JPH0748080B2 - Synchrotron radiation transparent window - Google Patents
Synchrotron radiation transparent windowInfo
- Publication number
- JPH0748080B2 JPH0748080B2 JP2149989A JP14998990A JPH0748080B2 JP H0748080 B2 JPH0748080 B2 JP H0748080B2 JP 2149989 A JP2149989 A JP 2149989A JP 14998990 A JP14998990 A JP 14998990A JP H0748080 B2 JPH0748080 B2 JP H0748080B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- light transmitting
- radiation
- visible light
- radiant light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70808—Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Particle Accelerators (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- X-Ray Techniques (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、シンクロトロン放射光を用いて、超LSI等
の回路パターンをウェハ等の被露光板状物に転写せしめ
る露光装置の放射光透過窓に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses a synchrotron radiation to transmit the radiation of an exposure apparatus that transfers a circuit pattern of a VLSI or the like onto an exposed plate-like object such as a wafer. Regarding windows
半導体(LSI)の高集積化技術の進歩に伴い、マスク上
のパターンをレジストの付着したウェハ等の上に転写す
る半導体リソグラフィ装置でも、軟X線を含むシンクロ
トロン放射光の利用が注目されるようになった。With the progress of highly integrated semiconductor (LSI) technology, the use of synchrotron radiation including soft X-rays is attracting attention even in a semiconductor lithography apparatus that transfers a pattern on a mask onto a wafer to which a resist is attached. It became so.
この放射光は第3図に示されるように、高真空の電子蓄
積リング(100)内で光速に近い速さの電子を偏向磁石
(101)の磁界により曲げた時に電子軌道の接線方向に
放射される電磁波であるが、平行性が良く、且つ強い軟
X線が得られるため、線幅がクォータミクロンクラスに
なる超LSIのマスクパターンを上記被露光板状物に転写
するX線露光装置の次期X線源として期待されている。As shown in FIG. 3, this emitted light is emitted in the tangential direction of the electron orbit when an electron having a speed close to the speed of light is bent by the magnetic field of the deflection magnet (101) in the high vacuum electron storage ring (100). The electromagnetic waves generated by the X-ray exposure apparatus transfer the mask pattern of the VLSI having a line width of quarter micron class to the plate-like object to be exposed because it has good parallelism and strong soft X-rays can be obtained. It is expected as the next X-ray source.
該シンクロトロン放射光を用いる実際の露光装置では、
電子蓄積リング(100)から発した放射光がビームライ
ン(3)を通って転写装置(102)内に導かれ、その内
部でX線マスク(図示なし)やウェハ駆動ステージ(図
示なし)等の各種装置を用いてマスクパターンを被露光
板状物の表面(この場合はウェハの上に被覆されたレジ
スト)に転写する構成となっている。In an actual exposure apparatus using the synchrotron radiation,
Radiation light emitted from the electron storage ring (100) is guided into the transfer device (102) through the beam line (3), and inside the transfer device (102), an X-ray mask (not shown), a wafer drive stage (not shown), etc. The mask pattern is transferred onto the surface of the plate-like object to be exposed (in this case, the resist coated on the wafer) using various devices.
このうち、ビームライン(3)内部は、電子蓄積リング
(100)内の高度の真空状態に悪影響を及ぼさないよう
にするため真空に保たれ、他方、転写装置(102)は、
マスクの温度上昇を抑えるため、その周りをチャンバ
(103)で囲んで内部を大気や他のガス雰囲気(放射光
減衰作用の小さいヘリウムガス等)で満たしている。そ
こでシンクロトロン放射光を放射する放射光源側(図で
は電子蓄積リング(100)及びビームライン(3))と
転写装置(102)との間には、放射光光路途中に放射光
源側の高真空域と転写装置(102)側の雰囲気とを隔て
且つ放射光の一部を透過可能なベリリウム薄膜等の放射
光透過薄膜(4)が設けられている。Of these, the inside of the beam line (3) is kept vacuum so as not to adversely affect the high vacuum state in the electron storage ring (100), while the transfer device (102) is
In order to suppress the temperature rise of the mask, the periphery of the mask is surrounded by a chamber (103) and the inside is filled with the atmosphere or another gas atmosphere (helium gas or the like having a small radiant light attenuation effect). Therefore, between the radiation source side (in the figure, the electron storage ring (100) and the beam line (3)) that emits synchrotron radiation and the transfer device (102), a high vacuum on the radiation source side is provided on the way of the radiation light path. A radiant light transmitting thin film (4) such as a beryllium thin film capable of transmitting a part of radiant light is provided so as to separate the region from the atmosphere on the transfer device (102) side.
