4 to 7 carbon atoms (more specifically,
It represents a base having the following structure. ),
【0010】[0010]
【化3】 [Chemical 3]
【0011】R4 、R5 、R6 、R7 は、同一であって
も異なっていてもよく、水素原子、トリメチルシリル基
を表す。nは3〜50、mは2〜100(より好ましく
は、nは、3〜20、mは、3〜30)の正の整数であ
る。R 4 , R 5 , R 6 and R 7, which may be the same or different, each represents a hydrogen atom or a trimethylsilyl group. n is a positive integer of 3 to 50, m is 2 to 100 (more preferably, n is 3 to 20, and m is 3 to 30).
【0012】本発明による高分子化合物は、例えば次の
方法等により合成される。一般式(II)で表される末
端水酸基ラダー型ポリシロキサン(式中R1 、R2 は、
前記と同じ。nは3〜50の正の整数)と一般式(II
I)で表される酸ハロゲン化物(式中R3 は、前記と同
じ。Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原
子)をトルエン、テトラヒドロフラン、クロロホルム等
(好ましくは、トルエン)に1:0.7〜1:1.5
(より好ましくは1:0.9〜1:1.1)のモル比で
混合、溶解する。そこへ塩基(例えば、ピリジン、トリ
エチルアミン、N,N−ジメチルアニリン等)を加え、
アルゴン雰囲気下、10℃〜100℃(好ましくは、2
0℃〜40℃)で0.5〜10時間(好ましくは3〜6
時間)反応させる。反応終了後、ろ過により生成した塩
を除去し、このろ過をメタノール中に注ぎ析出した沈殿
をろ集後、減圧乾燥することにより目的物は得られる。
また、この後、ヘキサメチルジシラザン等のシリル化剤
により末端の水酸基をトリメチルシリル化すると末端が
トリメチルシリル基である一般式(I)の高分子化合物
が得られる。The polymer compound according to the present invention is synthesized, for example, by the following method. A terminal hydroxyl group ladder type polysiloxane represented by the general formula (II) (wherein R 1 and R 2 are
Same as above. n is a positive integer of 3 to 50) and the general formula (II
I) an acid halide (wherein R 3 is as defined above, X is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom) in toluene, tetrahydrofuran, chloroform or the like (preferably toluene); : 0.7-1: 1.5
(More preferably 1: 0.9 to 1: 1.1) and mixed and dissolved in a molar ratio. A base (for example, pyridine, triethylamine, N, N-dimethylaniline, etc.) is added thereto,
In an argon atmosphere, 10 ° C to 100 ° C (preferably 2
0.5 to 10 hours (preferably 3 to 6) at 0 ° C to 40 ° C
Time) to react. After the completion of the reaction, the salt produced by filtration is removed, the filtrate is poured into methanol, and the deposited precipitate is collected by filtration and dried under reduced pressure to obtain the desired product.
Further, after this, the terminal hydroxyl group is trimethylsilylated with a silylating agent such as hexamethyldisilazane to obtain a polymer compound of the general formula (I) having a terminal trimethylsilyl group.
【0013】[0013]
【化4】 [Chemical 4]
【0014】これらの高分子化合物は、例えばp−トル
エンスルホン酸、塩酸あるいは硫酸等の酸により容易に
分解し分子量が低下することを確認した。一般式(I)
で表される高分子化合物をレジストのベースポリマーと
して使用する場合、トリフェニルスルフォニウム塩、ジ
フェニルヨードニウム塩あるいはo−ニトロベンジルト
シレート等の光酸発生剤と組み合わせ、ディープUV光
(deep UV光)を照射することにより、光酸発生
剤から発生する酸により一般式(I)で表される高分子
化合物中の珪素エステルのSi−O結合の切断、即ち高
分子化合物(I)の主鎖の切断が起こる。これにより、
溶剤に対する露光部の溶解性が大きく変化する為、適切
な溶媒で現像することによりレジストパターンを得るこ
とができる。すなわち、一般式(I)で表される高分子
化合物を多層レジストの上層レジストとして使用した場
合、その珪素含有率が高いため耐酸素プラズマエッチン
グ性が高く、酸素ガスを用いた反応性イオンエッチング
処理により下層レジストに対し精度良くパターンを転写
することができる。It has been confirmed that these polymer compounds are easily decomposed by an acid such as p-toluenesulfonic acid, hydrochloric acid or sulfuric acid to lower the molecular weight. General formula (I)
When the polymer compound represented by is used as a base polymer of a resist, it is combined with a photo acid generator such as triphenylsulfonium salt, diphenyliodonium salt or o-nitrobenzyl tosylate, and deep UV light (deep UV light) is used. By irradiating the polymer with an acid generated from the photoacid generator, the Si—O bond of the silicon ester in the polymer compound represented by the general formula (I) is cleaved, that is, the main chain of the polymer compound (I) is broken. Disconnection occurs. This allows
Since the solubility of the exposed portion in a solvent changes greatly, a resist pattern can be obtained by developing with an appropriate solvent. That is, when the polymer compound represented by the general formula (I) is used as an upper layer resist of a multi-layer resist, its high silicon content results in high oxygen plasma etching resistance and reactive ion etching treatment using oxygen gas. Thus, the pattern can be accurately transferred to the lower layer resist.
