[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0743286B2 - Optical fiber distributed temperature sensor - Google Patents

Optical fiber distributed temperature sensor

Info

Publication number
JPH0743286B2
JPH0743286B2 JP63094642A JP9464288A JPH0743286B2 JP H0743286 B2 JPH0743286 B2 JP H0743286B2 JP 63094642 A JP63094642 A JP 63094642A JP 9464288 A JP9464288 A JP 9464288A JP H0743286 B2 JPH0743286 B2 JP H0743286B2
Authority
JP
Japan
Prior art keywords
optical fiber
light
sensor
temperature
distributed temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63094642A
Other languages
Japanese (ja)
Other versions
JPH01267428A (en
Inventor
久一 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63094642A priority Critical patent/JPH0743286B2/en
Publication of JPH01267428A publication Critical patent/JPH01267428A/en
Publication of JPH0743286B2 publication Critical patent/JPH0743286B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/002Investigating fluid-tightness of structures by using thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/042Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid
    • G01M3/045Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means
    • G01M3/047Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point by using materials which expand, contract, disintegrate, or decompose in contact with a fluid with electrical detection means with photo-electrical detection means, e.g. using optical fibres

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバ式分布形温度センサに関するもので
ある。
The present invention relates to an optical fiber type distributed temperature sensor.

[従来の技術] 光ファイバ式の分布形温度センサは、光ファイバ中の散
乱光強度が温度により変化することを利用し、この変化
を公知のOTDRの手法で検知することにより、光ファイバ
の長手方向に沿った温度情報を得るものであり、レーリ
ー散乱光やラマン散乱光を利用するものが知られてい
る。これらのうち、ラマン散乱光を利用する方式は、信
号は微弱であるものの、温度変化に対する信号変化量が
大きく、有望な方式と考えられている。
[Prior Art] An optical fiber type distributed temperature sensor utilizes the fact that the intensity of scattered light in an optical fiber changes with temperature. By detecting this change using a known OTDR method, the length of the optical fiber It is known to obtain temperature information along the direction, and to use Rayleigh scattered light or Raman scattered light. Among these, the method using Raman scattered light is considered to be a promising method because the signal change amount is large with respect to temperature change although the signal is weak.

ラマン散乱光を利用した光ファイバ式分布形温度センサ
(以下、単にラマン光ファイバ式分布形温度センサとい
う)は、光ファイバの一端から波長λ、パルス幅TW
パルス周期TPの光を入射させ、光ファイバ内で発生する
ラマン散乱光の2成分である波長λのストークス光
と、波長λasのアンチストークス光との後方散乱光を、
パルス光入射時刻をt=0として、それぞれ時間の関数
fs(t)、fas(t)として測定し、これらの比fas
(t)/fs(t)が純粋に温度の関数であること、及び
光ファイバ内の距離lから戻ってくる後方散乱光が光フ
ァイバ端(光パルス入射端)に到達する時間が、光ファ
イバ中の光速をC0とすると、パルス光入射時刻から2l/C
0であることを利用して、光ファイバに沿った線状の温
度分布測定を行う装置である。ストークス光及びアンチ
ストークス光の後方散乱光測定は、光ファイバの破断点
検知等に用いるOTDRとほぼ同じ測定方法で行う。
An optical fiber type distributed temperature sensor utilizing Raman scattered light (hereinafter, simply referred to as Raman optical fiber type distributed temperature sensor) has a wavelength λ o , a pulse width T W , from one end of the optical fiber.
The backscattered light of the Stokes light of the wavelength λ s , which is the two components of the Raman scattered light generated in the optical fiber when the light of the pulse period T P is incident, and the anti-Stokes light of the wavelength λ as ,
Assuming that the pulsed light incident time is t = 0, each is a function of time.
Measured as fs (t) and fas (t), the ratio of these is fas
The fact that (t) / fs (t) is purely a function of temperature and the time for the backscattered light returning from the distance l in the optical fiber to reach the end of the optical fiber (end of the optical pulse) is Assuming that the speed of light inside is C 0 , 2l / C
It is a device that measures the linear temperature distribution along the optical fiber by utilizing the fact that it is zero . The backscattered light of Stokes light and anti-Stokes light is measured by almost the same measurement method as the OTDR used for detecting the breaking point of the optical fiber.