第4図は、このような放射光透過薄膜(4)の取付けら
れた放射光透過窓の従来例を示す断面図である。同図に
示すように、ビームライン(3)端部に設けられた取付
枠(30)で端部壁面を構成し、該取付枠(30)の開口部
に放射光透過薄膜(4)が据え付けられ、その周りを押
え金具(31)によって取付枠(30)との間に挟持させ、
押えビス(32)により固定している。尚、図中取付枠
(30)はビームライン取付けビス(33)によって取出し
側の雰囲気の漏れがないようにビームライン(3)に固
定されている。FIG. 4 is a cross-sectional view showing a conventional example of a radiation transmitting window having such a radiation transmitting thin film (4) attached thereto. As shown in the figure, an end wall surface is constituted by the mounting frame (30) provided at the end of the beam line (3), and the radiant light transmitting thin film (4) is installed in the opening of the mounting frame (30). Is clamped around the mounting frame (30) by the retainer (31),
It is fixed with a presser screw (32). The mounting frame (30) in the figure is fixed to the beam line (3) by a beam line mounting screw (33) so that the atmosphere on the extraction side does not leak.
上記放射光透過薄膜(4)は、通常ベリリウム膜等で構
成され、そこに導かれたシンクロトロン放射光のうち軟
X線成分を外部に取出す役目を果している。The radiant light transmitting thin film (4) is usually composed of a beryllium film or the like, and plays the role of extracting the soft X-ray component of the synchrotron radiated light guided thereto to the outside.
一方、露光に際しては、放射光の強度の一番強い箇所が
放射光透過薄膜(4)を透過するように、該放射光光路
と放射光透過薄膜(4)との軸合せを行ないながらアラ
イナの設置、姿勢制御等が行われているが、その際の放
射光の光路の確認やその強度の感知はX線用ディテクタ
を使用して、或いは実際にレジスト面に露光してしかで
きないため、光路を高純度のヘリウム雰囲気に実際に置
換せねばならず(空気中では光路2mmで減衰して0にな
る)、上記軸合せ・姿勢制御を短時間のうちに終了させ
ることが困難であった。On the other hand, at the time of exposure, while aligning the radiant light optical path and the radiant light transmissive thin film (4) so that the portion having the highest radiant light intensity passes through the radiant light transmissive thin film (4), the aligner of the aligner is aligned. Although installation and attitude control are performed, the optical path of the radiated light at that time can be confirmed and its intensity sensed only by using an X-ray detector or by actually exposing the resist surface. Had to be actually replaced with a high-purity helium atmosphere (in the air, the optical path was attenuated to 2 mm to reach 0), and it was difficult to finish the axis alignment / posture control in a short time.
本発明は従来技術の以上のような問題に鑑み創案された
もので、放射光透過窓構成に改良を加えて、軸合せや姿
勢制御を肉眼乃至はそれに代わる可視光センサで行な
え、且つその場合に水平方向及び垂直方向の光軸のずれ
を容易に検出できる構成を提供せんとするものである。The present invention has been made in view of the above problems of the prior art, by improving the configuration of the radiant light transmission window, the alignment and attitude control can be performed with the naked eye or a visible light sensor instead thereof, and in that case It is another object of the present invention to provide a configuration capable of easily detecting the deviation of the optical axes in the horizontal direction and the vertical direction.
そのため本発明の放射光透過窓は、ビームライン取出し
端部壁面に設けられた放射光透過薄膜を真ん中にしてそ
の周囲の水平方向2箇所以上を可視光透過部とすること
を基本的特徴としている。Therefore, the radiant light transmitting window of the present invention is basically characterized in that the radiant light transmissive thin film provided on the wall surface of the end portion of the beam line is in the center, and two or more peripheral portions in the horizontal direction are visible light transmissive portions. .