【0015】[0015]
【実施例】以下に本発明化合物の実施例を挙げる。但
し、実施例1〜6は一般式(I)で表される高分子化合
物の合成例であり、そのR1 〜R7 は、表1に示す。EXAMPLES Examples of the compounds of the present invention will be given below. However, Examples 1 to 6 are synthetic examples of the polymer compound represented by the general formula (I), and R 1 to R 7 thereof are shown in Table 1.
【0016】[0016]
【表1】 [Table 1]
【0017】(参考例1)末端水酸基ポリイソブチルシ
ルセスキオキサンの合成例を以下に示す。Reference Example 1 An example of the synthesis of terminal hydroxyl group polyisobutylsilsesquioxane is shown below.
【0018】300ml三つの口反応器中に炭素水素ナ
トリウム17g(0.21mol)を水25ml、ジエ
チルエーテル50mlの混合溶液中に加え0〜10℃に
冷却した。激しく攪拌しながら、この溶液中に、イソブ
チルトリクロロシラン10ml(0.07mol)をジ
エチルエーテル75mlに溶解した溶液を15分で滴下
した後、2時間攪拌を続けた。反応終了後、反応混合物
をジエチルエーテル層と水層に分離し、水層をジエチル
エーテルで3回抽出を行なった。先に分離したジエチル
エーテル層と抽出液を一緒にし、飽和食塩水で洗浄した
後、無水硫酸マグネシウム上で12時間乾燥し、これを
減圧にて溶媒留去した。これにより、無色透明な末端水
酸基ポリイソブチルシルセスキオキサンを14g得た
(収率84%)。目的物の構造は、1 H−NMR測定
(ブルカー社製AMX−400型NMR装置)、IR測
定(島津製IR−470)、元素分析等により確認し
た。分子量測定は島津製LC−9Aを検出には島津製S
PD−6Aを用い、テトラヒドロフランを溶媒とし昭和
電工製GPCカラム(GPC KF−80M)を用い、
ポリスチレン換算分子量として決定した。1 H−NMR(CDCl3 、内部標準物質:テトラメチ
ルシラン):δ(ppm) 0.45〜0.85(w,2H,Si−CH2 −)、
0.85〜1.10(w,3H,−CH3 ) 1.50〜2.05(m,1H,−CH)、5.05〜
5.20(s,0.36H,−OH) (1 H−NMRスペクトルのメチレン基と水酸基の強度
比から末端水素基ポリイソブチルシルセスキオキサンの
重合度は、5.6である。) IR(液膜法、cm- 1 )1100
(νs i - o - s i ) 重量平均分子量:1620 元素分析 C H Si 実測値(重量%) 44.07 8.88 20.92 理論値(重量%) 44.83 8.67 21.42 (実施例1)100mlフラスコ中に参考例1で合成し
た末端ヒドロキシポリイソブチルシルセキオキサン(重
合度5.6)0.70gを乾燥トルエン20mlに溶解
し、さらに、乾燥ピリジン0.5mlを添加し、これを
50℃に加熱した。そこへ、ピロメリット酸クロリド
0.19g(0.00058mol)の乾燥トルエン溶
液5mlを1回量1mlづつ30分毎に5回に分けて加
えた。反応開始より4時間後、反応混合物から生成した
沈殿をろ過により除去した後、ろ液をメタノール500
ml中に注ぎ再沈を行なった。析出した白色沈殿をろ集
し、これを12時間減圧することにより高分子化合物
0.69gを得た(収率87%)。1 H−NMR(CDCl3 、内部標準物質:テトラメチ
ルシラン):δ(ppm) 0.45〜0.85(w,2H,Si−CH2 −)、
0.85〜1.10(w,3H,−CH3 ) 1.50〜2.05(m,1H,−CH)、7.95
(s,0.18H,aromatic) IR(KBr錠剤、cm- 1 )1100(ν
s i - o - s i )、1718(νc= o ) 重量平均分子量:8200 元素分析 C H Si 実測値(重量%) 48.22 7.35 18.68 理論値(重量%) 48.74 7.63 19.04 (実施例2)実施例1の方法で、但し、始めに末端ヒド
ロキシポリイソブチルシルセスキオキサンを溶解する溶
媒を乾燥トルエンの代わりに乾燥ピリジンを用い合成を
行なった(収率83%)。目的物の構造は、実施例1と
同様な方法で確認した。1 H−NMR(CDCl3 、内部標準物質:テトラメチ
ルシラン):δ(ppm) 0.45〜0.85(w,2H,Si−CH2 −)、
0.85〜1.10(w,3H,−CH3 ) 1.50〜2.05(m,1H,−CH)、7.95
(s,0.18H,aromatic) IR(KBr錠剤、cm- 1 )1100(ν
s i - o - s i )、1718(νc= o ) 重量平均分子量:16600 元素分析 C H Si 実測値(重量%) 48.44 7.20 18.88 理論値(重量%) 48.74 7.63 19.04 (実施例3)実施例1の方法で、但し、ピリジンの代わ
りに4−N,N−ジメチルアミノピリジン0.5gを用
