[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0741822A - Deoxidizing method for molten steel - Google Patents

Deoxidizing method for molten steel

Info

Publication number
JPH0741822A
JPH0741822A JP14751193A JP14751193A JPH0741822A JP H0741822 A JPH0741822 A JP H0741822A JP 14751193 A JP14751193 A JP 14751193A JP 14751193 A JP14751193 A JP 14751193A JP H0741822 A JPH0741822 A JP H0741822A
Authority
JP
Japan
Prior art keywords
molten steel
cao
deoxidation
steel
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14751193A
Other languages
Japanese (ja)
Inventor
Yuji Miki
祐司 三木
Kenichi Tanmachi
健一 反町
Nagayasu Bessho
永康 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14751193A priority Critical patent/JPH0741822A/en
Publication of JPH0741822A publication Critical patent/JPH0741822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To exceedingly decrease the alumina inclusions and total oxygen quantity in steel by simultaneously adding CaO and oxides of specific metals having the oxygen affinity weaker than the oxygen affinity of Al together with metallic Al and flocculating and floating the alumina nonmetallic inclusions at the time of deoxidizing the Al. CONSTITUTION:SiO2, FeO, MnO, TiO2 and V2O3, etc., are applicable as the metal oxides to be simultaneously mixed with Al and CaO and more particularly the SiO2 and FeO advantageous. The weight ratio at which the CaO and SiO2 are added to the molten steel are defined as X, Y respectively and these metals are added to the molten steel in a range satisfying a relation 0.6X<=Y<=2.4X in the case of using the SiO2. The fine alumina inclusions of the products formed by deoxidation are rapidly flocculated and floated by the deoxidation method, by which the total oxygen quantity in the steel after the deoxidation is lowered down to 10ppm level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、溶鋼の脱酸方法に関
し、とくに脱炭生成物である微細Al2O3 の迅速な凝集・
浮上分離を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deoxidizing method for molten steel, and particularly to rapid agglomeration / decomposition of fine Al 2 O 3 which is a decarburization product.
It is intended for floating separation.

【0002】[0002]

【従来の技術】近年、とくに薄板鋼に代表されるよう
に、高品質化に対する要求が殊の外高まり、それに伴っ
て対応する精錬技術の開発・改善も求められている。こ
のような鋼材品質の向上と安定化を目的として、溶鋼の
脱酸処理が施されるが、そのうち金属Alを用いた脱酸処
理法はいわゆるアルキミキルド鋼の溶製に用いられ、転
炉出鋼後の未脱酸溶鋼又は残存スラグを還元処理した弱
脱酸溶鋼に対し、直接金属Alを添加することによって行
われる。
2. Description of the Related Art In recent years, particularly as represented by thin steel, the demand for high quality has been particularly increased, and along with this, the development and improvement of corresponding refining technology is also required. For the purpose of improving and stabilizing the quality of such steel materials, molten steel is subjected to deoxidation treatment. Among them, the deoxidation treatment method using metal Al is used for so-called Alkymi killed steel melting and It is carried out by directly adding metallic Al to later undeoxidized molten steel or weak deoxidized molten steel obtained by reducing the residual slag.

【0003】しかしながら、上記のようにしてアルミキ
ルド鋼を溶製する場合には、金属Alと鋼中の酸素が反応
し、微細なAl2O3(固体介在物) が大量に生成する。かよ
うな Al2O3粒子は、二次精錬過程で徐々に集合・合体
し、クラスターを形成して最終的に浮上して鋼塊から分
離されるか、または浮上しきれずに鋼塊に補足されて製
品欠陥となる。
However, in the case of melting aluminum-killed steel as described above, metal Al reacts with oxygen in the steel, and a large amount of fine Al 2 O 3 (solid inclusions) is produced. Such Al 2 O 3 particles gradually aggregate and coalesce in the secondary refining process to form clusters, which eventually float up and are separated from the steel ingot, or are not fully floated and are trapped in the steel ingot. Will result in product defects.