この可視光透過部に、石英やサファイヤ等で作られた光
学部品が用いられれば、この部分を透過する放射光成分
は可視光のみとなり、軟X線成分は透過されないことに
なる。If an optical component made of quartz, sapphire, or the like is used for the visible light transmitting portion, the radiant light component that passes through this portion is only visible light, and the soft X-ray component is not transmitted.
又、第2発明では上記構成のほか、放射光透過薄膜及び
可視光透過部に同時に或いは各別にこれらの開閉(放射
光の入射又は遮断)を行なえるシャッタを夫々設けてい
る。Further, in the second invention, in addition to the above-mentioned structure, the radiant light transmitting thin film and the visible light transmitting portion are respectively provided with shutters capable of opening and closing (incident or blocking of radiant light) simultaneously or separately.
このようなシャッタ構成を備えることで、放射光透過薄
膜や可視光透過部で放射光を透過する必要がない時に閉
じておき、余計な放射光の漏れを防ぐことができるよう
にしている。By providing such a shutter structure, it is possible to prevent unnecessary radiation light leakage by closing the radiation light transmission thin film or the visible light transmission portion when the radiation light need not be transmitted.
上記構成では放射光透過薄膜を真ん中にしてその周囲の
水平方向2箇所以上に設けられた可視光透過部分がシン
クロトロン放射光の可視光成分を透過し、該放射光を肉
眼で観察しながら放射光光路と放射光透過薄膜の軸合せ
やアライナの姿勢制御等を行なうことが可能となるた
め、放射光光路の垂直方向のずれを検出することができ
るようになると共に、放射光透過薄膜を挟んだ両側の放
射光強度比較から、転写装置側に対する放射光光軸の水
平方向の相対的なずれを知ることが可能となる。In the above-mentioned structure, the visible light transmitting portion provided in two or more horizontal positions around the radiation light transmitting thin film in the middle transmits the visible light component of the synchrotron radiation, and the radiation is emitted while observing the radiation with the naked eye. Since it is possible to align the optical path with the synchrotron radiation thin film and control the attitude of the aligner, it becomes possible to detect the vertical deviation of the synchrotron radiation optical path and to sandwich the radiant light transparent membrane. From the comparison of the radiant light intensities on both sides, it is possible to know the relative displacement in the horizontal direction of the radiant light optical axis with respect to the transfer device side.
以下本発明の具体的実施例につき説明する。 Specific examples of the present invention will be described below.
第1図は本願第2発明に係る放射光透過窓の構成説明図
である。図中(3)はビームライン、(30)は取付枠、
(4)はベリリウム膜からなる放射光透過薄膜、(31)
は押え金具、(32)は押えビス、(33)はビームライン
取付けビスであり、これらは前述と全く同じ構成であ
る。FIG. 1 is a structural explanatory view of a radiant light transmission window according to the second invention of the present application. In the figure, (3) is the beam line, (30) is the mounting frame,
(4) is a radiation transparent thin film made of beryllium film, (31)
Is a holding metal fitting, (32) is a holding screw, and (33) is a beamline mounting screw, which have exactly the same configuration as described above.
本実施例では、放射光透過薄膜(4)の中央部を横切る
水平線上の取付枠(30)に2つの開口部を設け、そこに
石英から成る光学部品(1a)(1b)を嵌め込み気密に固
定することで、可視光透過部を形成している。In this embodiment, two openings are provided in a mounting frame (30) on a horizontal line that crosses the central portion of the radiant light transmissive thin film (4), and optical parts (1a) (1b) made of quartz are fitted therein and airtight. By fixing, the visible light transmitting portion is formed.
更に上記取付枠(30)より転写装置(図示なし)側には
ロータリソレノイド(20)(21)によって各独立して開
閉作動する可視光透過部用シャッタ(2a)と、軟X線透
過部用シャッタ(2b)が夫々設けられており、シャッタ
(2a)では前記光学部品(1a)(1b)を透過してくる放
射光の入射・遮断が、又シャッタ(2b)では放射光透過
薄膜(4)を透過してくる放射光の入射・遮断が可能な
構成になっている。Further, on the transfer device (not shown) side of the mounting frame (30), there are visible shutters (2a) for the visible light transmitting portion that are independently opened and closed by rotary solenoids (20) (21), and for the soft X-ray transmitting portion. A shutter (2b) is provided for each of the shutters (2a), for entering and blocking of the radiant light transmitted through the optical components (1a), (1b), and for the shutter (2b), the radiant light transmitting thin film (4). ).