このラマン光ファイバ式分布形温度センサは、例えば電
力ケーブルに沿わせてセンサ用光ファイバケーブルを敷
設することにより、電力ケーブルの長手方向の温度分布
を知ることができ、送電容量の制御等に利用したり、ケ
ーブルの劣化等により生じる部分的に温度の高い箇所の
検知等が行なえる。また、各種プラントの生産ラインや
設備の温度コントロールや、ビルやトンネル等の火災検
知用として使用すれば、火災発生位置の標定を行うこと
ができる。
This Raman optical fiber distributed temperature sensor can be used to control the transmission capacity, etc. by knowing the temperature distribution in the longitudinal direction of the power cable by laying an optical fiber cable for the sensor along the power cable, for example. It is also possible to detect a part where the temperature is high due to deterioration of the cable or the like. Further, when used for controlling the temperature of production lines and equipment of various plants and for detecting fires in buildings, tunnels, etc., it is possible to locate the fire occurrence position.

第4図に、従来のラマン光ファイバ式分布形温度センサ
の構成例を示す。この温度センサは、センサ用光ファイ
バ6(通常コア径は50μm以上)と、センサ本体22とか
らなる。センサ本体22のセンサ用パルス光源4から出た
光は、光ファイバ19a、光分岐器5aを通して、センサ用
光ファイバ6に導かれ、センサ用光ファイバ6中で発生
した後方散乱光は、光分岐器5a、光ファイバ19dを通
じ、光分岐器5bに導かれる。ここで2分された後方散乱
光のうち、光ファイバ19bに導かれたものは中心波長λ
asの光学フィルタ8a、受光器3a、平均化処理回路2aより
成るアンチストークス光のOTDR測定により、関数fas
(t)を求めるのに用いられる。光ファイバ19cに導か
れたものは、中心波長λの光学フィルタ8b、受光器3
b、平均化処理回路2bより成るストークス光測定系30bで
ストークス光のOTDR測定により関数fs(t)を求めるの
に用いられる。そして、温度分布演算回路1bでfas
(t)/fs(t)の演算を行うことにより、センサ用光
ファイバ6に沿った線状温度分布測定を行っている。
FIG. 4 shows a configuration example of a conventional Raman optical fiber type distributed temperature sensor. This temperature sensor comprises a sensor optical fiber 6 (usually having a core diameter of 50 μm or more) and a sensor body 22. The light emitted from the sensor pulse light source 4 of the sensor body 22 is guided to the sensor optical fiber 6 through the optical fiber 19a and the optical branching device 5a, and the backscattered light generated in the sensor optical fiber 6 is branched. It is guided to the optical branching device 5b through the device 5a and the optical fiber 19d. Of the backscattered light divided into two here, the one guided to the optical fiber 19b is the central wavelength λ.
OTDR measurement of anti-Stokes light composed of as optical filter 8a, photoreceiver 3a, and averaging circuit 2a
Used to determine (t). What is guided to the optical fiber 19c is an optical filter 8b having a central wavelength λ s , a light receiver 3
b, used for obtaining the function fs (t) by the OTDR measurement of the Stokes light in the Stokes light measurement system 30b including the averaging processing circuit 2b. Then, in the temperature distribution calculation circuit 1b, fas
By calculating (t) / fs (t), the linear temperature distribution along the sensor optical fiber 6 is measured.

[発明が解決しようとする課題] ラマン光ファイバ式分布形温度センサは、上述したよう
な方法で温度を測定することができ、また、これまでに
検討されてきた光ファイバ式分布形温度センサのなかで
は、感度が高く、実用的な方式であるため、20km近くに
達する長尺の温度分布測定が行える可能性もあり得る。
[Problems to be Solved by the Invention] The Raman optical fiber type distributed temperature sensor can measure temperature by the method described above, and the Raman optical fiber type distributed temperature sensor has been studied so far. Among them, since it has a high sensitivity and is a practical method, it may be possible to measure a long temperature distribution reaching up to about 20 km.