い合成を行なった(収率92%)。1 H−NMR(CDCl3 、内部標準物質:テトラメチ
ルシラン):δ(ppm) 0.45〜0.85(w,2H,Si−CH2 −)、
0.85〜1.10(w,3H,−CH3 ) 1.50〜2.05(m,1H,−CH)、7.95
(s,0.18H,aromatic) IR(KBr錠剤、cm- 1 )1100(ν
s i - o - s i )、1718(νc= o ) 重量平均分子量:51900 元素分析 C H Si 実測値(重量%) 48.66 7.35 18.65 理論値(重量%) 48.74 7.63 19.04 (実施例4)100ml三つの口フラスコ中で、実施例
2で得られた高分子化合物0.8gを乾燥テトラヒドロ
フラン5mlに溶解し、ここへヘキサメチルジシラザン
0.2mlを加えた。その後、攪拌しながら70℃に加
熱し、2時間反応を行なった。反応終了後、これを乾燥
メタノール中に注ぎ、析出した沈殿物を回収し12時間
減圧乾燥を行うことにより末端がトリメチルシリル基で
エンドキャップされた高分子化合物0.73gを得た
(収率91.3%)。目的物の構造は、実施例1と同様
な方法で解析した。1 H−NMR(CDCl3 、内部標準物質:テトラメチ
ルシラン):δ(ppm) 0.45〜0.85(w,2H,Si−CH2 −)、
0.85〜1.10(w,3H,−CH3 ) 1.50〜2.05(m,1H,−CH)、7.95
(s,0.18H,aromatic) IR(KBr錠剤、cm- 1 )1100(ν
s i - o - s i )、1718(νc= o ) 重量平均分子量:8000 元素分析 C H Si 実測値(重量%) 48.93 6.90 19.60 理論値(重量%) 49.65 7.09 19.83 (実施例5)100mlフラスコ中に末端ヒドロキシポ
リイソブチルシルセスキオキサン(重合度24.5)
1.54gを乾燥トルエン20mlに溶解し、さらに、
乾燥ピリジン0.5mlを添加し、これを50℃に加熱
した。そこへ、1,2,3,4−シクロペンタンテトラ
カルボン酸クロリド0.095g(0.0003mo
l)の乾燥トルエン溶液5mlを1回量1mlづつ30
分毎に5回に分けて加えた。反応開始から4時間後、室
温に冷却した後、反応混合物より生成した沈殿をろ過に
よって除去した後、ろ液をメタノール500ml中に注
ぎ再沈を行なった。析出した白色沈殿を回収し、これを
12時間減圧し高分子化合物1.29gを得た(収率8
2%)。目的物の構造は、実施例1と同様な方法で確認
した。1 H−NMR(CDCl3 、内部標準物質:テトラメチ
ルシラン):δ(ppm) 0.45〜0.85(w,2H,Si−CH2 −)、
0.85〜1.10(w,3H,−CH3 ) 1.50〜2.05(m,1H,−CH)、3.15〜
4.25(m,0.0H,−CH2 −,−CH) IR(KBr錠剤、cm- 1 )1100(ν
s i - o - s i )、1718(νc= o ) 重量平均分子量:23800 元素分析 C H Si 実測値(重量%) 46.37 8.03 21.29 理論値(重量%) 46.83 8.39 21.33 (実施例6)100mlフラスコ中に、特開昭53−8
8099に記された合成例に準じて合成した末端ヒドロ
キシポリメチルシルセスキオキサン(重合度10.2)
0.62gを乾燥トルエン20mlに溶解し、さらに、
乾燥ピリジン0.5mlを添加し、これを50℃に加熱
した。そこへ、ピロメリット酸クロリド0.19g
(0.00058mol)の乾燥トルエン溶液5mlを
1回量1mlづつ30分毎に5回に分けて加えた。反応
開始から4時間後、室温に冷却した後、反応混合物より
生成した沈殿をろ過によって除去した後、ろ液をメタノ
ール500ml中に注ぎ再沈を行なった。析出した白色
沈殿を回収し、これを12時間減圧乾燥し高分子化合物
0.63gを得た(収率87%)。目的物の構造は、実
施例1と同様な方法で確認した。1 H−NMR(CDCl3 、内部標準物質:テトラメチ
ルシラン):δ(ppm) 0.45〜0.60(s,1H,Si−CH3 −)、
7.95(5,0.03H,aromatic) 1.50〜2.05(m,1H,−CH)、7.95
(s,0.18H,aromatic) IR(KBr錠剤、cm- 1 )1100(ν
s i - o - s i )、1718(νc= o ) 重量平均分子量:15500 元素分析 C H Si 実測値(重量%) 24.87 4.03 31.72 理論値(重量%) 25.14 4.34 32.30 (実施例7)ビーカー中で、実施例2で得られた高分子
化合物(重量平均分子量:16600)1gをトルエン
10gに溶解し、これに1Nのp−トルエンスルフォン
酸のトルエン溶液1ccを加え、攪拌しながら80℃で
10分間加熱した。この溶液を、水洗後、溶媒を減圧留
去後、GPCにより分子量を測定した。その結果、重量
平均分子量は、16600から1880に低下し、酸に