【0004】従って、生成した Al2O3粒子は溶鋼中から
極力排除する必要があることから、これまでにも多くの
浮上分離促進方法が提案されている。たとえば、Arガス
バブリング法(有馬ら;鉄と鋼、60(1974) 11, S397)で
は、Arガスを溶鋼中に10分間吹込むことによって、 Al2
O3粒子を浮上分離させ、溶鋼酸素濃度(〔T.O〕)で
20〜40ppm までの脱酸を達成している。
Therefore, since the generated Al 2 O 3 particles need to be removed from the molten steel as much as possible, many methods for promoting the floating separation have been proposed so far. For example, in the Ar gas bubbling method (Arima et al., Iron and Steel, 60 (1974) 11, S397), Ar gas was blown into molten steel for 10 minutes to produce Al 2
O 3 particles are floated and separated, and the oxygen concentration in molten steel ([TO])
Achieves deoxidation up to 20-40ppm.

【0005】しかしながら、上記の方法では、これ以上
のレベルまで脱酸することは事実上不可能であった。こ
の理由は、生成するAl2O3 粒子のうち10μm 以下の微細
粒子は、一旦溶鋼中に懸濁すると、たとえArガス攪拌
(他の溶鋼攪拌でも同じ)を行ったとしても、なかなか
浮上分離しないためであると考えられる。
However, it was practically impossible to deoxidize to a higher level by the above method. The reason for this is that among the Al 2 O 3 particles produced, fine particles of 10 μm or less do not float up and separate once suspended in molten steel, even if Ar gas stirring (same for other molten steel stirring) is performed. It is thought to be because of this.

【0006】そこで、10μm 以下のような微細な Al2O3
粒子についても、生成後に直ちに粗大化して、浮上分離
する方法が考案された。例えば、特開平3-47910号公報
では、脱酸時にAlと同時に、CaOなど、脱酸生成物であ
る Al2O3と反応し易い化合物を添加することにより、生
成 Al2O3微粒子を早期に粗大化させる方法を提案してい
る。
Therefore, fine Al 2 O 3 having a particle size of 10 μm or less is used.
Also for particles, a method was devised in which the particles were coarsened immediately after formation and floated and separated. For example, in Japanese Unexamined Patent Publication (Kokai) No. 3-47910, at the time of deoxidation, at the same time as Al, a compound such as CaO that easily reacts with the deoxidation product Al 2 O 3 is added to produce Al 2 O 3 fine particles at an early stage. I have proposed a method to coarsen.

【0007】しかしながら、上記の方法には、以下に述
べるような問題を残していた。すなわち、 Al2O3は融点
が2200℃前後と高く、溶鋼中では固相であり、また添加
するCaOも固相粒子であることに加え、Alにより還元さ
れる酸化物もCaO近傍には存在しないことから、 Al2O3
とCaOとの衝突・合体確率が極めて低く、その結果、α
CaO・βAl2O3 (ライムアルミネート)を形成する速度
が極めて遅い。そのため2次的な反応としての、微細な
Al2O3粒子のαCaO・βAl2O3 によるトラップ速度も遅
く、従って浮上分離に長時間を要する。
However, the above method has the following problems. That is, Al 2 O 3 has a high melting point of around 2200 ° C., is a solid phase in molten steel, and CaO to be added is also a solid phase particle, and an oxide reduced by Al exists near CaO. From not doing, Al 2 O 3
The probability of collision / coalescence between CaO and CaO is extremely low, resulting in α
The formation rate of CaO.βAl 2 O 3 (lime aluminate) is extremely slow. Therefore, as a secondary reaction,
The trapping speed of Al 2 O 3 particles by αCaO / βAl 2 O 3 is also slow, and therefore, it takes a long time to float and separate.