しかしながら、このような長距離の測定になると、満足
のゆく温度分解能を確保することが難しくなってくる。
ここで、光ファイバ式分布形温度センサの温度分解能は
(1)式で与えられる。
However, in such a long distance measurement, it becomes difficult to secure a satisfactory temperature resolution.
Here, the temperature resolution of the optical fiber type distributed temperature sensor is given by the equation (1).

RT(X)=10×Log10{1+1/(n×1
0−2×α/10×x)}/β (1) RT(X):距離xでの温度分解能 1/n:センサ本体の分解能 α:光ファイバの伝送損失 x:距離 β:温度温度 センサ本体の分解能1/n、光ファイバの伝送損失αを実
用的な値として、それぞれ1/216(センサ内部で16ビッ
トの演算を行うことに相当)、0.5dB/kmとすると、これ
まで得られていた温度感度が0.01dB/℃であるので、20k
m地点での温度分解能は0.66℃となる。ここで考えてい
る温度分解能は、温度測定精度そのものではなく、読み
取ることのできる温度差に相当するものであるが、一般
の温度センサの場合、この温度分解能は、0.1℃程度ま
であり、センサ本体では、1/216≒1.5×10-5と非常に高
分解能である。それにも拘らず、光ファイバ式分布形温
度センサでは、上述したように低くなり、温度分解能が
不足するという問題がある。
R T (X) = 10 × Log 10 {1 + 1 / (n × 1
0 −2 × α / 10 × x )} / β (1) R T (X): Temperature resolution at distance x 1 / n: Resolution of sensor body α: Transmission loss of optical fiber x: Distance β: Temperature temperature Assuming that the resolution of the sensor body 1 / n and the transmission loss α of the optical fiber are practical values of 1/2 16 (corresponding to 16-bit arithmetic inside the sensor) and 0.5 dB / km, Since the obtained temperature sensitivity is 0.01 dB / ° C, 20k
The temperature resolution at the m point is 0.66 ℃. The temperature resolution considered here does not correspond to the temperature measurement accuracy itself, but corresponds to the temperature difference that can be read, but in the case of general temperature sensors, this temperature resolution is up to about 0.1 ° C, Then, the resolution is 1/2 16 ≈1.5 × 10 -5, which is very high. Nevertheless, the optical fiber type distributed temperature sensor has a problem that the temperature becomes low as described above and the temperature resolution is insufficient.

本発明の目的は前記した従来技術の欠点を改善し、長距
離の温度分布測定が可能な光ファイバ式分布形温度セン
サを提供することにある。
It is an object of the present invention to provide an optical fiber type distributed temperature sensor capable of measuring the temperature distribution over a long distance by overcoming the above-mentioned drawbacks of the prior art.

[課題を解決するための手段] 本発明の光ファイバ式分布形温度センサは、測定温度領
域に配設され、コア径を20μm以下としたセンサ用光フ
ァイバと、疑似ランダムパルスで駆動され、センサ用光
ファイバにパルス光を入射させるピークパワーの小さい
光源と、センサ用光ファイバから出射される後方散乱光
が導かれ、後方散乱光のうちラマン散乱によるストーク
ス光とアンチストークス光との強度を上記疑似ランダム
パルスに同期して求め、これより両者の強度比を算出し
て光ファイバの分布温度を求める測定系とを備えて構成
される。
[Means for Solving the Problem] An optical fiber type distributed temperature sensor of the present invention is provided in a measurement temperature region, an optical fiber for a sensor having a core diameter of 20 μm or less, and a sensor driven by pseudo random pulses. A light source with a small peak power that causes pulsed light to enter the optical fiber for use and a backscattered light emitted from the optical fiber for a sensor are guided, and the intensity of the Stokes light and anti-Stokes light due to Raman scattering among the backscattered light is The measuring system is provided in synchronism with the pseudo random pulse, and the intensity ratio of the two is calculated to obtain the distribution temperature of the optical fiber.