より分子量が低下することを確認した。In a 300 ml three-necked reactor, 17 g (0.21 mol) of sodium hydrogencarbonate was added to a mixed solution of 25 ml of water and 50 ml of diethyl ether and cooled to 0 to 10 ° C. With vigorous stirring, a solution prepared by dissolving 10 ml (0.07 mol) of isobutyltrichlorosilane in 75 ml of diethyl ether was added dropwise over 15 minutes, and stirring was continued for 2 hours. After completion of the reaction, the reaction mixture was separated into a diethyl ether layer and an aqueous layer, and the aqueous layer was extracted with diethyl ether three times. The previously separated diethyl ether layer and the extract were combined, washed with saturated saline, and then dried over anhydrous magnesium sulfate for 12 hours, and the solvent was distilled off under reduced pressure. As a result, 14 g of colorless and transparent terminal hydroxyl group polyisobutylsilsesquioxane was obtained (yield 84%). The structure of the target substance was confirmed by 1 H-NMR measurement (AMX-400 type NMR apparatus manufactured by Bruker), IR measurement (IR-470 manufactured by Shimadzu), elemental analysis and the like. Shimadzu LC-9A is used for molecular weight measurement and Shimadzu S is used for detection.
Using PD-6A, using tetrahydrofuran as a solvent and using a GPC column (GPC KF-80M) manufactured by Showa Denko,
It was determined as a molecular weight in terms of polystyrene. 1 H-NMR (CDCl 3 , internal standard substance: tetramethylsilane): δ (ppm) 0.45 to 0.85 (w, 2H, Si—CH 2 —),
0.85~1.10 (w, 3H, -CH 3 ) 1.50~2.05 (m, 1H, -CH), 5.05~
5.20 (s, 0.36H, -OH) (1 H-NMR methylene group and a hydroxyl group intensity ratio of the spectrum of the terminal hydrogen groups polyisobutyl silsesquioxane degree of polymerization is 5.6.) IR (Liquid film method, cm -1 ) 1100
(Ν si-o-si ) Weight average molecular weight: 1620 Elemental analysis C H Si actual value (wt%) 44.07 8.88 20.92 Theoretical value (wt%) 44.83 8.67 21.42 (implementation) Example 1) 0.70 g of terminal hydroxypolyisobutylsilsequioxane (polymerization degree: 5.6) synthesized in Reference Example 1 was dissolved in 20 ml of dry toluene in a 100 ml flask, and 0.5 ml of dry pyridine was added, This was heated to 50 ° C. To this, 5 ml of a dry toluene solution of 0.19 g (0.00058 mol) of pyromellitic acid chloride was added once every 30 minutes in 5 batches. After 4 hours from the start of the reaction, the precipitate formed from the reaction mixture was removed by filtration, and the filtrate was added with methanol 500.