【0008】[0008]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、未脱酸あるいは弱脱酸溶鋼
を金属Alを用いて脱酸精錬するに際し、脱酸生成物であ
る微細なアルミナ系介在物を短時間で凝縮・浮上させる
ことにより、精錬後の鋼中アルミナ系介在物濃度を低減
すると共に、結果として鋼中全酸素量 ( T.O )を10ppm
以下のレベルまで低減できる溶鋼の新規な脱酸精錬方法
を提案することを目的とする。
The present invention advantageously solves the above problems and is a deoxidation product when deoxidizing and refining undeoxidized or weakly deoxidized molten steel with metallic Al. By condensing and floating fine alumina inclusions in a short time, the concentration of alumina inclusions in the steel after refining is reduced, and as a result, the total oxygen content (TO) in the steel is 10 ppm.
The purpose is to propose a new deoxidation refining method for molten steel that can be reduced to the following levels.

【0009】[0009]

【課題を解決するための手段】すなわちこの発明は、溶
鋼のAl脱酸に際し、金属Alと共に、CaOと、Alよりも酸
素との親和力が弱い金属の酸化物の群から選んだ少なく
とも一種とを、溶鋼に同時に添加することを特徴とする
溶鋼の脱酸方法である。
[Means for Solving the Problems] That is, the present invention, in the deoxidation of molten steel with Al, together with metal Al, CaO and at least one selected from the group of metal oxides having a weaker affinity for oxygen than Al. A method for deoxidizing molten steel is characterized in that it is added to molten steel at the same time.

【0010】この発明において、Alよりも酸素との親和
力が弱い金属の酸化物としては、SiO2, FeO, MnO,Ti
02及びV2O5等の適用が可能であるが、SiO2やFeOがとり
わけ有利に適合する。
In the present invention, the oxides of metals having a weaker affinity for oxygen than Al include SiO 2 , FeO, MnO and Ti.
Although 0 2 and V 2 O 5 can be applied, SiO 2 and FeO are particularly advantageous.

【0011】またこの発明において、特に好ましい実施
形態は、Alよりも酸素との親和力が弱い金属の酸化物と
してSiO2を用い、かつ溶鋼に対するCaO及びSiO2の添加
重量割合をそれぞれX,Yとしたとき、XとYが次式 0.6X≦Y≦ 2.4X の関係を満足する範囲でCaO及びSiO2を添加する方法で
ある。
In the present invention, a particularly preferred embodiment uses SiO 2 as an oxide of a metal having a weaker affinity for oxygen than Al, and the addition weight ratios of CaO and SiO 2 to molten steel are X and Y, respectively. Then, CaO and SiO 2 are added in such a range that X and Y satisfy the relationship of the following formula 0.6X ≦ Y ≦ 2.4X.

【0012】なお、脱酸剤の添加方式については特に限
定されることなく、上記した各成分を同時に添加できさ
えすればどのような方式でも良いが、全てを粉体として
それらを混合した混合体、またはCaO粉及びSiO2粉等を
Alパイプに充填した結合体として添加する方式は有利で
ある。
The method of adding the deoxidizing agent is not particularly limited, and any method may be used as long as the above-mentioned components can be added at the same time, but a mixture obtained by mixing all of them as powders. , Or CaO powder and SiO 2 powder, etc.
The method of adding as a binder filled in an Al pipe is advantageous.

【0013】[0013]

【作用】さて発明者らは、Al脱酸時の鋼中酸素濃度〔T.
O 〕の経時変化、ならびに脱酸後に溶鋼中に残存するア
ルミナ系介在物の残存量、形態及び粒径分布等について
鋭意研究を重ねた結果、以下に述べる知見を得て、この
発明を完成させるに至った。以下、この発明の解明経緯
を、この発明の脱酸メカニズムと共に説明する。
[Function] Now, the inventors have found that the oxygen concentration in steel during deoxidation of Al [T.
O]] over time, and as a result of earnest research on the remaining amount, morphology, particle size distribution, etc. of the alumina-based inclusions remaining in the molten steel after deoxidation, the findings described below were obtained, and the present invention was completed. Came to. Hereinafter, the clarification process of the present invention will be described together with the deoxidizing mechanism of the present invention.

