JPH074211A - Gas turbine combined power generation equipment - Google Patents
Gas turbine combined power generation equipmentInfo
- Publication number
- JPH074211A JPH074211A JP5143834A JP14383493A JPH074211A JP H074211 A JPH074211 A JP H074211A JP 5143834 A JP5143834 A JP 5143834A JP 14383493 A JP14383493 A JP 14383493A JP H074211 A JPH074211 A JP H074211A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- turbine
- exhaust
- boiler
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
- Air Supply (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガスタービン複合発電
設備に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas turbine combined power generation facility.
【0002】[0002]
【従来の技術】近年、熱効率の向上を図るため、発電機
及び圧縮機を駆動した後のタービン排ガスを排熱ボイラ
へ送給し、排熱ボイラでタービン排ガスにより加熱され
て生成された蒸気を蒸気タービンに送給して発電機を駆
動するようにした、ガスタービン複合発電設備が提案さ
れている。2. Description of the Related Art In recent years, in order to improve thermal efficiency, turbine exhaust gas after driving a generator and a compressor is fed to an exhaust heat boiler, and steam generated by being heated by the turbine exhaust gas in the exhaust heat boiler is generated. A gas turbine combined cycle power generation facility has been proposed in which it is fed to a steam turbine to drive a generator.
【0003】斯かるガスタービン複合発電設備の一例は
図3に示され、図中、1はガスタービン、2はガスター
ビン1により駆動され且つ管路3を通り吹込まれる大気
4を圧縮して圧縮空気5として吐出し得るようにした圧
縮機、6はガスタービン1により駆動されるようにした
発電機、7は圧縮機2からの圧縮空気5と別系統から導
入された燃料8を混合して燃焼させ且つ得られた燃焼ガ
ス9をガスタービン1へ送給し得るようにした燃焼器で
ある。An example of such a gas turbine combined cycle power generation facility is shown in FIG. 3, in which 1 is a gas turbine, 2 is a gas turbine 1 driven by a gas turbine 1, and an atmosphere 4 blown through a pipe 3 is compressed. A compressor that can be discharged as compressed air 5, 6 is a generator that is driven by the gas turbine 1, and 7 is a mixture of compressed air 5 from the compressor 2 and fuel 8 introduced from another system. It is a combustor configured to be combusted by the above and to be able to send the obtained combustion gas 9 to the gas turbine 1.
【0004】10は蒸発器及び過熱器等の伝熱部11を
備え、ガスタービン1から送給されたタービン排ガス1
2の熱を流体に与え、蒸気13を生成させるようにした
排熱ボイラ、14は排熱ボイラ10から排出されたボイ
ラ排ガス15を大気中へ放出するための煙突である。Reference numeral 10 denotes a turbine exhaust gas 1 sent from a gas turbine 1 and having a heat transfer section 11 such as an evaporator and a superheater.
An exhaust heat boiler that applies the heat of 2 to the fluid to generate steam 13 is a chimney for discharging the boiler exhaust gas 15 discharged from the exhaust heat boiler 10 to the atmosphere.
【0005】16は排熱ボイラ10からの蒸気13によ
り駆動されると共に発電機17を駆動するようにした蒸
気タービン、18は蒸気タービン16から抽気された蒸
気13を冷却して水19に戻す復水器、20は復水器1
8からの水19を加圧して排熱ボイラ10の伝熱部11
へ給水し得るようにした給水ポンプである。A steam turbine 16 is driven by the steam 13 from the exhaust heat boiler 10 and also drives a generator 17, and 18 is a steam turbine which cools the steam 13 extracted from the steam turbine 16 and returns it to water 19. Water bottle, 20 is condenser 1
The heat transfer part 11 of the exhaust heat boiler 10 by pressurizing the water 19 from 8
It is a water supply pump that can supply water to.
【0006】上記ガスタービン複合発電設備では、大気
4は管路3を経てガスタービン1により駆動される圧縮
機2に吸入され、圧縮されて圧縮空気5となり、圧縮機
2から吐出された圧縮空気5は燃焼器7へ送給され、燃
焼器7では別系統から送給された燃料8と圧縮空気5が
混合して燃料8の燃焼が行われ、これにより燃焼ガス9
が生成され、生成された燃焼ガス9はガスタービン1に
送給されてガスタービン1が駆動され、ガスタービン1
により圧縮機2及び発電機6が駆動される。In the above gas turbine combined cycle power generation facility, the atmosphere 4 is sucked into the compressor 2 driven by the gas turbine 1 through the pipe 3 and compressed into compressed air 5, which is discharged from the compressor 2. 5 is sent to the combustor 7, and the fuel 8 sent from another system and the compressed air 5 are mixed in the combustor 7 to burn the fuel 8, whereby the combustion gas 9
Is generated, and the generated combustion gas 9 is sent to the gas turbine 1 to drive the gas turbine 1.