It poured into ml and reprecipitated. The white precipitate thus deposited was collected by filtration and depressurized for 12 hours to obtain 0.69 g of a polymer compound (yield 87%). 1 H-NMR (CDCl 3 , internal standard substance: tetramethylsilane): δ (ppm) 0.45 to 0.85 (w, 2H, Si—CH 2 —),
0.85~1.10 (w, 3H, -CH 3 ) 1.50~2.05 (m, 1H, -CH), 7.95
(S, 0.18H, aromatic) IR (KBr tablet, cm -1 ) 1100 (ν
si-o-si ), 1718 (ν c = o ) Weight average molecular weight: 8200 Elemental analysis CH 2 Si 5 Measured value (wt%) 48.22 7.35 18.68 Theoretical value (wt%) 48.74 7. 63 19.04 (Example 2) Synthesis was carried out by the method of Example 1, except that dry pyridine was used instead of dry toluene as the solvent in which the terminal hydroxypolyisobutylsilsesquioxane was first dissolved (yield 83 %). The structure of the target product was confirmed by the same method as in Example 1. 1 H-NMR (CDCl 3 , internal standard substance: tetramethylsilane): δ (ppm) 0.45 to 0.85 (w, 2H, Si—CH 2 —),
0.85~1.10 (w, 3H, -CH 3 ) 1.50~2.05 (m, 1H, -CH), 7.95
(S, 0.18H, aromatic) IR (KBr tablet, cm -1 ) 1100 (ν
si-o-si ), 1718 (ν c = o ) Weight average molecular weight: 16600 Elemental analysis CH 2 Si 5 Measured value (wt%) 48.44 7.20 18.88 Theoretical value (wt%) 48.74 7. 63 19.04 (Example 3) Synthesis was carried out by the method of Example 1 except that 0.5 g of 4-N, N-dimethylaminopyridine was used instead of pyridine (yield 92%). 1 H-NMR (CDCl 3 , internal standard substance: tetramethylsilane): δ (ppm) 0.45 to 0.85 (w, 2H, Si—CH 2 —),
0.85~1.10 (w, 3H, -CH 3 ) 1.50~2.05 (m, 1H, -CH), 7.95
(S, 0.18H, aromatic) IR (KBr tablet, cm -1 ) 1100 (ν
si-o-si ), 1718 (ν c = o ) Weight average molecular weight: 51900 Elemental analysis CH 2 Si 5 Measured value (wt%) 48.66 7.35 18.65 Theoretical value (wt%) 48.74 7. 63 19.04 (Example 4) In a 100 ml three-necked flask, 0.8 g of the polymer compound obtained in Example 2 was dissolved in 5 ml of dry tetrahydrofuran, and 0.2 ml of hexamethyldisilazane was added thereto. . Then, it heated at 70 degreeC, stirring, and performed reaction for 2 hours. After completion of the reaction, this was poured into dry methanol, and the deposited precipitate was collected and dried under reduced pressure for 12 hours to obtain 0.73 g of a polymer compound end-capped with a trimethylsilyl group (yield 91. 3%). The structure of the target product was analyzed by the same method as in Example 1. 1 H-NMR (CDCl 3 , internal standard substance: tetramethylsilane): δ (ppm) 0.45 to 0.85 (w, 2H, Si—CH 2 —),
0.85~1.10 (w, 3H, -CH 3 ) 1.50~2.05 (m, 1H, -CH), 7.95
(S, 0.18H, aromatic) IR (KBr tablet, cm -1 ) 1100 (ν
si-o-si ), 1718 (ν c = o ) Weight average molecular weight: 8000 Elemental analysis C H Si actual value (wt%) 48.93 6.90 19.60 Theoretical value (wt%) 49.65 7. 09 19.83 (Example 5) Terminal hydroxy polyisobutyl silsesquioxane (polymerization degree 24.5) in a 100 ml flask.