[作用] センサ用光ファイバとして用いる光ファイバのコア径
と、温度感度の関係を第2図に示す。コア径が30μm以
上では、温度感度は、約0.01dB/℃で、ほぼ一定である
が、30μmよりも小さい領域で温度感度の増加が見ら
れ、20μm以下のコア径でほぼ一定となっている。この
ことから、コア径20μm以下のファイバをセンサ用に用
いれば、50μm以上のコア径の光ファイバを用いていた
従来のセンサよりも約2倍高感度のセンサを得ることが
できることがわかる。
[Operation] The relationship between the core diameter of the optical fiber used as the sensor optical fiber and the temperature sensitivity is shown in FIG. When the core diameter is 30 μm or more, the temperature sensitivity is about 0.01 dB / ° C, which is almost constant, but the temperature sensitivity increases in a region smaller than 30 μm, and it is almost constant when the core diameter is 20 μm or less. . From this, it can be seen that if a fiber having a core diameter of 20 μm or less is used for a sensor, a sensor having a sensitivity about twice as high as that of a conventional sensor using an optical fiber having a core diameter of 50 μm or more can be obtained.

しかしながら、コア径20μm以下の光ファイバを用いて
高感度化することの目的は、長距離測定において、高分
解能化を達成することであったが、例えば測定距離20km
で分解能に見合う測定温度精度を得ようとするとピーク
パワー100W以上の光を測定用光源として、光ファイバに
入射しなければならない。このような高出力光源として
は、パルス発振のYAGレーザが知られており、これを測
定用光源として用いることができる。そこで、パルス発
振YAGレーザを用い、測定を試みたところ、アンチスト
ークス光のOTDR測定結果が、第3図に示すように、期待
された測定波形と異なり、短距離部分で受光器の飽和レ
ベルを超えた信号が入射し、受光器が飽和してしまって
いることがわかった。この原因を検討したところ、短距
離部分での強い信号は、光ファイバ内で発生した誘導ラ
マン散乱によるものであることがわかった。誘導ラマン
散乱は、光ファイバ入射光レベルが大きいときに生ずる
非線形効果であり、レーザ発振現象が光ファイバ内で生
じている現象である。誘導ラマン散乱が発生すると、温
度に比例した強度のラマン散乱が生じないため、温度測
定が行えなくなってしまう。これまでは、その現象のこ
とは考慮しなくても良い条件で測定を行ってきたが、長
距離で高分解能の特性を得ることのできる、コア径20μ
m以下の光ファイバに加えて高出力のYAGレーザを用い
た結果、誘導ラマン散乱が生じ、温度分布測定が行えな
くなってしまったことになる。光ファイバの誘導ラマン
散乱が発生する入射光のしきい値は、コア径20μmの場
合、数Wということである。したがって、温度分布測定
に用いる光源としては、数W以下のピークパワーである
必要があり、そうするとこれまでのOTDR測定手法では、
測定が行えないことがわかった。
However, the purpose of increasing the sensitivity using an optical fiber with a core diameter of 20 μm or less was to achieve high resolution in long-distance measurement.
In order to obtain the measurement temperature accuracy commensurate with the resolution, light with a peak power of 100 W or more must be incident on the optical fiber as the measurement light source. A pulsed YAG laser is known as such a high-output light source, and this can be used as a measurement light source. Therefore, when a measurement was attempted using a pulsed YAG laser, the OTDR measurement result of the anti-Stokes light was different from the expected measurement waveform, as shown in Fig. 3, and the saturation level of the photodetector was measured at a short distance. It was found that the excess signal was incident and the photoreceiver was saturated. As a result of examining the cause, it was found that the strong signal in the short distance portion was due to stimulated Raman scattering generated in the optical fiber. Stimulated Raman scattering is a non-linear effect that occurs when the optical fiber incident light level is high, and is a phenomenon in which a laser oscillation phenomenon occurs in an optical fiber. When stimulated Raman scattering occurs, temperature measurement cannot be performed because Raman scattering with an intensity proportional to temperature does not occur. Up to now, we have performed measurements under conditions that do not require consideration of that phenomenon, but with a core diameter of 20μ, which can obtain high-resolution characteristics over long distances.
As a result of using a high-power YAG laser in addition to an optical fiber of m or less, stimulated Raman scattering occurs and temperature distribution measurement cannot be performed. The threshold of incident light that causes stimulated Raman scattering of the optical fiber is several W when the core diameter is 20 μm. Therefore, the light source used to measure the temperature distribution needs to have a peak power of several W or less.
It turns out that measurement cannot be performed.