Thus, the compressor 2 and the generator 6 are driven.
【0007】ガスタービン1を駆動した後ガスタービン
1から排出されたタービン排ガス12は排熱ボイラ10
へ導入されて伝熱部11内を流れる流体を加熱し、ボイ
ラ排ガス15として排熱ボイラ10から排出され、煙突
14を通って大気中へ放出される。Turbine exhaust gas 12 discharged from the gas turbine 1 after driving the gas turbine 1 is a waste heat boiler 10.
The fluid introduced into the heat transfer section 11 is heated, and the fluid is discharged from the exhaust heat boiler 10 as the boiler exhaust gas 15 and discharged into the atmosphere through the chimney 14.
【0008】排熱ボイラ10の伝熱部11で生成された
蒸気13は蒸気タービン16へ導入されて蒸気タービン
16が駆動され、蒸気タービン16により発電機17が
駆動される。The steam 13 produced in the heat transfer section 11 of the exhaust heat boiler 10 is introduced into the steam turbine 16 to drive the steam turbine 16, and the steam turbine 16 drives the generator 17.
【0009】蒸気タービン16を駆動した後蒸気タービ
ン16から排出された蒸気13は復水器18で冷却され
て水19に戻され、給水ポンプ20で加圧されて水19
に戻され、給水ポンプ20で加圧されて排熱ボイラ10
の伝熱部11へ給水される。The steam 13 discharged from the steam turbine 16 after driving the steam turbine 16 is cooled by the condenser 18 and returned to the water 19, and is pressurized by the water supply pump 20 to generate the water 19.
And is pressurized by the water supply pump 20 to be discharged into the heat exhaust boiler 10
Water is supplied to the heat transfer section 11 of the.
【0010】上記ガスタービン複合発電設備において
は、燃焼器7に内張りされているライナやガスタービン
1のブレードを燃焼ガス9の熱から保護すべく燃焼ガス
9の温度は最大で約1300℃程度にする必要があり、
このため燃焼器7では圧縮空気5の単位時間当りの空気
流入量を多くして空気過剰燃焼を行っている。すなわ
ち、空気比(空気の重量流量/燃料の重量流量)λと燃
焼ガス温度Tbの関係は、図4に示され、空気比λ=
0.9の近傍で燃焼ガス温度Tbは最高(約2000
℃)となる。従って、通常の燃焼のように空気比λ≒
1.0〜1.2で燃料8を燃焼させると、得られた燃焼
ガス9の温度は高温となり、燃焼器7のライナやガスタ
ービン1のブレードを損傷させる虞れがある。ところ
が、空気比λを約2〜3程度として燃料8の燃焼を行う
と、燃焼ガス9の温度は1300℃程度となり、燃焼器
7のライナやガスタービン1のブレードが熱により損傷
するのを防止できる。In the above gas turbine combined cycle power generation facility, the temperature of the combustion gas 9 is set to a maximum of about 1300 ° C. in order to protect the liner lining the combustor 7 and the blades of the gas turbine 1 from the heat of the combustion gas 9. Must be
For this reason, the combustor 7 increases the inflow amount of the compressed air 5 per unit time to perform excess air combustion. That is, the relationship between the air ratio (weight flow rate of air / weight flow rate of fuel) λ and the combustion gas temperature Tb is shown in FIG. 4, and the air ratio λ =
The combustion gas temperature Tb is highest near 0.9 (about 2000
℃). Therefore, as in normal combustion, the air ratio λ ≒
When the fuel 8 is burned at 1.0 to 1.2, the temperature of the obtained combustion gas 9 becomes high, which may damage the liner of the combustor 7 and the blade of the gas turbine 1. However, when the fuel 8 is burned with the air ratio λ of about 2 to 3, the temperature of the combustion gas 9 becomes about 1300 ° C., and the liner of the combustor 7 and the blade of the gas turbine 1 are prevented from being damaged by heat. it can.