【0014】Al脱酸工程を素過程に分けて考えると、次
の3工程に分けられる。 (1) 金属Alの溶解、混合。 (2) 脱酸反応(金属Alの酸化反応、脱酸生成物核の生
成、核成長) 。 (3) 脱酸生成物Al2O3 の凝集と浮上分離。 ここに、低〔T.O 〕のアルミキルド鋼を溶製するには、
上記(3) の脱酸生成物Al2O3 の凝集と浮上分離工程がと
りわけ重要である。すなわち、脱酸反応で生成した微細
なAl2O3 粒子をいかに早く粗大化し、浮上分離するかが
この技術のキーポイントである。
Considering the Al deoxidizing step as a basic step, it can be divided into the following three steps. (1) Melting and mixing of metallic Al. (2) Deoxidation reaction (oxidation reaction of metallic Al, generation of deoxidation product nuclei, nuclear growth). (3) Aggregation and floating separation of the deoxidation product Al 2 O 3 . To melt low [TO] aluminum killed steel,
The step of flocculation and flotation of the deoxidation product Al 2 O 3 of (3) above is particularly important. That is, the key point of this technique is how quickly the fine Al 2 O 3 particles generated by the deoxidation reaction are coarsened and floated and separated.

【0015】そこで、この点に関し、鋭意検討を重ねた
結果、以下に述べる知見を得た。すなわち、金属AlとCa
Oを同時に溶鋼中に添加した場合には、まず溶鋼に溶解
したAlと溶鋼中の残存酸素とが反応して微細なAl2O3
子が生成する。この際にAl2O3 粒子の生成反応と並行し
て、溶鋼に残存した溶解AlによってSiO2やFeOのよう
な、Alよりも酸素との親和力が弱い金属の酸化物を還元
させた場合には、これによって生成したAl2O3 が同時に
添加したCaOと直ちに反応して、αCaO・βAl2O3 (ラ
イムアルミネート)が形成される。このαCaO・βAl2O
3 は低融点酸化物であり、通常溶鋼中では液体であるた
め、上記した脱酸生成物である微細なAl2O3 粒子を容易
に捕捉凝集して粗大化を促進し、浮上分離させるので、
鋼中の介在物が低減する。
Therefore, as a result of intensive studies on this point, the following findings were obtained. That is, the metals Al and Ca
When O is simultaneously added to the molten steel, Al dissolved in the molten steel reacts with residual oxygen in the molten steel to form fine Al 2 O 3 particles. At this time, in parallel with the reaction of producing Al 2 O 3 particles, when dissolved Al remaining in the molten steel reduces oxides of metals such as SiO 2 and FeO, which have a weaker affinity for oxygen than Al, The Al 2 O 3 thus produced immediately reacts with CaO added at the same time to form αCaO · βAl 2 O 3 (lime aluminate). This αCaO / βAl 2 O
Since 3 is a low-melting point oxide, which is usually a liquid in molten steel, it can easily capture and agglomerate the fine Al 2 O 3 particles that are the above-mentioned deoxidation product to promote coarsening, and cause floating separation. ,
Inclusions in steel are reduced.

【0016】すなわち、この発明は、前掲した特開平3
-47910号公報に開示された方法、すなわちCaOのみをAl
に混合して、脱酸反応後にその生成物である Al2O3とCa
Oを反応させるのではなく、溶鋼中のAlによって同時に
添加したSiO2やFeOを還元し、CaOとの反応により液体
状態にあるαCaO・βAl2O3 を形成させ、このαCaO・
βAl2O3 によって、溶鋼中に微細に分散したアルミナ系
介在物を短時間のうちに捕捉・粗大化させることによ
り、その迅速な浮上分離を図るものである。
That is, the present invention is based on the above-mentioned Japanese Patent Laid-Open No.
-47910 publication, that is, only CaO
Al 2 O 3 and Ca, which are the products after deoxidation reaction,
Rather than reacting O, SiO 2 and FeO added at the same time by Al in molten steel are reduced, and αCaO · βAl 2 O 3 in a liquid state is formed by reaction with CaO.
β Al 2 O 3 captures and coarsens alumina-based inclusions finely dispersed in molten steel in a short period of time, thereby achieving rapid levitation separation.