そこで、コア径20μm以下の光ファイバを用いた長距離
で高分解能の測定が行えないものかどうか種々検討した
結果、通信の分野でS/Nの悪い通信線路を用いる場合に
使用されていた擬似ランダムパルス方式が使えるのでは
ないかと考えるに至った。
Therefore, as a result of various studies as to whether or not high-resolution measurement cannot be performed over a long distance using an optical fiber having a core diameter of 20 μm or less, a pseudo used in the communication field when a communication line with a poor S / N is used. We came to think that the random pulse method could be used.

擬似ランダムパルス方式とは、例えばM系列の信号とし
て信号を送出し、受信側では受信したS/Nの悪い信号を
送信時に用いたM系列信号と相関を取って復調すること
により通信等においてS/Nを改善する方式である。この
方式を光ファイバ式分布形温度センサの測定手段である
OTDRに適用し、S/Nを改善することにより、単一のパル
スでの光ファイバ入射光レベルの小さいレーザを用いて
も従来のセンサと比べて同程度以上のS/Nを確保し、本
発明のコア径の小さい高感度光ファイバをセンサ用光フ
ァイバとして用い、長距離での高分解能温度分布測定を
可能にしている。
The pseudo-random pulse system is, for example, a signal that is sent as an M-sequence signal, and the receiving side receives an S-N signal with poor S / N correlation by demodulating it with the M-sequence signal used at the time of transmission to demodulate the S-signal. This is a method to improve / N. This method is the measuring means of the optical fiber type distributed temperature sensor.
By applying it to the OTDR and improving the S / N, even if a laser with a small optical fiber incident light level with a single pulse is used, the S / N of the same level or more is secured compared to the conventional sensor. The high-sensitivity optical fiber having a small core diameter according to the invention is used as an optical fiber for a sensor to enable high-resolution temperature distribution measurement over a long distance.

[実施例] 以下、本発明の光ファイバ式分布形温度センサの実施例
を第1図により説明する。本実施例の分布形温度センサ
の基本構成は、第1図に示す従来例とほぼ同じであり、
異なる点は次の通りである。
[Embodiment] An embodiment of the optical fiber type distributed temperature sensor of the present invention will be described below with reference to FIG. The basic configuration of the distributed temperature sensor of this embodiment is almost the same as that of the conventional example shown in FIG.
The different points are as follows.