本実施例のように放射光透過薄膜(4)を中心にその水
平方向に可視光透過部を設ける構成としたのは、電子蓄
積リングから放射されるシンクロトロン放射光が水平方
向に扁平な状態になっており、そのため放射光光路に少
しでも垂直方向のずれがある場合にすぐに検出できるよ
うになるからである。放射光透過薄膜(4)の両側に可
視光透過部を設けることにしたのは、そこから検出され
る放射光の強度が等しくなるように調整することによっ
て水平方向の軸合せも可能になるからである。As in the present embodiment, the visible light transmitting portion is provided in the horizontal direction around the radiant light transmitting thin film (4) so that the synchrotron radiation emitted from the electron storage ring is flat in the horizontal direction. Therefore, even if there is a slight vertical deviation in the optical path of the emitted light, it becomes possible to detect it immediately. The visible light transmitting parts are provided on both sides of the radiant light transmitting thin film (4) because the horizontal axis can be aligned by adjusting the intensity of the radiated light detected from the visible light transmitting parts to be equal. Is.
本実施例では、ビームライン(3)からこのような放射
光透過窓構成を介して取り出されてくるシンクロトロン
放射光を使用してX線露光を行なう前の準備作業とし
て、該放射光の光路と放射光透過窓構成(特に放射光透
過薄膜(4))との軸合せを行なった。この際シャッタ
(2a)を開放状態に、又もう一方のシャッタ(2b)を遮
断状態にしておき、転写装置側にシンクロトロン放射光
の可視光成分のみが取出せるようにした。In this embodiment, as a preparatory work before the X-ray exposure is performed using the synchrotron radiation emitted from the beam line (3) through such a radiation transmission window structure, the optical path of the radiation is used. And the synchrotron radiation transmitting window structure (in particular, the synchrotron radiation transmitting thin film (4)) were aligned. At this time, the shutter (2a) was opened and the other shutter (2b) was closed so that only the visible light component of the synchrotron radiation could be taken out to the transfer device side.
このような状態でシンクロトロン放射光の光路を放射光
透過薄膜(4)との間に垂直方向のずれがない場合に
は、前述の光学部品(1a)(1b)からなる可視光透過部
から該放射光の可視光成分が取出されることになるが、
それより少しでも垂直方向にずれがあると、放射光はそ
こを透過することができなくなるので、該可視光透過部
から放射光が肉眼で検出できる状態になるまでこの放射
光透過窓構成全体を垂直方向に動かし(もしビームライ
ン(3)中に放射光反射ミラーがある場合は、これを回
動せしめることで)、その軸合せを行なうことになる
(放射光反射ミラーの場合には、該軸合せで決まった位
置を露光時における回動中心として、該ミラーを振動的
に回動せしめることになる)。又、2つの可視光透過部
からの放射光の検出に可視光強度センサ(図示なし)を
夫々用いれば、両方の放射光の強度比較から両者間の水
平方向のずれを知ることができ、垂直方向の軸合せを行
なった後に水平方向の軸合せを行なうことが可能にな
る。その結果、2つの可視光透過部の真中にある放射光
透過薄膜(4)には自動的に放射光の強度の一番強いと
ころが照射されることになる。In such a state, if there is no vertical deviation in the optical path of the synchrotron radiation from the radiation-transmissive thin film (4), from the visible light transmission part consisting of the above-mentioned optical components (1a) (1b). The visible light component of the emitted light will be extracted,
If there is any deviation in the vertical direction than that, the emitted light cannot pass through it, so this entire emitted light transmitting window configuration is kept until the emitted light can be detected by the naked eye from the visible light transmitting portion. It is moved in the vertical direction (if there is a radiation reflection mirror in the beam line (3), it is rotated), and its axis alignment is performed (in the case of a radiation reflection mirror, the With the position determined by the axis alignment as the center of rotation during exposure, the mirror is oscillatedly rotated. If a visible light intensity sensor (not shown) is used to detect the emitted light from the two visible light transmitting portions, the horizontal shift between the two can be known from the intensity comparison of both emitted light. It becomes possible to perform the horizontal axis alignment after performing the directional axis alignment. As a result, the radiant light transmissive thin film (4) in the middle of the two visible light transmissive parts is automatically irradiated with the portion having the strongest radiant light intensity.