【0017】このように、この発明によれば、特開平3
-47910号公報に開示された方法よりも早期に、かつ大量
に低融点化合物であるαCaO・βAl2O3 (ライムアルミ
ネート)を形成させることができるため、脱酸剤添加直
後に生成される微細Al2O3 粒子を早期に捕集・凝集、ひ
いては浮上分離させることができ、かくして鋼中介在物
の有利な低減が実現されるのである。
As described above, according to the present invention, Japanese Patent Laid-Open No.
-47910 can form a low melting point compound, αCaO.βAl 2 O 3 (lime aluminate), earlier than the method disclosed in Japanese Patent Publication No. 47910/1990, and thus is formed immediately after addition of a deoxidizing agent. The fine Al 2 O 3 particles can be collected and agglomerated at an early stage, and then can be floated and separated, and thus advantageous reduction of inclusions in steel can be realized.

【0018】表1に、この発明法(Alよりも酸素との親
和力が弱い金属の酸化物としてSiO2を添加した場合) 及
び従来法 (特開平3-47910号公報)における脱酸剤添加
からの脱酸過程を時系列的に化学式で示す。なお、従来
法の反応については、公報中の記載内容から推定した。
Table 1 shows the addition of a deoxidizer in the method of the present invention (when SiO 2 is added as an oxide of a metal having a weaker affinity for oxygen than Al) and the conventional method (JP-A-3-47910). The deoxidation process of is shown by a chemical formula in time series. The reaction of the conventional method was estimated from the description in the publication.

【0019】[0019]

【表1】 [Table 1]

【0020】同表から明らかなように、この発明法は、
Al(溶鋼中に溶解するAl) でnCaO+mSiO2又はnCaO
・mSiO2を還元することによって、nCaO・(p/2+
q)Al2O3 系の低融点酸化物を形成し、これにより固相
として生成する Al2O3粒子の捕集・凝集を行うので、従
来法に比べると、 Al2O3粒子の捕集・凝集は勿論のこ
と、その浮上分離効率を格段に高めることができる。
As is clear from the table, the method of the present invention is
Al (Al dissolved in molten steel) nCaO + mSiO 2 or nCaO
・ By reducing mSiO 2 , nCaO ・ (p / 2 +
q) forming a Al 2 O 3 based low-melting oxide, so do this by collecting and agglomeration of Al 2 O 3 particles produced as a solid phase, as compared to the conventional method, capturing of Al 2 O 3 particles Not only the collection and aggregation, but also the floating separation efficiency can be remarkably enhanced.

【0021】この発明は、早期にαCaO・βAl2O3 (ラ
イムアルミネート)系の低融点酸化物を形成することに
よって、微細な Al2O3粒子の捕集・凝集・浮上分離効率
を高めることを特長とするものであるから、Alと同時に
添加する添加する酸化物は、上述したnCaO+mSiO2
nCaO・mSiO2系の他、nCaO+mFeOやnCaO・mFe
O系など、Alよりも酸素との親和力が弱い金属の酸化物
であれば、いずれによっても同等の効果を得ることがで
きる。
The present invention enhances the efficiency of trapping / aggregating / floating separation of fine Al 2 O 3 particles by forming αCaO / βAl 2 O 3 (lime aluminate) -based low-melting oxide at an early stage. Therefore, the oxides to be added at the same time as Al are nCaO + mSiO 2 and nCaO · mSiO 2 -based materials, as well as nCaO + mFeO and nCaO · mFe.
The same effect can be obtained with any oxide of a metal such as an O-based oxide that has a weaker affinity for oxygen than Al.