【0011】[0011]
【発明が解決しようとする課題】しかしながら、燃焼器
7でλ=2〜3の空気過剰燃焼を行うと、ガスタービン
1から排出されて排熱ボイラ10へ導入されるタービン
排ガス12中の酸素濃度が約12〜17%と高くなり、
ボイラ損失のうちの乾きガス損失(乾きガス量とそのガ
スの温度によって決まる排出熱量による損失)が高くな
って設備全体の効率を向上させることが困難となるとい
う問題がある。However, when the combustor 7 performs excess air combustion with λ = 2 to 3, the oxygen concentration in the turbine exhaust gas 12 discharged from the gas turbine 1 and introduced into the exhaust heat boiler 10 is increased. Is about 12 to 17%,
There is a problem that dry gas loss (loss due to exhaust heat amount determined by the dry gas amount and the temperature of the gas) in the boiler loss becomes high and it becomes difficult to improve the efficiency of the entire equipment.
【0012】本発明は、上述の実情に鑑み、乾きガス損
失を低下させることにより設備全体の効率を向上させる
ことを目的としてなしたものである。The present invention has been made in view of the above circumstances and has an object to improve the efficiency of the entire equipment by reducing the dry gas loss.
【0013】[0013]
【課題を解決するための手段】本発明は、圧縮機により
圧縮して得られた空気を含む圧縮ガスと燃料とを混合し
燃焼させる燃焼器と、該燃焼器からの燃焼ガスにより駆
動され且つ第1の発電機及び前記圧縮機を駆動するよう
にしたガスタービンと、前記ガスタービンから排出され
たタービン排ガスの熱により蒸気を生成させるようにし
た排熱ボイラと、該排熱ボイラで生成された蒸気により
駆動され且つ第2の発電機を駆動するようにした蒸気タ
ービンと、前記圧縮機へ大気を送給するためのライン
と、前記排熱ボイラから排出されたボイラ排ガスの一部
を前記圧縮機へ循環させるためのラインを設けたもので
ある。SUMMARY OF THE INVENTION The present invention is directed to a combustor which mixes and combusts a compressed gas containing air obtained by being compressed by a compressor and a fuel, and driven by the combustion gas from the combustor. A gas turbine configured to drive the first generator and the compressor, an exhaust heat boiler configured to generate steam by heat of turbine exhaust gas discharged from the gas turbine, and an exhaust heat boiler generated. Steam turbine driven by the steam and driving the second generator, a line for feeding the atmosphere to the compressor, and a part of the boiler exhaust gas discharged from the exhaust heat boiler. A line is provided for circulation to the compressor.
【0014】[0014]
【作用】燃焼器では、燃料は大気及びボイラ排ガスの一
部を含む圧縮ガスに混合され燃焼して燃焼ガスが生成さ
れ、該燃焼ガスはガスタービンへ送給されて該ガスター
ビンが駆動され、ガスタービンにより第1の発電機及び
圧縮機が駆動され、ガスタービンから排出されたタービ
ン排ガスは排熱ボイラへ送給されて蒸気が生成され、該
蒸気は蒸気タービンへ送給されて該蒸気タービンが駆動
され、蒸気タービンにより第2の発電機が駆動される。
この場合、排熱ボイラへ送給されるタービン排ガスの酸
素濃度は低く、排熱ボイラでの熱回収後の乾きガスの保
有熱量は従来手段と同等であっても煙突へ排出される熱
量は一部の排ガスを再循環利用していることから従来手
段より大幅に抑制される。すなわち設備全体としてみた
場合、乾きガス損失が減少すると共にガスタービンの燃
焼器では排ガス混合による火炎温度が抑制されること
で、燃焼器出口のNOxが抑制されるのみならず、燃焼
器の温度が低いことからライナの冷却用のための過剰な
空気を必要としない効果がある。In the combustor, the fuel is mixed with the compressed gas containing the atmosphere and a part of the boiler exhaust gas and burned to generate the combustion gas. The combustion gas is fed to the gas turbine to drive the gas turbine, The first generator and the compressor are driven by the gas turbine, the turbine exhaust gas discharged from the gas turbine is sent to the exhaust heat boiler to generate steam, and the steam is sent to the steam turbine to send the steam turbine. Are driven, and the second generator is driven by the steam turbine.