光源4aにはピグテール付の1,300nmcw発振半導体レーザ
(光出力4mw)を用いており、このレーザの駆動信号
は、擬似ランダム信号発生回路7により作っている。擬
似ランダムパルスの基本パルス幅は10nsecであり、15次
のM系列の信号を用いることにより、1周期は約330μ
sとなる。光源4aから測定系を構成するセンサ本体20内
の光ファイバ19a、光分岐器5aを経由して、コア径10μ
mのセンサ用光フアイバ6に入射された光により、セン
サ用光ファイバ6内では、温度に従った強度のラマン散
乱光が発生する。この後方散乱光を受光するアンチスト
ークス光受光系30a及びストークス光受光系30bでは、擬
似ランダム信号発生回路7からの同期信号8を平均化処
理回路2a,2bで受け、これに同期して受信信号の平均化
処理を例えば217回行う。平均化処理の終った2系統の
受信信号は、相関検出機能付の温度信号演算回路1aに導
かれ、ここでは、系統別に相関処理を行い、アンチスト
ークス光、ストークス光それぞれの通常のOTDR波形に復
元した後、アンチストークス光とストークス光の強度比
を求める等の従来のセンサと同様の処理を行い、光ファ
イバに沿った温度分布信号を得ることができる。これに
よればM系列信号の1周期が約330μsecであるため、30
km以上の長さの光ファイバに沿った温度分布を測定する
ことができる。
As the light source 4a, a 1,300 nmcw oscillation semiconductor laser with a pigtail (optical output 4 mw) is used, and the drive signal of this laser is generated by the pseudo random signal generation circuit 7. The basic pulse width of the pseudo-random pulse is 10 nsec, and by using the 15th-order M-sequence signal, one cycle is about 330μ.
s. From the light source 4a through the optical fiber 19a in the sensor main body 20 constituting the measurement system, the optical branching device 5a, the core diameter 10μ
The light incident on the sensor optical fiber 6 of m generates Raman scattered light having an intensity according to the temperature in the optical fiber 6 for sensor. In the anti-Stokes light receiving system 30a and the Stokes light receiving system 30b that receive this backscattered light, the synchronization signal 8 from the pseudo random signal generation circuit 7 is received by the averaging processing circuits 2a and 2b, and the received signal is synchronized with this. The averaging process is performed, for example, 2 17 times. The received signals of the two systems for which the averaging process has been completed are guided to the temperature signal calculation circuit 1a with a correlation detection function, where the correlation process is performed for each system, and normal OTDR waveforms for anti-Stokes light and Stokes light are obtained. After the restoration, the same processing as that of the conventional sensor such as obtaining the intensity ratio of the anti-Stokes light and the Stokes light is performed, and the temperature distribution signal along the optical fiber can be obtained. According to this, one cycle of the M-sequence signal is about 330 μsec.
It is possible to measure the temperature distribution along an optical fiber with a length of more than km.

なお、上記実施例は長距離の温度分布測定に本発明を適
用した場合について述べたが、短距離であっても、光フ
ァイバの接続箇所が多く、接続点での光伝達損失等があ
る場合にも本発明は有効である。光ファイバの接続は、
通常コネクタ接続か融着接続により行なわれるが、これ
らの接続箇所では1箇所あたり約0.2dBの光伝達損失が
生ずる。例えば、全長50kmの光ファイバに100m毎に接続
箇所のある場合、接続による損失増加分は、片道で5dB
であり、これは伝送損失0.5dB/kmの光ファイバの場合、
10km長の光ファイバを追加したことと同等の損失と考え
られ、接続点のない光ファイバ15kmに相当する。したが
って、このように接続箇所の多い場合にも本発明を適用
でき、その効果は大きい。
In addition, although the above embodiment has described the case where the present invention is applied to the temperature distribution measurement over a long distance, even when the distance is short, there are many connection points of the optical fiber and there is a light transmission loss or the like at the connection point. Also, the present invention is effective. Optical fiber connection
Usually, connector connection or fusion splicing is used, but each of these connection points causes an optical transmission loss of about 0.2 dB. For example, if there is a connection point for every 100 m on an optical fiber with a total length of 50 km, the increase in loss due to the connection will be 5 dB per way.
Which is the case for an optical fiber with a transmission loss of 0.5 dB / km,
It is considered that the loss is equivalent to the addition of an optical fiber with a length of 10 km, which corresponds to an optical fiber with no connection point of 15 km. Therefore, the present invention can be applied to such a case where there are many connection points, and the effect is great.

例えば、電力ケーブルの敷設後の温度分布を知る目的で
電力ケーブル内蔵あるいは外側に沿わせたセンサ用光フ
ァイバを使用する場合では、敷設工事の関係で全長は長
くなくとも接続箇所が多くなることが予想され、このよ
うな場合に本発明の温度感度の高いコア径20μm以下の
光ファイバを用いることは非常に有効となる。
For example, when using an optical fiber for a sensor with a built-in power cable or along the outside in order to know the temperature distribution after laying the power cable, the number of connection points may increase even if the total length is not long due to the construction work. As expected, it is very effective in such a case to use the optical fiber having a core diameter of 20 μm or less, which is highly sensitive to temperature.