【0022】さらに、この発明において、Alよりも酸素
との親和力が弱い金属の酸化物としてSiO2を利用する場
合に、より好適に低融点酸化物を形成するには、SiO2
添加割合を調整することが望ましい。いま、SiO2Al,
CaOの素反応として、 SiO2+4/3 Al=2/3 Al2O3 + Si ----- (6) 2/3 Al2O3 + 2/3 CaO=2/3 CaO・Al2O3 ----- (7) なる反応を考える。さらに、αCaO・βAl2O3 (ライム
アルミネート)では、CaOとAl2O3 との比(β/α)が
0.4〜1.5 程度で低融点化されるので、溶鋼重量に対す
る添加CaOの重量%をX、一方添加SiO2の重量%をYと
すると、最適なSiO2の添加割合は次式(9) で与えられ
る。
Further, in the present invention, when SiO 2 is used as an oxide of a metal having a weaker affinity for oxygen than Al, in order to more suitably form a low melting point oxide, the addition ratio of SiO 2 is set. It is desirable to adjust. Now, SiO 2 and Al ,
As elementary reaction of CaO, SiO 2 +4/3 Al = 2 /3 Al 2 O 3 + Si ----- (6) 2/3 Al 2 O 3 + 2/3 CaO = 2/3 CaO · Al 2 Consider the reaction O 3 ----- (7). Furthermore, in αCaO / βAl 2 O 3 (lime aluminate), the ratio of CaO to Al 2 O 3 (β / α) is
Since the melting point is lowered at about 0.4 to 1.5, if the weight% of added CaO to the weight of molten steel is X and the weight% of added SiO 2 is Y, the optimum addition rate of SiO 2 is given by the following formula (9). To be

【数1】 [Equation 1]

【0023】なお、この発明に従う脱酸剤の添加方法に
ついては、(1) 転炉吹練終了後、転炉を傾動し、取鍋へ
出鋼する際に脱酸剤を添加する方法、(2) 出鋼後に溶鋼
を不活性ガスで攪拌しながら脱酸剤を吹込み添加する方
法、(3) 真空脱ガス槽内に不活性ガスと共に該脱酸剤を
吹込み添加する方法、のいずれでもよく、どの方法によ
っても、同程度の良好な脱酸効率が得られることが確か
められている。
Regarding the method of adding the deoxidizing agent according to the present invention, (1) a method of adding the deoxidizing agent when tilting the converter after tapping the converter and tapping the ladle, 2) A method in which a deoxidizing agent is added by blowing while stirring molten steel with an inert gas after tapping, and a method in which the deoxidizing agent is added by blowing together with an inert gas in a vacuum degassing tank. However, it has been confirmed that the same good deoxidation efficiency can be obtained by any method.

【0024】[0024]

【実施例】【Example】

実施例1 2gの電解鉄( T.O =200ppm)中に、表2に示す各種
脱酸剤を埋め込み、電子ビーム照射によって各サンプル
を真空中で溶解し、脱酸を実施した。各実験条件下での
介在物粒径分布について調べた結果を図1に示す。
Example 1 2 g of electrolytic iron (TO = 200 ppm) was filled with various deoxidizing agents shown in Table 2, and each sample was dissolved in a vacuum by electron beam irradiation to carry out deoxidizing. The results of examining the particle size distribution of inclusions under each experimental condition are shown in FIG.

【0025】[0025]

【表2】 [Table 2]

【0026】図1の結果から明らかなように、Alのみを
埋め込んだ従来例(No.1)及びAlとCaOを埋め込んだ従
来例(No.2)に比べて、Al+CaO+SiO2を埋め込んだ発
明例(No.3)では、介在物の粗大化が大幅に促進されて
いる。
As is apparent from the results of FIG. 1, compared with the conventional example (No. 1) in which only Al is embedded and the conventional example (No. 2) in which Al and CaO are embedded, an invention example in which Al + CaO + SiO 2 is embedded In (No.3), coarsening of inclusions is greatly promoted.