In this case, the oxygen concentration of the turbine exhaust gas sent to the exhaust heat boiler is low, and even though the heat quantity of the dry gas after heat recovery in the exhaust heat boiler is equal to that of the conventional means, the heat quantity discharged to the stack is only Since the exhaust gas of the part is recirculated and used, it is significantly suppressed as compared with the conventional means. That is, when viewed as a whole equipment, the dry gas loss is reduced and the flame temperature due to exhaust gas mixing is suppressed in the combustor of the gas turbine, so that not only NOx at the combustor outlet is suppressed but also the temperature of the combustor is increased. The low temperature has the effect of not requiring excess air for cooling the liner.
【0015】[0015]
【実施例】以下、本発明の実施例を添付図面を参照しつ
つ説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
【0016】図1は本発明の一実施例であり、基本的な
構成は図3に示す従来の設備と同じであるが、本実施例
では、排熱ボイラ10から排出されたボイラ排ガス15
の一部を循環させ大気4と共に圧縮機2へ導入し得るよ
うにしている。FIG. 1 shows an embodiment of the present invention, the basic structure of which is the same as that of the conventional equipment shown in FIG. 3, but in this embodiment, the boiler exhaust gas 15 discharged from the exhaust heat boiler 10 is used.
Is circulated so that it can be introduced into the compressor 2 together with the atmosphere 4.
【0017】図中、21は管路3を介して圧縮機2へ導
入される大気4の流量を調整するために管路3に設置さ
れたダンパ、22は一端が排熱ボイラ10から煙突14
へ至る管路の中途部に接続され且つ他端が管路3の中途
部に接続された管路、23は管路22を介して圧縮機2
へ導入されるボイラ排ガス15の流量を調整するために
管路22に設置されたダンパ、24は大気4とボイラ排
ガス15が混合して圧縮機2により圧縮され吐出された
圧縮ガスであり、図中、図3に示すものと同一のものに
は同一の符号が付してある。In the figure, 21 is a damper installed in the pipeline 3 for adjusting the flow rate of the atmosphere 4 introduced into the compressor 2 through the pipeline 3, and 22 is one end from the exhaust heat boiler 10 to the chimney 14
Is connected to an intermediate part of the conduit leading to and the other end is connected to an intermediate part of the conduit 3, and 23 is a compressor 2 via the conduit 22.
The damper 24 installed in the pipe line 22 for adjusting the flow rate of the boiler exhaust gas 15 introduced into the compressor 24 is a compressed gas discharged from the compressor 2 after the atmosphere 4 and the boiler exhaust gas 15 are mixed and compressed. The same parts as those shown in FIG. 3 are designated by the same reference numerals.
【0018】本実施例におけるガスタービン複合発電設
備においては、圧縮ガス24中の酸素濃度が約2〜3%
程度になるよう運転を開始する前に予め試運転等により
ダンパ21,23の開度を調整しておく。In the gas turbine combined cycle power generation facility according to this embodiment, the oxygen concentration in the compressed gas 24 is about 2 to 3%.
Before starting the operation, the opening degrees of the dampers 21 and 23 are adjusted in advance by a trial operation or the like so that the degree of operation becomes appropriate.
【0019】而して、本発明のガスタービン複合発電設
備では、大気4及び排熱ボイラ10から排出されたボイ
ラ排ガス15の一部は、ガスタービン1により駆動され
ている圧縮機2へ管路3及び管路22,3を介して導入
され、圧縮機2で圧縮されたうえ圧縮ガス24として燃
焼器7へ送給され、燃焼器7では別系統から送給された
燃料8と圧縮ガス24が混合されると共に燃料8の燃焼
が行われて燃焼ガス9が生成され、生成された燃焼ガス
9はガスタービン1に送給されてガスタービン1が駆動
され、ガスタービン1により圧縮機2及び発電機6が駆
動される。Thus, in the gas turbine combined cycle power generation facility of the present invention, part of the boiler exhaust gas 15 discharged from the atmosphere 4 and the exhaust heat boiler 10 is piped to the compressor 2 driven by the gas turbine 1. 3 and the pipes 22 and 3, compressed by the compressor 2 and sent to the combustor 7 as the compressed gas 24. In the combustor 7, the fuel 8 and the compressed gas 24 sent from another system. Are mixed and the fuel 8 is burned to generate combustion gas 9, and the generated combustion gas 9 is fed to the gas turbine 1 to drive the gas turbine 1, and the gas turbine 1 drives the compressor 2 and The generator 6 is driven.