1.54 g was dissolved in 20 ml of dry toluene, and
0.5 ml of dry pyridine was added and it was heated to 50 ° C. There, 0.095 g (0.0003mo) of 1,2,3,4- cyclopentane tetracarboxylic acid chloride
5 ml of the dry toluene solution of 1) is added once per 1 ml 30
It was added 5 times every minute. After 4 hours from the start of the reaction, the mixture was cooled to room temperature, the precipitate formed from the reaction mixture was removed by filtration, and the filtrate was poured into 500 ml of methanol for reprecipitation. The white precipitate thus deposited was recovered and depressurized for 12 hours to obtain 1.29 g of a polymer compound (yield 8
2%). The structure of the target product was confirmed by the same method as in Example 1. 1 H-NMR (CDCl 3 , internal standard substance: tetramethylsilane): δ (ppm) 0.45 to 0.85 (w, 2H, Si—CH 2 —),
0.85~1.10 (w, 3H, -CH 3 ) 1.50~2.05 (m, 1H, -CH), 3.15~
4.25 (m, 0.0H, -CH2-, -CH) IR (KBr tablet, cm -1 ) 1100 (ν
si-o-si ), 1718 (ν c = o ) Weight average molecular weight: 23800 Elemental analysis C H Si Actual value (wt%) 46.37 8.03 21.29 Theoretical value (wt%) 46.83 8. 39 21.33 (Example 6) Japanese Patent Application Laid-Open No. 53-8
Terminal hydroxypolymethylsilsesquioxane (polymerization degree 10.2) synthesized according to the synthesis example described in 8099.
0.62 g was dissolved in 20 ml of dry toluene, and
0.5 ml of dry pyridine was added and it was heated to 50 ° C. 0.19 g of pyromellitic acid chloride there
5 ml of a dry toluene solution of (0.00058 mol) was added every 1 minute in 5 batches every 30 minutes. After 4 hours from the start of the reaction, the mixture was cooled to room temperature, the precipitate formed from the reaction mixture was removed by filtration, and the filtrate was poured into 500 ml of methanol for reprecipitation. The white precipitate thus deposited was collected and dried under reduced pressure for 12 hours to obtain 0.63 g of a polymer compound (yield 87%). The structure of the target product was confirmed by the same method as in Example 1. 1 H-NMR (CDCl 3 , internal standard substance: tetramethylsilane): δ (ppm) 0.45 to 0.60 (s, 1H, Si—CH 3 —),
7.95 (5, 0.03H, aromatic) 1.50 to 2.05 (m, 1H, -CH), 7.95
(S, 0.18H, aromatic) IR (KBr tablet, cm -1 ) 1100 (ν
si-o-si ), 1718 (ν c = o ) Weight average molecular weight: 15500 Elemental analysis CH 2 Si 4 Measured value (wt%) 24.87 4.03 31.72 Theoretical value (wt%) 25.14 4. 34 32.30 (Example 7) In a beaker, 1 g of the polymer compound (weight average molecular weight: 16600) obtained in Example 2 was dissolved in 10 g of toluene, and a toluene solution of 1N p-toluenesulfonic acid was added thereto. 1 cc was added and heated at 80 ° C. for 10 minutes with stirring. The solution was washed with water, the solvent was distilled off under reduced pressure, and the molecular weight was measured by GPC. As a result, the weight average molecular weight was reduced from 16600 to 1880, and it was confirmed that the molecular weight was reduced by the acid.
【0019】(実施例8)実施例2で得られた高分子化
合物18gとトリフェニルスルフォニウムトリフロロメ
タンスルフォナート2gをメチルイソブチルケトン80
gに溶解し、さらに0.2μm孔メンブレンフィルター
でろ過し、得られた溶液をシリコン基板上に膜厚1μm
に回転塗布し、ホットプレート上で、120℃、90秒
プレベークを行なった。これをエタノールに浸漬し、膜
の溶解速度を測定した。次に、同様の条件で作成した膜
に、KrFエキシマレーザ(MEXエキシマレーザ 日
本電気製)を照射(露光量:30mJ・cm- 1 )した
後、110℃で60秒ポストベークを行い、エタノール
に浸漬し、膜の溶解速度を測定した。その結果、露光後
の膜の溶解速度は露光前の約150倍となった。Example 8 18 g of the polymer compound obtained in Example 2 and 2 g of triphenylsulfonium trifluoromethanesulfonate were added to 80 g of methyl isobutyl ketone.
g and then filtered with a 0.2 μm pore membrane filter, and the resulting solution has a film thickness of 1 μm on a silicon substrate.
Was spin-coated on a hot plate and prebaked at 120 ° C. for 90 seconds. This was immersed in ethanol and the dissolution rate of the membrane was measured. Next, the film prepared under the same conditions was irradiated with KrF excimer laser (MEX excimer laser manufactured by NEC Corporation) (exposure amount: 30 mJ · cm −1 ) and then post-baked at 110 ° C. for 60 seconds, followed by ethanol conversion. It was dipped and the dissolution rate of the membrane was measured. As a result, the dissolution rate of the film after exposure was about 150 times that before exposure.