【0027】実施例2 230トン転炉で溶製した溶鋼を出鋼時に3等分し、それ
ぞれに、(1) 金属Al(0.20%)のみ、(2) 金属Al(0.20
%)+CaO(0.10%)及び(3) 金属Al(0.20%)+CaO
(0.10%)+SiO2(0.08%)を添加した脱酸した後、同
一条件でRH処理ついで連続鋳造を施した。得られた鋳片
の大型非金属介在物量をスライム抽出法で評価した結果
を、図2に示す。
Example 2 Molten steel melted in a 230 ton converter was divided into three equal parts at the time of tapping, and (1) only metal Al (0.20%) and (2) metal Al (0.20
%) + CaO (0.10%) and (3) Metallic Al (0.20%) + CaO
(0.10%) + SiO 2 (0.08%) was added for deoxidation, followed by RH treatment and continuous casting under the same conditions. The results of evaluating the amount of large non-metallic inclusions in the obtained slab by the slime extraction method are shown in FIG.

【0028】同図から明らかなように、この発明法によ
れば、Al2O3 が早期に粗大化ひいては浮上分離され、そ
の結果、連鋳鋳造後の鋳片内の大型介在物量は格段に減
少している。また、この発明に従い得られた鋳片の酸素
濃度は7.0ppmであり、10ppm 以下の目標値を達成してい
た。
As is clear from the figure, according to the method of the present invention, Al 2 O 3 is coarsened at an early stage and is then floated and separated, and as a result, the amount of large inclusions in the slab after continuous casting is remarkably increased. is decreasing. The oxygen concentration of the slab obtained according to the present invention was 7.0 ppm, and the target value of 10 ppm or less was achieved.

【0029】[0029]

【発明の効果】かくしてこの発明によれば、脱酸後に生
成する微細な Al2O3粒子を早期に粗大化し、浮上分離さ
せることができるので、精錬後の鋼中非金属介在物量ひ
いては鋼中全酸素量を大幅に低減することができる。そ
の結果、製品の表面欠陥が減少するだけでなく、非金属
介在物による加工時の割れも低減できるので、鋼板等の
製品品質が格段に向上する。
As described above, according to the present invention, the fine Al 2 O 3 particles formed after deoxidation can be coarsened at an early stage and can be floated and separated, so that the amount of non-metallic inclusions in the steel after refining and, by extension, in the steel. The total oxygen content can be significantly reduced. As a result, not only the surface defects of the product can be reduced, but also cracks due to non-metallic inclusions during processing can be reduced, so that the product quality of the steel sheet or the like is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1における非金属介在物の粒径分布を示
したグラフである。
FIG. 1 is a graph showing a particle size distribution of non-metallic inclusions in Example 1.

【図2】実施例2における非金属介在物量を示したグラ
フである。
FIG. 2 is a graph showing the amount of nonmetallic inclusions in Example 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼のAl脱酸に際し、金属Alと共に、Ca
Oと、Alよりも酸素との親和力が弱い金属の酸化物の群
から選んだ少なくとも一種とを、溶鋼に同時に添加する
ことを特徴とする溶鋼の脱酸方法。
1. At the time of deoxidizing Al of molten steel, Ca together with metallic Al
A method for deoxidizing molten steel, characterized in that O and at least one selected from the group of metal oxides having a weaker affinity for oxygen than Al are simultaneously added to the molten steel.
【請求項2】 請求項1において、選択した、Alよりも
酸素との親和力が弱い金属の酸化物が、SiO2及び/又は
FeOである溶鋼の脱酸方法。
2. The oxide of a metal according to claim 1, which has a weaker affinity for oxygen than Al, is SiO 2 and / or
Method for deoxidizing molten steel that is FeO.
【請求項3】 請求項1において、選択した、Alよりも
酸素との親和力が弱い金属の酸化物をSiO2とし、かつ溶
鋼に対するCaO及びSiO2の添加重量割合をそれぞれX,
Yとしたとき、XとYが次式 0.6X≦Y≦ 2.4X の関係を満足する範囲でCaO及びSiO2を添加してなる溶
鋼の脱酸方法。
3. The oxide according to claim 1, wherein the selected oxide of a metal having a weaker affinity for oxygen than Al is SiO 2 , and the addition weight ratios of CaO and SiO 2 to the molten steel are X, respectively.
A method for deoxidizing molten steel, in which CaO and SiO 2 are added in a range where X and Y satisfy the following formula: 0.6X ≦ Y ≦ 2.4X, where Y is Y.
JP14751193A 1993-06-18 1993-06-18 Deoxidizing method for molten steel Pending JPH0741822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14751193A JPH0741822A (en) 1993-06-18 1993-06-18 Deoxidizing method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14751193A JPH0741822A (en) 1993-06-18 1993-06-18 Deoxidizing method for molten steel