【0020】ガスタービン1を駆動した後ガスタービン
1から排出されたタービン排ガス12は排熱ボイラ10
へ導入されて伝熱部11内を流れる流体を加熱し、ボイ
ラ排ガス15として排熱ボイラ10から排出され、一部
のボイラ排ガス15は煙突14から大気へ放出されるが
残りのボイラ排ガス15は循環して管路22を通り、管
路3から送給された大気4と共に圧縮機2へ導入され
る。Turbine exhaust gas 12 discharged from the gas turbine 1 after driving the gas turbine 1 is a waste heat boiler 10.
Is introduced into the heat transfer section 11 to heat the fluid, and is discharged from the exhaust heat boiler 10 as the boiler exhaust gas 15. Some of the boiler exhaust gas 15 is discharged from the chimney 14 to the atmosphere, while the remaining boiler exhaust gas 15 is It circulates, passes through the pipe line 22, and is introduced into the compressor 2 together with the atmosphere 4 fed from the pipe line 3.
【0021】排熱ボイラ10の伝熱部11で生成された
蒸気13の挙動は、図3の場合と全く同一なので説明は
省略する。The behavior of the steam 13 generated in the heat transfer section 11 of the exhaust heat boiler 10 is exactly the same as that in the case of FIG.
【0022】上述のように、燃焼器7へ導入される圧縮
ガス24には、大気4の他にボイラ排ガス15が含まれ
ており、酸素濃度は2〜3%程度にできるため、燃焼器
7では空気過剰燃焼を抑制できる。すなわち、同一の空
気比λにおいて、圧縮ガス24中のボイラ排ガス15の
比率を増加させると、図2に示すように、燃焼器7で得
られる燃焼ガス9の温度(燃焼ガス温度)Tbは徐々に
下降し、比率が50%程度になると、空気比λ=1.0
〜1.2近傍で約1300℃程度の温度になる。As described above, the compressed gas 24 introduced into the combustor 7 contains the boiler exhaust gas 15 in addition to the atmosphere 4, and the oxygen concentration can be set to about 2 to 3%. Can suppress excessive air combustion. That is, when the ratio of the boiler exhaust gas 15 in the compressed gas 24 is increased at the same air ratio λ, the temperature (combustion gas temperature) Tb of the combustion gas 9 obtained in the combustor 7 is gradually increased as shown in FIG. And the ratio becomes about 50%, the air ratio λ = 1.0
The temperature reaches about 1300 ° C. in the vicinity of about 1.2.
【0023】而して、上述のように、圧縮ガス24中に
ボイラ排ガス15を混入させることにより、排熱ボイラ
10へ導入されるタービン排ガス12の酸素濃度を低下
させることができるため、ボイラ損失のうちの乾きガス
損失が低下して設備全体の効率を向上させることができ
る。Thus, as described above, by mixing the boiler exhaust gas 15 into the compressed gas 24, the oxygen concentration of the turbine exhaust gas 12 introduced into the exhaust heat boiler 10 can be reduced, so that the boiler loss is lost. Dry gas loss is reduced, and the efficiency of the entire equipment can be improved.
【0024】又、圧縮ガス24中の酸素の比率を低く抑
えることができるため、燃焼器7での燃焼ガス9の温度
を抑制でき、ボイラ排ガス15中のNOxを抑制するこ
とができる。Further, since the ratio of oxygen in the compressed gas 24 can be suppressed to a low level, the temperature of the combustion gas 9 in the combustor 7 can be suppressed and NOx in the boiler exhaust gas 15 can be suppressed.
【0025】なお、本発明の実施例においては、ダンパ
21,23の開度は予め試運転等で決定する場合につい
て説明したが、管路22に酸素濃度検出器を設けてお
き、検出した酸素濃度をもとに自動的にダンパ21,2
3の開度を調整するようにしても良いこと、その他、本
発明の要旨を逸脱しない範囲内で種々変更を加え得るこ
と、等は勿論である。In the embodiment of the present invention, the opening of the dampers 21 and 23 is determined in advance by a trial run or the like. However, an oxygen concentration detector is provided in the conduit 22 to detect the detected oxygen concentration. Dampers 21 and 2 based on
Needless to say, the opening degree of 3 may be adjusted, and other various changes may be made without departing from the scope of the invention.