[発明の効果] 以上本発明によれば、センサ用光ファイバのコアを20μ
m以下として温度感度を高め、その入射光源に誘導ラマ
ン散乱の生じない、ピークパワーの小さい光源を用い、
さらに光源及び測定系に擬似ランダムパルス方式を用い
てピークパワーの小さい光源であってもS/N特性を改善
するようにしたので、長尺線路のみならず接続箇所の多
い線路であっても、一般のスポット(一点形)温度セン
サと同程度の高い分解能を持つ温度分布測定を行うこと
ができる。
[Effect of the Invention] As described above, according to the present invention, the core of the optical fiber for sensor is 20 μm.
The temperature sensitivity is increased to m or less, and a light source with a small peak power that does not cause stimulated Raman scattering is used as the incident light source.
Furthermore, we have improved the S / N characteristics even with a light source with a small peak power by using a pseudo-random pulse method for the light source and measurement system, so not only long lines but also lines with many connection points, It is possible to perform temperature distribution measurement with a resolution as high as that of a general spot (single point) temperature sensor.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す光ファイバ式分布形温度
センサの構成図、第2図はセンサ用光ファイバのコア径
と温度感度との関係を示す特性図、第3図はパルス発振
YAGレーザを光源として用いた場合のアンチストークス
光OTDR波形の光強度特性図、第4図は従来の光ファイバ
式分布形温度センサ例を示す構成図である。 図中、4aはピークパワーの小さい光源、6はセンサ用光
ファイバ、7は擬似ランダム信号発生回路、20は測定系
を構成するセンサ本体である。
FIG. 1 is a configuration diagram of an optical fiber type distributed temperature sensor showing an embodiment of the present invention, FIG. 2 is a characteristic diagram showing a relationship between a core diameter of an optical fiber for sensor and temperature sensitivity, and FIG. 3 is a pulse oscillation.
FIG. 4 is a light intensity characteristic diagram of an anti-Stokes light OTDR waveform when a YAG laser is used as a light source, and FIG. 4 is a configuration diagram showing an example of a conventional optical fiber type distributed temperature sensor. In the figure, 4a is a light source having a small peak power, 6 is an optical fiber for sensor, 7 is a pseudo random signal generating circuit, and 20 is a sensor main body which constitutes a measuring system.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】測定温度領域に配設されたコア径が20μm
以下のセンサ用光ファイバと、疑似ランダム信号発生回
路から発生する疑似ランダム信号で駆動されるピークパ
ワーの小さい光源と、該光源からのパルス光を該センサ
用光ファイバに入射させることにより該センサ用光ファ
イバから出射される後方散乱光を導き、後方散乱光のう
ちラマン散乱光によるストークス光とアンチストークス
光との強度を該疑似ランダムパルスと同期して求めると
共に、両者の強度比を算出して該センサ用光ファイバの
分布温度を求める演算測定装置とより構成されたことを
特徴とする光ファイバ式分布形温度センサ。
1. The core diameter disposed in the measurement temperature region is 20 μm.
The following sensor optical fiber, a light source with a small peak power driven by a pseudo-random signal generated by a pseudo-random signal generation circuit, and a pulse light from the light source are incident on the sensor optical fiber The backscattered light emitted from the optical fiber is guided, and the intensities of the Stokes light and the anti-Stokes light due to the Raman scattered light in the backscattered light are obtained in synchronization with the pseudo random pulse, and the intensity ratio of both is calculated. An optical fiber type distributed temperature sensor, comprising an arithmetic measuring device for obtaining a distributed temperature of the optical fiber for a sensor.
JP63094642A 1988-04-19 1988-04-19 Optical fiber distributed temperature sensor Expired - Lifetime JPH0743286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094642A JPH0743286B2 (en) 1988-04-19 1988-04-19 Optical fiber distributed temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094642A JPH0743286B2 (en) 1988-04-19 1988-04-19 Optical fiber distributed temperature sensor