Publications (1)

Publication Number Publication Date
JPH0741822A true JPH0741822A (en) 1995-02-10

Family

ID=15432008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14751193A Pending JPH0741822A (en) 1993-06-18 1993-06-18 Deoxidizing method for molten steel

Country Status (1)

Country Link
JP (1) JPH0741822A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741491B1 (en) * 2005-12-30 2007-07-20 주식회사 인텍 Deoxidizing refractory composition for preparing steel with high purity and preparing method thereof
CN113774186A (en) * 2021-09-13 2021-12-10 攀钢集团攀枝花钢铁研究院有限公司 Low-carbon low-silicon aluminum composite deoxidizer and preparation and use method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100741491B1 (en) * 2005-12-30 2007-07-20 주식회사 인텍 Deoxidizing refractory composition for preparing steel with high purity and preparing method thereof
CN113774186A (en) * 2021-09-13 2021-12-10 攀钢集团攀枝花钢铁研究院有限公司 Low-carbon low-silicon aluminum composite deoxidizer and preparation and use method thereof

Similar Documents

Publication Publication Date Title
KR100446469B1 (en) Deoxidating material for manufacturing alloy steel
JP2017166026A (en) Manufacturing method of high cleanliness steel
US4543122A (en) Magnesium production
JPH0741822A (en) Deoxidizing method for molten steel
JP2866147B2 (en) Method for producing steel in which fine oxides are dispersed
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP3760144B2 (en) Ultra-low carbon steel sheet, ultra-low carbon steel slab and method for producing the same
JPH08225820A (en) Production of high carbon silicon killed steel
JP3026873B2 (en) Method for deoxidizing molten steel
JP3160124B2 (en) Deoxidation method of low silicon aluminum killed steel
CN1598001A (en) Compound dooxidizing agent and its production process
JP6443192B2 (en) Slag reforming method using FeSi alloy grains
JP3742615B2 (en) Method of melting high cleanliness steel
KR19990047461A (en) Method for deoxidizing ladle slag of aluminum deoxidized steel
KR100267273B1 (en) The making method of high purity al-si complex deoxidizing steel
JP3605390B2 (en) Method for producing ultra-low carbon steel sheet and slab thereof
JP3364534B2 (en) Manufacturing method of high clean steel
RU2247158C1 (en) Method of extra-furnace alloying of iron-carbon alloys in ladle
JPH08325627A (en) Production of grain-oriented silicon steel sheet
JP4660038B2 (en) Method for melting steel sheet for thin plate and cast piece thereof
JPH059603A (en) Utilizing method for slag in continuous casting and ingot-making
RU2044063C1 (en) Method for making low-alloyed steel with niobium
JP4418119B2 (en) Method for dispersing fine oxides in molten steel
SU765384A1 (en) Charge for smelting vanadium ferroalloy
CN109055663A (en) A kind of Al-CaO-Fe alloy for making steel anti-nozzle blocking