このような軸合せ作業の後、シャッタ(2a)を閉じ、且
つシャッタ(2b)を開放せしめれば、X線露光作業に取
りかかれることになる。If the shutter (2a) is closed and the shutter (2b) is opened after such axis alignment work, the X-ray exposure work will be started.
この他、第2図は本発明の他の実施例を夫々示す水平断
面図である。In addition, FIG. 2 is a horizontal sectional view showing another embodiment of the present invention.
同図は第1実施例と同じ位置に(即ち水平方向に)光学
部品(12a)(12b)が設けられて可視光透過部が形成さ
れているが、そのうち一方の部品(12a)にはレンズ
が、又もう一方の部品(12b)にはピンホール板や十字
合せ線等の標識入り石英ガラス板が用いられて構成され
るものが夫々示されている。In the figure, optical components (12a) and (12b) are provided at the same positions as in the first embodiment (that is, in the horizontal direction) to form a visible light transmitting portion. One of the components (12a) is a lens. However, each of the other parts (12b) is shown to be constructed by using a pinhole plate or a quartz glass plate with a mark such as a crossed wire.
以上詳述した本発明の放射光透過窓の構成によれば、放
射光光路と放射光透過薄膜との軸合せを行なう場合やア
ライナの姿勢制御を行なう場合、或いは可視光をアライ
メント等の照明に利用する場合等に、放射光透過薄膜を
真ん中にしてその周囲の水平方向2箇所以上に設けられ
た可視光透過部で透過されてくる放射光の可視光成分を
肉眼或いはテレビモニタ等で観察しながら上記軸合せや
姿勢制御を行なうため、その際に、放射光光路の垂直方
向のずれが検出できるようになると共に、放射光透過薄
膜を挟んだ両側の放射光強度比較から、転写装置側に対
する放射光光軸の水平方向の相対的なずれを知ることが
可能となる。According to the configuration of the synchrotron radiation transmitting window of the present invention described in detail above, when aligning the synchrotron radiation optical path and the synchrotron radiation transmitting thin film, when performing the attitude control of the aligner, or when illuminating visible light for alignment or the like. When using, the visible light component of the radiated light transmitted through the visible light transmitting portions provided at two or more horizontal positions around the radiant light transmitting thin film in the middle is observed with the naked eye or a TV monitor. However, since the above-mentioned axis alignment and attitude control are performed, it becomes possible to detect the vertical deviation of the emitted light optical path at that time, and from the comparison of the emitted light intensities on both sides of the emitted light transmitting thin film, the transfer device side It is possible to know the relative shift of the optical axis of the emitted light in the horizontal direction.
第1図は本願第2発明の一実施例を示す構成説明図、第
2図は他の実施例を示す水平断面図、第3図はシンクロ
トロン放射光を利用したX線露光装置の構成の概略図、
第4図は放射光透過窓の従来構成を示す断面図である。 図中、(1a)(1b)は光学部品、(10)は取付枠、(1
1)は内側板、(12a)はレンズ、(12b)は石英ガラス
板、(2a)(2b)はシャッタ、(3)はビームライン、
(4)は放射光透過薄膜を各示す。FIG. 1 is a structural explanatory view showing an embodiment of the second invention of the present application, FIG. 2 is a horizontal sectional view showing another embodiment, and FIG. 3 is a structure of an X-ray exposure apparatus using synchrotron radiation. Schematic,
FIG. 4 is a sectional view showing a conventional structure of the radiant light transmission window. In the figure, (1a) and (1b) are optical components, (10) is a mounting frame, and (1
1) is an inner plate, (12a) is a lens, (12b) is a quartz glass plate, (2a) and (2b) are shutters, (3) is a beam line,
Reference numeral (4) denotes a radiant light transmitting thin film.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05G 1/00 2/00 H05H 13/04 U 9014−2G H05G 1/00 G Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H05G 1/00 2/00 H05H 13/04 U 9014-2G H05G 1/00 G
Claims (2)
放射光透過薄膜を真ん中にしてその周囲の水平方向2箇
所以上を可視光透過部にしたことを特徴とする放射光透
過窓。1. A radiant light transmitting window characterized in that a radiant light transmissive thin film provided on a wall surface of an end portion of a beam line is formed in the center, and two or more peripheral portions in the horizontal direction are visible light transmissive portions.