【0020】なお、今回実施例においては簡便のためR
1 、R2 、R4 〜R7 が同一置換基のもののみを示した
が、本発明においては必ずしもR1 とR2 、R4 〜R7
が同一である必要はなく、異なる置換基を有する化合物
を含有しても同様の効果が得られた。In this embodiment, R is used for simplicity.
1, R 2, but R 4 to R 7 showed only of the same substituents, necessarily R 1 in the present invention and R 2, R 4 ~R 7
Do not need to be the same, and similar effects were obtained even when compounds having different substituents were included.
【0021】以上説明したように、本発明の珪素含有高
分子化合物は、光酸発生剤と組み合わせ遠紫外光等の放
射線を照射した場合、溶剤に対する溶解性を著しく変化
することから、フォトレジストのベースポリマーとして
有用であることがわかった。As described above, when the silicon-containing polymer of the present invention is combined with a photo-acid generator and irradiated with radiation such as far-ultraviolet light, the solubility in a solvent is significantly changed. It has been found to be useful as a base polymer.
【0022】また、本発明の珪素含有高分子化合物は、
分子内に珪素原子を有することから、酸素プラズマ耐性
も良好であり、フォトレジストへの利用に有効である。The silicon-containing polymer compound of the present invention is
Since it has a silicon atom in the molecule, it has good oxygen plasma resistance and is effective for use as a photoresist.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 悦雄 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Etsuo Hasegawa 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation
Claims (2)
てもよく、炭素数1〜10の飽和アルキル基を表し、R
3 は、芳香族炭化水素4価基または炭素数4〜7の環状
飽和炭化水素4価基を表し、R4 、R5 、R6 、R
7 は、同一もしくは異なっていてもよく、水素原子また
はトリメチルシリル基を表し、nは3〜50、mは2〜
100の正の整数である珪素含有高分子化合物。1. The following general formula (I): In the formula, R 1 and R 2 may be the same or different and each represents a saturated alkyl group having 1 to 10 carbon atoms;
3 represents an aromatic hydrocarbon tetravalent group or a cyclic saturated hydrocarbon tetravalent group having 4 to 7 carbon atoms, R 4 , R 5 , R 6 and R
7 may be the same or different and represent a hydrogen atom or a trimethylsilyl group, n is 3 to 50 and m is 2 to
A silicon-containing polymer compound having a positive integer of 100.
より酸を発生する感光性化合物の両者より成ることを特
徴とするようなレジスト材料。2. A resist material comprising the polymer compound according to claim 1 and a photosensitive compound capable of generating an acid upon exposure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5203126A JP2606652B2 (en) | 1993-08-17 | 1993-08-17 | Silicon-containing polymer compound and resist material using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5203126A JP2606652B2 (en) | 1993-08-17 | 1993-08-17 | Silicon-containing polymer compound and resist material using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0756354A true JPH0756354A (en) | 1995-03-03 |
JP2606652B2 JP2606652B2 (en) | 1997-05-07 |
Family
ID=16468841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5203126A Expired - Fee Related JP2606652B2 (en) | 1993-08-17 | 1993-08-17 | Silicon-containing polymer compound and resist material using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2606652B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6039911A (en) * | 1997-01-09 | 2000-03-21 | 3M Innovative Properties Company | Method for capping stem fasteners |
US6828078B2 (en) | 2000-08-29 | 2004-12-07 | Jsr Corporation | Composition having refractive index sensitively changeable by radiation and method for forming refractive index pattern |
US7071255B2 (en) | 2001-02-19 | 2006-07-04 | Jsr Corporation | Radiation-sensitive composition capable of having refractive index distribution |
US7108954B2 (en) | 2000-12-11 | 2006-09-19 | Jsr Corporation | Radiation-sensitive composition changing in refractive index and method of changing refractive index |
US7125647B2 (en) | 2001-03-13 | 2006-10-24 | Jsr Corporation | Radiation-sensitive composition changing in refractive index and utilization thereof |
US7205085B2 (en) | 2001-08-01 | 2007-04-17 | Jsr Corporation | Composition having permitivity being radiation-sensitively changeable and method for forming permitivity pattern |
JP2021047426A (en) * | 2013-08-22 | 2021-03-25 | インプリア・コーポレイションInpria Corporation | Organometallic solution based high resolution patterning compositions |
US11392031B2 (en) | 2010-06-01 | 2022-07-19 | Inpria Corporation | Radiation based patterning methods |
-
1993
- 1993-08-17 JP JP5203126A patent/JP2606652B2/en not_active Expired - Fee Related
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6039911A (en) * | 1997-01-09 | 2000-03-21 | 3M Innovative Properties Company | Method for capping stem fasteners |
US6828078B2 (en) | 2000-08-29 | 2004-12-07 | Jsr Corporation | Composition having refractive index sensitively changeable by radiation and method for forming refractive index pattern |
US7108954B2 (en) | 2000-12-11 | 2006-09-19 | Jsr Corporation | Radiation-sensitive composition changing in refractive index and method of changing refractive index |