【0026】[0026]
【発明の効果】本発明のガスタービン複合発電設備によ
れば、排熱ボイラの乾きガス損失を低下させることがで
きるため設備全体の効率を向上させることができ、又燃
焼器で得られる燃焼ガス温度が低下するため、NOxの
低減を図ることができる、等種々の優れた効果を奏し得
る。According to the gas turbine combined cycle power generation facility of the present invention, the dry gas loss of the exhaust heat boiler can be reduced, so that the efficiency of the entire facility can be improved, and the combustion gas obtained by the combustor can be improved. Since the temperature lowers, various excellent effects such as NOx reduction can be achieved.
【図1】本発明のガスタービン複合発電設備の一実施例
の概要図である。FIG. 1 is a schematic diagram of an embodiment of a gas turbine combined cycle power generation facility of the present invention.
【図2】図1の燃焼器に送給する圧縮ガス中のボイラ排
ガスの比率を変えた場合における空気比と燃焼ガス温度
の関係を示すグラフである。2 is a graph showing the relationship between the air ratio and the combustion gas temperature when the ratio of the boiler exhaust gas in the compressed gas sent to the combustor of FIG. 1 is changed.
【図3】従来のガスタービン複合発電設備の一例の概要
図である。FIG. 3 is a schematic diagram of an example of a conventional gas turbine combined cycle power generation facility.
【図4】図3の燃焼器に送給する圧縮空気の空気比と燃
焼ガス温度の関係を示すグラフである。FIG. 4 is a graph showing a relationship between an air ratio of compressed air supplied to the combustor of FIG. 3 and a combustion gas temperature.
【符号の説明】 1 ガスタービン 2 圧縮機 3 管路(ライン) 4 大気(空気) 6 発電機(第1の発電機) 7 燃焼器 8 燃料 9 燃焼ガス 10 排熱ボイラ 12 タービン排ガス 13 蒸気 15 ボイラ排ガス 16 蒸気タービン 17 発電機(第2の発電機) 22 管路(ライン) 24 圧縮ガス[Explanation of Codes] 1 gas turbine 2 compressor 3 pipe (line) 4 atmosphere (air) 6 generator (first generator) 7 combustor 8 fuel 9 combustion gas 10 exhaust heat boiler 12 turbine exhaust gas 13 steam 15 Boiler exhaust gas 16 Steam turbine 17 Generator (second generator) 22 Pipeline (line) 24 Compressed gas
Claims (1)
む圧縮ガスと燃料とを混合し燃焼させる燃焼器と、該燃
焼器からの燃焼ガスにより駆動され且つ第1の発電機及
び前記圧縮機を駆動するようにしたガスタービンと、前
記ガスタービンから排出されたタービン排ガスの熱によ
り蒸気を生成させるようにした排熱ボイラと、該排熱ボ
イラで生成された蒸気により駆動され且つ第2の発電機
を駆動するようにした蒸気タービンと、前記圧縮機へ大
気を送給するためのラインと、前記排熱ボイラから排出
されたボイラ排ガスの一部を前記圧縮機へ循環させるた
めのラインを設けたことを特徴とするガスタービン複合
発電設備。1. A combustor that mixes and combusts a compressed gas containing air obtained by compressing with a compressor and a fuel, a first generator driven by the combustion gas from the combustor, and the compressor. A gas turbine configured to drive the machine, an exhaust heat boiler configured to generate steam by heat of the turbine exhaust gas discharged from the gas turbine, and a steam driven by the exhaust heat boiler, and a second A steam turbine for driving the generator, a line for feeding the atmosphere to the compressor, and a line for circulating a part of the boiler exhaust gas discharged from the exhaust heat boiler to the compressor. A gas turbine combined cycle power generation facility characterized by being provided with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5143834A JPH074211A (en) | 1993-06-15 | 1993-06-15 | Gas turbine combined power generation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5143834A JPH074211A (en) | 1993-06-15 | 1993-06-15 | Gas turbine combined power generation equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH074211A true JPH074211A (en) | 1995-01-10 |
Family
ID=15348034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5143834A Pending JPH074211A (en) | 1993-06-15 | 1993-06-15 | Gas turbine combined power generation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH074211A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004360694A (en) * | 2003-06-02 | 2004-12-24 | Alstom Technology Ltd | Method to generate energy using energy generating facility having gas turbine and energy generating facility to implement the method |