放射光透過薄膜を真ん中にしてその周囲の水平方向2箇
所以上を可視光透過部にすると共に、この放射光透過薄
膜及び可視光透過部に同時に或いは各別にこれらの開閉
を行えるシャッタを夫々設けたことを特徴とする放射光
透過窓。2. The radiant light transmitting thin film provided on the wall surface of the end portion of the beam line is formed in the center, and two or more peripheral portions in the horizontal direction are visible light transmitting portions, and the radiant light transmitting thin film and the visible light transmitting portion are provided. A radiant light transmitting window, characterized in that each of them is provided with a shutter capable of opening and closing them simultaneously or separately.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2149989A JPH0748080B2 (en) | 1990-06-11 | 1990-06-11 | Synchrotron radiation transparent window |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2149989A JPH0748080B2 (en) | 1990-06-11 | 1990-06-11 | Synchrotron radiation transparent window |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0444000A JPH0444000A (en) | 1992-02-13 |
JPH0748080B2 true JPH0748080B2 (en) | 1995-05-24 |
Family
ID=15487034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2149989A Expired - Lifetime JPH0748080B2 (en) | 1990-06-11 | 1990-06-11 | Synchrotron radiation transparent window |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0748080B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191533U (en) * | 1982-06-15 | 1983-12-20 | 日本真空技術株式会社 | Gate valve to shut off vacuum passage including optical path |
JPS62222634A (en) * | 1986-03-18 | 1987-09-30 | Fujitsu Ltd | X-ray exposure method |
JP2603225B2 (en) * | 1986-07-11 | 1997-04-23 | キヤノン株式会社 | X-ray projection exposure apparatus and semiconductor manufacturing method |
JP2805239B2 (en) * | 1990-03-13 | 1998-09-30 | キヤノン株式会社 | SOR-X-ray exposure equipment |
-
1990
- 1990-06-11 JP JP2149989A patent/JPH0748080B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0444000A (en) | 1992-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW513617B (en) | Lithographic projection apparatus and method of manufacturing a device using a lithographic projection apparatus | |
JPH03135010A (en) | X-ray aligner | |
EP0066243B1 (en) | Electron-beam image transfer device | |
CA2077237C (en) | Sor exposure system and method of manufacturing semiconductor devices using same | |
JPH0748080B2 (en) | Synchrotron radiation transparent window | |
JPH04288814A (en) | Mask for x-ray lithography and x-ray lithography aligner | |
US6356341B1 (en) | Exposure device, beam shape setting device and illuminating area setting device | |
US6009144A (en) | X-ray system and X-ray exposure apparatus | |
JP2002246302A (en) | Position detector and exposure system | |
US5548625A (en) | Method for parallel multiple field processing in X-ray lithography | |
JPH0715869B2 (en) | Soft X-ray exposure system | |
JPH0419998A (en) | Radiation takeout window | |
JP4048205B2 (en) | Lithographic apparatus and device manufacturing method | |
JP2001267235A (en) | Exposure system and method of aligning photomask in the same | |
JP2002299225A (en) | Reticle protection case and aligner using the same | |
JPS6151824A (en) | X-ray exposure method and apparatus thereof | |
JPH08236425A (en) | Radiation take-out window and exposure apparatus having the same | |
JP2623128B2 (en) | Exposure equipment | |
JPH04247613A (en) | Method and apparatus for x-ray mask alignment and x-ray mask used for the method and the apparatus | |
JP2003306798A (en) | Surface treatment method, plating treated part, and aligner | |
JPH03256318A (en) | X-ray exposure device and regulating method for optical axis thereof | |
JPH04263258A (en) | X-ray takeout window | |
JPH0653108A (en) | Projection aligner | |
JPS6212657B2 (en) | ||
JPH1138193A (en) | X-ray illumination optical system and x-ray exposure device |