Publications (2)

Publication Number Publication Date
JPH01267428A JPH01267428A (en) 1989-10-25
JPH0743286B2 true JPH0743286B2 (en) 1995-05-15

Family

ID=14115918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094642A Expired - Lifetime JPH0743286B2 (en) 1988-04-19 1988-04-19 Optical fiber distributed temperature sensor

Country Status (1)

Country Link
JP (1) JPH0743286B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140254629A1 (en) * 2013-03-06 2014-09-11 Yokogawa Electric Corporation Optical fiber temperature distribution measurement device and method of measuring optical fiber temperature distribution

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787051B2 (en) * 1988-11-25 1995-09-20 株式会社フジクラ Power cable and its temperature distribution measurement method
US5178465A (en) * 1990-07-11 1993-01-12 Fujikura Ltd. Optical fiber laying structure for electric power cable line trouble occurrence location detecting system
CA2089223C (en) * 1992-02-13 1999-06-01 Kazuo Amano Temperature abnormality detecting structure for fluid pipe
JP2859491B2 (en) * 1992-06-17 1999-02-17 住友電気工業株式会社 Ground fault position detection method for power cable
WO2007111389A1 (en) * 2006-03-24 2007-10-04 Korea Electrotechnology Research Institute Power cable capable of detecting failure
JP6771317B2 (en) * 2016-06-03 2020-10-21 東芝プラントシステム株式会社 Electric circuit temperature monitoring system, electric circuit temperature monitoring device and electric circuit temperature monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140254629A1 (en) * 2013-03-06 2014-09-11 Yokogawa Electric Corporation Optical fiber temperature distribution measurement device and method of measuring optical fiber temperature distribution
US9689751B2 (en) * 2013-03-06 2017-06-27 Yokogawa Electric Corporation Optical fiber temperature distribution measurement device and method of measuring optical fiber temperature distribution

Also Published As

Publication number Publication date
JPH01267428A (en) 1989-10-25

Similar Documents

Publication Publication Date Title
CN105806465B (en) A kind of novel Φ-OTDR detection device and its detection method based on fixation reflex point
Lu et al. Distributed vibration sensor based on coherent detection of phase-OTDR
US7974182B2 (en) Evaluating the position of a disturbance
CN101634571B (en) Optical pulse raster distributed fiber sensing device
US20100290035A1 (en) Chaotic optical time domain reflectometer method and apparatus
JPH0364812B2 (en)
Wait et al. A theoretical comparison of spontaneous Raman and Brillouin based fibre optic distributed temperature sensors
JP3147616B2 (en) Distributed waveguide sensor
JP3225682B2 (en) Distance measuring device
JPH0743286B2 (en) Optical fiber distributed temperature sensor
Lecoeuche et al. 25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain
JP2769185B2 (en) Backscattered light measurement device
FR2520114A1 (en) Optical fibre fracture location for perimeter surveillance - measures interruption time difference for simultaneously transmitted optical signals
Cho et al. Enhanced performance of long range Brillouin intensity based temperature sensors using remote Raman amplification
Feced et al. Zero dead-zone OTDR with high-spatial resolution for short haul applications
US20240053172A1 (en) Optical fiber sensor and brillouin frequency shift measurement method
JPS58113832A (en) Detector for breaking point of optical fiber
JP3167202B2 (en) Temperature measurement method and device
JP3088031B2 (en) Optical pulse tester
JP2515018B2 (en) Backscattered light measurement method and device
JPH0658291B2 (en) Optical transmission loss measuring method and apparatus
Mizuno et al. Proposal and experiment of BOCDR: Brillouin optical correlation-domain reflectometry
JPH0362212B2 (en)
JPH06221930A (en) Distribution type temperature sensor
Salehiomran et al. Golay-Coded Incomplete Polarization Optical Time Domain Reflectometry for Enhanced Monitoring in Optical Telecommunication Networks

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term