US6917872B2 (en) | 2002-06-18 | 2005-07-12 | Nissan Motor Co., Ltd. | Driving assist system for vehicle |
JP2006526736A (en) * | 2003-05-30 | 2006-11-24 | ユーロタービン アクティエボラーグ | Operation method of gas turbine assembly |
US7308839B2 (en) | 2002-06-20 | 2007-12-18 | Nissan Motor Co., Ltd. | Accelerator pedal device |
JP2010530490A (en) * | 2007-06-19 | 2010-09-09 | アルストム テクノロジー リミテッド | Exhaust gas recirculation gas turbine equipment |
JP2012088037A (en) * | 2010-10-19 | 2012-05-10 | Alstom Technology Ltd | Power plant |
-
1993
- 1993-06-15 JP JP5143834A patent/JPH074211A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6917872B2 (en) | 2002-06-18 | 2005-07-12 | Nissan Motor Co., Ltd. | Driving assist system for vehicle |
US7308839B2 (en) | 2002-06-20 | 2007-12-18 | Nissan Motor Co., Ltd. | Accelerator pedal device |
JP2006526736A (en) * | 2003-05-30 | 2006-11-24 | ユーロタービン アクティエボラーグ | Operation method of gas turbine assembly |
US7721552B2 (en) | 2003-05-30 | 2010-05-25 | Euroturbine Ab | Method for operation of a gas turbine group |
JP4705018B2 (en) * | 2003-05-30 | 2011-06-22 | ユーロタービン アクティエボラーグ | Operation method of gas turbine assembly |
JP2004360694A (en) * | 2003-06-02 | 2004-12-24 | Alstom Technology Ltd | Method to generate energy using energy generating facility having gas turbine and energy generating facility to implement the method |
JP2010530490A (en) * | 2007-06-19 | 2010-09-09 | アルストム テクノロジー リミテッド | Exhaust gas recirculation gas turbine equipment |
US8793972B2 (en) | 2007-06-19 | 2014-08-05 | Alstom Technology Ltd | Gas turbine installation with flue gas recirculation dependent on oxygen content of a gas flow |
JP2012088037A (en) * | 2010-10-19 | 2012-05-10 | Alstom Technology Ltd | Power plant |
US9200540B2 (en) | 2010-10-19 | 2015-12-01 | Alstom Technology Ltd | Combined cycle with recirculation plant inlet oxygen concentration system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5678401A (en) | Energy supply system utilizing gas and steam turbines | |
US8393138B2 (en) | Oxygen-enriched air assisting system for improving the efficiency of cogeneration system | |
EP0851099B1 (en) | Gas turbine generator | |
US20060272334A1 (en) | Practical method for improving the efficiency of cogeneration system | |
US5737912A (en) | Method for starting gas turbine in combined cycle power station | |
NO322002B1 (en) | Method and apparatus for starting emission-free gas turbine power stations | |
JPH0339166B2 (en) | ||
JP6632737B2 (en) | Ammonia combustion method and apparatus | |
JPH10115229A (en) | Gas turbine and operation method thereof | |
EP1091095B1 (en) | Gas turbine system and combined plant comprising the same | |
JPH10196316A (en) | Combined power generating plant and closed air cooling gas turbine system | |
JP3882107B2 (en) | Gas turbine built-in boiler | |
JP2003161164A (en) | Combined-cycle power generation plant | |
JPH074211A (en) | Gas turbine combined power generation equipment | |
WO2012162923A1 (en) | Gas and steam turbine system | |
US5251434A (en) | Pressurized fluidized-bed boiler power plant | |
RU2106501C1 (en) | Combined cycle method for power generating and combined-cycle plant implementing it | |
JPH10325336A (en) | Gas turbine power generating system | |
RU2124134C1 (en) | Combination steam-gas power plant and method of its operation | |
JPH09203327A (en) | Gas turbine power generator | |
JP2001140657A (en) | Gas turbine cogeneration device | |
JPS62111131A (en) | Burner of low-calory gas burning gas turbine | |
JPH11117714A (en) | Gas turbine combined plant | |
JPH06330709A (en) | Power generation plant | |
JP3597173B2 (en) | Gas turbine built-in boiler |