US7071255B2 (en) | 2001-02-19 | 2006-07-04 | Jsr Corporation | Radiation-sensitive composition capable of having refractive index distribution |
US7125647B2 (en) | 2001-03-13 | 2006-10-24 | Jsr Corporation | Radiation-sensitive composition changing in refractive index and utilization thereof |
US7205085B2 (en) | 2001-08-01 | 2007-04-17 | Jsr Corporation | Composition having permitivity being radiation-sensitively changeable and method for forming permitivity pattern |
US11693312B2 (en) | 2010-06-01 | 2023-07-04 | Inpria Corporation | Radiation based patterning methods |
US11392031B2 (en) | 2010-06-01 | 2022-07-19 | Inpria Corporation | Radiation based patterning methods |
US11599022B2 (en) | 2010-06-01 | 2023-03-07 | Inpria Corporation | Radiation based patterning methods |
US11988961B2 (en) | 2010-06-01 | 2024-05-21 | Inpria Corporation | Radiation based patterning methods |
JP2021047426A (en) * | 2013-08-22 | 2021-03-25 | インプリア・コーポレイションInpria Corporation | Organometallic solution based high resolution patterning compositions |
US11966159B2 (en) | 2013-08-22 | 2024-04-23 | Inpria Corporation | Organometallic solution based high resolution patterning compositions |
US11988958B2 (en) | 2013-08-22 | 2024-05-21 | Inpria Corporation | Organometallic solution based high resolution patterning compositions |
US11988960B2 (en) | 2013-08-22 | 2024-05-21 | Inpria Corporation | Organometallic solution based high resolution patterning compositions |
Also Published As
Publication number | Publication date |
---|---|
JP2606652B2 (en) | 1997-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2776273B2 (en) | Monomer having vinyl group | |
JP4854023B2 (en) | Photosensitive composition | |
JP2907144B2 (en) | Acid derivative compound, polymer compound, photosensitive resin composition using the same, and pattern forming method | |
JPH11322856A (en) | Silicon-containing polymer and chemical amplification-type resist composition containing the same | |
JP2619358B2 (en) | Photosensitive resin composition | |
TWI429665B (en) | Photosensitive resin and photosensitive composition | |
JP4091285B2 (en) | Photoresist monomer, photoresist polymer, photoresist composition, photoresist pattern forming method, and semiconductor device | |
JP2697680B2 (en) | Silicon-containing polymer compound and photosensitive resin composition | |
WO2009091704A2 (en) | Aromatic fluorine-free photoacid generators and photoresist compositions containing the same | |
JP2616250B2 (en) | Bridged cyclic hydrocarbon alcohols and intermediate compounds for photosensitive materials | |
KR20000009572A (en) | New polymer and photoresist composition therefrom | |
JP2606652B2 (en) | Silicon-containing polymer compound and resist material using the same | |
US6455226B1 (en) | Photoresist polymers and photoresist composition containing the same | |
JP4759107B2 (en) | Silicon-containing polymer, resist composition using the same, and resist pattern forming method | |
JP4144957B2 (en) | Resist composition and method for forming resist pattern | |
WO2011089033A1 (en) | Fluorine-free fused ring heteroaromatic photoacid generators and resist compositions containing the same | |
KR100770223B1 (en) | Compound for forming a photoresist, photoresist composition including the compound and method of forming a pattern | |
JP2606655B2 (en) | Photosensitive compound and photosensitive composition | |
US5624788A (en) | Organic silicon compound, resist thermal polymerization composition and photopolymerization composition | |
KR100521809B1 (en) | Polycarbomethylsilane derivatives and Photoresist Composition containing the same | |
JP2606653B2 (en) | Silicon-containing sulfonium salt and photoresist composition | |
WO2012133040A1 (en) | Calixarene derivative | |
KR102448080B1 (en) | Novel compounds and extreme ultraviolet photoresist composition containing the same | |
KR20140029704A (en) | Acid quencher for resist and resist composition comprising same | |
US6492088B1 (en) | Photoresist monomers polymers thereof and photoresist compositions containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19961224 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080213 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090213 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100213 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100213 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110213 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110213 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120213 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |