[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0740948B2 - Microbiological production of amides - Google Patents

Microbiological production of amides

Info

Publication number
JPH0740948B2
JPH0740948B2 JP61127176A JP12717686A JPH0740948B2 JP H0740948 B2 JPH0740948 B2 JP H0740948B2 JP 61127176 A JP61127176 A JP 61127176A JP 12717686 A JP12717686 A JP 12717686A JP H0740948 B2 JPH0740948 B2 JP H0740948B2
Authority
JP
Japan
Prior art keywords
nitrile
reaction
methacrylonitrile
amide
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61127176A
Other languages
Japanese (ja)
Other versions
JPS6291189A (en
Inventor
潔 川上
豊治 田辺
修 永野
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Publication of JPS6291189A publication Critical patent/JPS6291189A/en
Publication of JPH0740948B2 publication Critical patent/JPH0740948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A method of producing an amide comprises subjecting a nitrile to the action of a microorganism belonging to the genus Rhodococcus and having the ability to hydrate the nitrile, and isolating the resulting amide. The micro-organism is highly active to a wide variety of nitrile even at low temperatures and, in addition, the hydration reaction of nitriles has a high selectivity for the corresponding amides. Accordingly, this method ensures the production of amides in high yield without formation of by-products such as corresponding carboxylic acids.

Description

【発明の詳細な説明】 〔3−1産業上の利用分野〕 本発明は、アミドの微生物学的製造法に関する。更に詳
しくは、本発明は、ニトリルをロドコッカス(Rhodococ
cus)属に属する特定の微生物の作用による水和反応に
付し、生成するアミドを分離取得するアミドの微生物学
的製造法に関する。産業上重要なアミドとして、たとえ
ばアクリルアミドやメタクリルアミドが知られている。
アクリルアミドは、既に高分子凝集剤、紙力増強剤及び
繊維改良剤などに利用されているほか、新たに、石油三
次回収への大きな用途が開けつつある。一方、メタクリ
ルアミドは、適度な親水、親油性及び優れた耐熱性、架
橋性などの特長を生かして、塗料、接着剤、光架橋性化
合物などに利用されている。本発明の微生物学的製造法
は、これら有用なアミドを効率良く工業的に製造するの
に利用することができる。
DETAILED DESCRIPTION OF THE INVENTION [3-1 Industrial Field of Application] The present invention relates to a method for producing a microbe of amide. More specifically, the present invention provides that the nitrile is treated with Rhodococ
The present invention relates to a microbiological method for producing an amide by subjecting it to a hydration reaction by the action of a specific microorganism belonging to the genus cus) and separating and obtaining the produced amide. Acrylamide and methacrylamide are known as industrially important amides.
Acrylamide has already been used as a polymer flocculant, a paper strengthening agent, a fiber improving agent, and the like, and a new application for the tertiary recovery of petroleum is being opened. On the other hand, methacrylamide is used for paints, adhesives, photo-crosslinkable compounds, etc. by taking advantage of its properties such as appropriate hydrophilicity, lipophilicity, excellent heat resistance and crosslinkability. The microbiological production method of the present invention can be used to efficiently and industrially produce these useful amides.

〔3−2従来の技術〕 アミドの製造法としては、ニトリルを還元状態の銅を触
媒として水和し製造する方法が公知であるが、触媒の再
生が困難である上、生成アミドの分離、精製工程が複雑
であり、更に、新規で工業的に有利な製造方法の開発が
望まれていた。
[3-2 Prior Art] As a method for producing an amide, a method in which nitrile is produced by hydrating copper in a reduced state as a catalyst is known, but it is difficult to regenerate the catalyst, and the amide produced is separated. The purification process is complicated, and further, the development of a new industrially advantageous manufacturing method has been desired.

一方、最近、微生物を用いたニトリルからアミドの製造
法がいくつか提案されている。たとえばバチルス(Baci
llus)属、バクテリジューム(Bacteridium)属、ミク
ロコッカス(Micrococcus)属、ブレビバクテリウム(B
revibacterium)属を用いる方法(特開昭51−86186)、
コリネバクテリウム(Corynebacterium)属、ノカルジ
ア(Nocardia)属を用いる方法(特公昭56−17918)、
シュードモナス(Pseudomonas)属を用いる方法(特公
昭59−37951)等である。
On the other hand, recently, some methods for producing amides from nitriles using microorganisms have been proposed. For example Bacillus
llus genus, Bacteridium genus, Micrococcus genus, Brevibacterium (B
revibacterium) (JP-A-51-86186),
Corynebacterium (Corynebacterium) genus, a method using Nocardia (Nocardia) genus (Japanese Patent Publication No. 56-17918),
A method using the genus Pseudomonas (Japanese Patent Publication No. 59-37951) and the like.

〔3−3発明が解決しようとする問題点〕 しかし、バチルス属、バクテリジューム属、ミクロコッ
カス属、ブレビバクテリウム属、コリネバクテリウム
属、ノカルジア属及びシュードモナス属等を用いるいず
れの従来の方法も、アミド化反応活性が低く、また、従
来法の多くについて副生する有機酸の量も未だ工業的に
充分満足されるレベルには到達していない。
[3-3 Problems to be Solved by the Invention] However, any conventional method using Bacillus genus, Bacterium genus, Micrococcus genus, Brevibacterium genus, Corynebacterium genus, Nocardia genus, Pseudomonas genus, etc. However, the amidation reaction activity is low, and the amount of organic acid by-produced in most of the conventional methods has not reached a level that is industrially sufficiently satisfactory.

〔3−4問題点を解決する為の手段〕 本発明者らは、ニトリルを水和し、工業的に充分満足さ
れるアミド化反応活性及び選択性を有する微生物の探索
と培養及び反応条件の研究を鋭意行った結果、ロドコッ
カス属に属する微生物の中にアミド生産能の高い微生物
を発見し、本発明を完成するに到った。即ち、本発明に
よれば、原料ニトリルを微生物の作用による水和反応に
付して対応するアミドに変換させ、生成するアミドを反
応混合物から分離するアミドの製造方法において、該微
生物としてロドコッカス(Rhodococcus)属に属し、ニ
トリルを水和する能力を有する特定の微生物を用い且つ
該微生物の培養に誘導ニトリルを用いることを特徴とす
るアミドの微生物学的製造法が提供される。
[3-4 Means for Solving Problems] The inventors of the present invention hydrated nitrile and searched for a microorganism having an amidation reaction activity and selectivity that are industrially sufficiently satisfied, and investigated the culture and reaction conditions. As a result of intensive research, a microorganism having a high amide-producing ability was discovered among the microorganisms belonging to the genus Rhodococcus, and the present invention was completed. That is, according to the present invention, the raw material nitrile is subjected to a hydration reaction by the action of a microorganism to be converted into a corresponding amide, and the amide produced is separated from the reaction mixture, in which the microorganism is Rhodococcus (Rhodococcus). ) A microbiological process for the production of amides is provided which is characterized by the use of a specific microorganism belonging to the genus and having the ability to hydrate nitrites and the use of derived nitriles in the cultivation of said microorganism.

本発明に用いられる微生物はロドコッカス属に属する特
定のアミド生産菌であるが、具体的には、ロドコッカス
sp.AK32菌株(R.SP.AK32)(以下AK32と略称する)及び
ロドコッカスsp.AK33菌株(R.sp.AK33)(以下AK33と略
称する)である。また、本発明者らが同様に発見したロ
ドコッカス・エリスロポリスAK3132菌株(R.erythropol
is AK3132)(以下AK3132と略称する)も同様に有用で
あるが、後で述べる参考例からも明らかなように、アミ
ドの収率が低いので、本発明では参考に記載する。AK3
2,AK33及びAK3132は、それぞれ微工研条寄第1046号、10
47号及び1040号として工業技術院微生物工業技術研究所
に寄託されている。
The microorganism used in the present invention is a specific amide-producing bacterium belonging to the genus Rhodococcus, and specifically, Rhodococcus
sp. AK32 strain (R.SP.AK32) (hereinafter abbreviated as AK32) and Rhodococcus sp. AK33 strain (R.sp.AK33) (hereinafter abbreviated as AK33). In addition, the Rhodococcus erythropolis AK3132 strain (R. erythropol) also found by the present inventors
is AK3132) (hereinafter abbreviated as AK3132) is also useful, but as will be apparent from the reference examples described later, since the yield of amide is low, it is described in the present invention for reference. AK3
2, AK33 and AK3132 are the Micromachine Research Institute No. 1046, 10
Deposited as No. 47 and No. 1040 at the Institute of Microbial Technology, National Institute of Advanced Industrial Science and Technology.

以下にそれらの菌学的性質及び化学分類学的性質を示
す。
The bacteriological properties and chemotaxonomic properties thereof are shown below.

以上の菌学的性質並びに化学分類学的性質をバージーの
細菌分類書(Bergy′s Manual of Determinative Bacte
riology)第8版(1974)及びザプロカリオーテス(The
Prokaryotes,A Handbook on Habitats,Isolation,and
Identification of Bacteria)(1981)に基づいて分類
すると、AK32,AK33及びAK3132は好気性、グラム陽性、
運動性の無い桿菌で、初期に長桿菌状であるが菌糸状を
呈さず、ブランチング及びフラグメンテーションを示
し、後に球ないし短桿菌状に断裂する。また、細胞壁ペ
プチドグリカンにはメソ−ジアミノピメリン酸を有し、
N−アシル基はグリコリルタイプである。菌体脂肪酸分
析では直鎖脂肪酸主体であり、ミコール酸の存在と共に
特徴的に10−メチル−オクタデカン酸を有する。従っ
て、AK32,AK33及びAK3132はロドコッカス属に属する細
菌であると決定した。AK32,AK33及びAK3132は、生育条
件及び糖からの酸の生成などで差異が認められる。これ
らの微生物は工業技術院微生物工業技術研究所に下記の
番号で寄託されている。
The above-mentioned mycological and chemotaxonomic properties are described in the Bergy's Manual of Determinative Bacte
riology) 8th Edition (1974) and The Procaliotes (The
Prokaryotes, A Handbook on Habitats, Isolation, and
Classification based on Identification of Bacteria (1981), AK32, AK33 and AK3132 are aerobic, Gram-positive,
It is a non-motile rod-shaped bacterium, which is initially long rod-shaped but does not show hyphae, shows blanching and fragmentation, and later breaks into spheres or short rods. In addition, cell wall peptidoglycan has meso-diaminopimelic acid,
The N-acyl group is of glycolyl type. In the cell fatty acid analysis, it is mainly composed of straight-chain fatty acids and characteristically has 10-methyl-octadecanoic acid with the presence of mycolic acid. Therefore, it was determined that AK32, AK33 and AK3132 are bacteria belonging to the genus Rhodococcus. Differences between AK32, AK33, and AK3132 are recognized in terms of growth conditions and production of acid from sugar. These microorganisms have been deposited with the following numbers at the Institute of Microbial Technology, Institute of Industrial Science and Technology.

次に、本発明の一般的実施態様について説明する。本発
明で水和反応に付される原料ニトリルとしては、たとえ
ば、アセトニトリル、プロピオニトリル、サクシノニト
リル、アジポニトリルのような脂肪族飽和ニトリル、ア
クリロニトリル、メタクリロニトリルのような脂肪族不
飽和ニトリル、ベンゾニトリル、フタロジニトリルのよ
うな芳香族ニトリル及びニコチノニトリルのような複素
環式ニトリルである。
Next, general embodiments of the present invention will be described. Examples of the raw material nitrile subjected to the hydration reaction in the present invention include, for example, acetonitrile, propionitrile, succinonitrile, aliphatic saturated nitriles such as adiponitrile, acrylonitrile, and aliphatic unsaturated nitriles such as methacrylonitrile, Aromatic nitriles such as benzonitrile, phthalodinitrile and heterocyclic nitriles such as nicotinonitrile.

本発明に使用される微生物の培養には、プロピオニトリ
ル、イソブチロニトリル、メタクリロニトリルから選ば
れる誘導ニトリル(インデューサー ニトリル)(indu
cer nitrile)を唯一の炭素源、窒素源とする培地を用
いるか、もしくは、グルコース、アルドース等の炭素
源、硫酸アンモニウム、硝酸アンモニウム等の窒素源、
酵母エキス、麦芽エキス、ペプトン、肉エキス等の有機
栄養源に、誘導ニトリルを炭素源、窒素源として共存さ
せたものに、リン酸塩、ナトリウム、カリウム、鉄、マ
グネシウム、マンガン、亜鉛等の無機栄養源等を適宜含
有した培地を用いて培養することにより、原料ニトリル
の水和活性を持った菌体を取得することができる。微生
物の培養でインデューサーとして用いる誘導ニトリルの
使用量は特に臨界的ではなく、微生物を用いるニトリル
の水和反応においてアミド生成活性を微生物に与えるの
に十分の量あればよく、従来よく知られている他の菌を
用いるニトリルのアミド生成反応の際に菌の培養に用い
られる誘導ニトリルの量と同じ程度の量である。培地の
pHは通常5〜9、好ましくはpH6〜8、温度は通常20〜3
5℃、好ましくは27〜32℃で2〜5日間好気的に培養を
行なう。本発明で「ニトリルを微生物の作用による水和
反応に付して対応するアミドに変換させる」ということ
は水和すべきニトリルの存在下に微生物を培養する場
合、ならびに微生物培養後の菌体培養物、そこから採取
した菌体または菌体処理物、たとえば菌体の破砕物、と
原料ニトリルとを接触させる場合、のいずれをも包含す
るものとする。また、菌体を固定化して反応に利用する
場合をも包含するものである。菌体培養物からの菌体の
採取は遠心分離法等の公知の方法で行なうことができ、
菌体の破砕はホモジナイザー等により機械的に行なう
か、又は超音波などを用いて行なうことができる。
For culturing the microorganism used in the present invention, a derivative nitrile (inducer nitrile) selected from propionitrile, isobutyronitrile and methacrylonitrile (indutor nitrile) (indu
cer nitrile) as the only carbon source or nitrogen source, or a carbon source such as glucose or aldose, a nitrogen source such as ammonium sulfate or ammonium nitrate,
In organic nutrient sources such as yeast extract, malt extract, peptone, and meat extract, coexistence of derivatized nitrile as a carbon source and a nitrogen source, inorganic substances such as phosphate, sodium, potassium, iron, magnesium, manganese, and zinc. By culturing using a medium that appropriately contains a nutrient source and the like, cells having the hydration activity of the raw material nitrile can be obtained. The amount of the derivatized nitrile used as an inducer in the culture of the microorganism is not particularly critical, and may be an amount sufficient to give an amide-forming activity to the microorganism in the nitrile hydration reaction using the microorganism. The amount of the derivatized nitrile used in the culture of the bacterium during the amide-forming reaction of the nitrile using other existing bacteria is about the same. Of medium
pH is usually 5-9, preferably pH 6-8, temperature is usually 20-3
The culture is performed aerobically at 5 ° C, preferably 27 to 32 ° C for 2 to 5 days. In the present invention, "to convert a nitrile into a corresponding amide by subjecting it to a hydration reaction by the action of a microorganism" means that the microorganism is cultured in the presence of the nitrile to be hydrated, and the cell culture after the microorganism culture. When a substance, a microbial cell collected from the microbial cell or a treated product of the microbial cell, for example, a crushed product of the microbial cell, and the raw material nitrile are brought into contact with each other, both of them are included. It also includes the case where the cells are immobilized and used in the reaction. Collection of bacterial cells from the bacterial cell culture can be performed by a known method such as a centrifugation method,
The disruption of the cells can be performed mechanically with a homogenizer or the like, or can be performed using ultrasonic waves or the like.

本発明においては、上述のように、菌体培養物をそのま
ま用いることができる。もしくは、それから上述の方法
で分離した菌体及び菌体処理物を水又はリン酸バッファ
ー(たとえばpH7〜9)などの緩衝液に懸濁し、これに
原料ニトリルを共存させれば、速やかに水和反応が進行
しアミドが生成する。すなわち、通常、該微生物菌体又
は菌体処理物を、たとえば0.1〜5重量%、原料ニトリ
ルを、たとえば0.2〜10重量%含有する水性懸濁液を、
温度をたとえば0〜30℃、pHをたとえば5〜10の条件を
用いて、反応時間をたとえば、2分ないし8時間反応さ
せれば良い。また、反応に際して基質として用いる原料
ニトリルは、一般に生物毒性が強いので、反応系内の基
質濃度は反応を阻害しない程度の濃度、たとえば2重量
%以下、にコントロールしつつ、逐次添加することによ
り微生物の失活を抑制することができる。又、反応温度
を下げることも、微生物寿命を長くする上で有効であ
る。
In the present invention, as described above, the bacterial cell culture can be used as it is. Alternatively, if the bacterial cells and the treated bacterial cells separated by the above method are suspended in water or a buffer solution such as a phosphate buffer (for example, pH 7 to 9), and a raw material nitrile is allowed to coexist with the suspension, the hydrate is rapidly hydrated. The reaction proceeds and amide is produced. That is, usually, an aqueous suspension containing the microbial cells or a treated product of the microbial cells, for example, 0.1 to 5% by weight, and a raw material nitrile, for example, 0.2 to 10% by weight,
The reaction time may be, for example, 2 minutes to 8 hours under the conditions of temperature of 0 to 30 ° C. and pH of 5 to 10, for example. Further, since the raw material nitrile used as a substrate in the reaction is generally highly biotoxic, the concentration of the substrate in the reaction system is controlled to a level at which the reaction is not inhibited, for example, 2% by weight or less, and the microorganisms are added successively to the microorganism. Deactivation can be suppressed. Also, lowering the reaction temperature is effective in prolonging the life of microorganisms.

かくして、原料ニトリルは、副生物であるカルボン酸の
生成なしに、ほぼ100%のモル収率でアミドに転換する
ことができる。こうして得られたアミド生成物は、合目
的な公知の方法に従って精製し、アミド製品が得られ
る。すなわち、たとえば、反応液から、そのままもしく
は菌体をたとえば遠心分離、膜分離等によって除去後、
必要に応じて、活性炭、イオン交換樹脂などによる処理
によって着色物質、不純物等を除去したのち、膜分離、
減圧濃縮、晶出、遠心分離などにより、目的のアミド製
品を取得することができる。
Thus, the starting nitrile can be converted to the amide in almost 100% molar yield without the formation of by-product carboxylic acid. The amide product thus obtained is purified according to a purposeful known method to obtain an amide product. That is, for example, from the reaction solution as it is or after removing the bacterial cells by centrifugation, membrane separation, etc.,
If necessary, remove colored substances, impurities, etc. by treatment with activated carbon, ion exchange resin, etc., then perform membrane separation,
The desired amide product can be obtained by concentration under reduced pressure, crystallization, centrifugation and the like.

〔3−5発明の効果〕 本発明は、ニトリルの水和活性を有するロドコッカス属
に属する微生物を用いることにより、原料ニトリルから
対応するアミドを生成せしめるに際し、反応活性が極め
て高く、又、選択性がほぼ100%で副生物が極めて少な
い、工業的に優れたアミドの製造法を提供する。
[3-5 Effects of the Invention] The present invention uses a microorganism belonging to the genus Rhodococcus having hydration activity of nitrile, and thus has extremely high reaction activity when producing a corresponding amide from a raw material nitrile, and further has selectivity. It provides an industrially excellent method for producing an amide, which has almost 100% of the by-product and very little by-product.

一般には、反応温度を下げると微生物の寿命が長くなる
が反応速度が低下する。本発明の方法では、反応活性の
極めて高い微生物を用いるため、所定の反応速度を得る
場合、反応温度を下げることができ、結果として微生物
寿命を長く出来、アミドの製造コストを低げることが出
来る。
In general, lowering the reaction temperature extends the life of microorganisms but decreases the reaction rate. In the method of the present invention, since a microorganism having extremely high reaction activity is used, when a predetermined reaction rate is obtained, the reaction temperature can be lowered, and as a result, the microbial life can be lengthened and the amide production cost can be reduced. I can.

〔3−6実施例〕 次に、本発明を実施例により更に詳細に説明するが、本
発明の範囲は実施例に限定されるものではない。
[3-6 Examples] Next, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the Examples.

実施例1 (1) 培養 AK32を、下記の条件で培養した。Example 1 (1) Culture AK32 was cultured under the following conditions.

1)培地 トリプトン 1.7 重量% ソイペプトン 0.3 〃 グルコース 0.25 〃 イソブチロニトリル(インデューサー) 0.5 〃 食塩 0.5 〃 リン酸第二カリウム 0.25 〃 pH 7.3 2)培養条件 30℃/4日間 (2) メタクリロニトリルの水和反応 菌体は、得られた培養液から遠心分離により集菌し、生
理食塩水にて洗浄したものを反応に供した。すなわち、
乾燥菌体量として0.2重量%、メタクリロニトリル2.0重
量%、0.05Mリン酸バッファー液(pH7.0)97.8重量%の
反応液を調合し、30℃にて反応を開始した。反応開始5
分後に、反応液をガスクロマトグラフにより分析したと
ころ、2.5重量%のメタクリルアミドを含み、未反応の
メタクリロニトリル、メタクリル酸及びその他の副生物
は全く含まれず、反応はほぼ定量的に進行し完結してい
た。
1) Medium Tryptone 1.7 wt% Soypeptone 0.3 〃 Glucose 0.25 〃 Isobutyronitrile (inducer) 0.5 〃 Salt 0.5 〃 Dipotassium Phosphate 0.25 〃 pH 7.3 2) Culture conditions 30 ℃ / 4 days (2) Methacrylonitrile Hydration reaction of the bacterial cells was collected from the obtained culture solution by centrifugation, washed with physiological saline and used for the reaction. That is,
A reaction solution containing 0.2% by weight of dry cells, 2.0% by weight of methacrylonitrile and 97.8% by weight of 0.05M phosphate buffer solution (pH 7.0) was prepared, and the reaction was started at 30 ° C. Reaction start 5
After a minute, the reaction solution was analyzed by gas chromatography, and it contained 2.5% by weight of methacrylamide and no unreacted methacrylonitrile, methacrylic acid and other by-products, and the reaction proceeded almost quantitatively and was completed. Was.

比較例1 (1) 培養 コリネバクテリウムスペシース(Corynebacteriumsp.)
N−774株(微工研菌寄第4446号)を下記の条件で培養
した。
Comparative Example 1 (1) Culture Corynebacterium sp.
The N-774 strain (Microtechnology Research Institute No. 4446) was cultured under the following conditions.

1)培地 グルコース 1.0重量% ペプトン 0.5 〃 酵母エキス 0.3 〃 麦芽エキス 0.3 〃 pH 7.2 2)培養条件 28℃/3日間 (2) メタクリロニトリルの水和反応 得られた培養液から菌体を分離して水洗し、乾燥菌体3
部及び水97部の休止菌体分散液を調合し、撹拌下に水酸
化カリウムにてpH8.5にコントロールしつつメタクリロ
ニトリルを1時間当り3部の割合で連続的に滴下し30℃
で反応させた。4時間反応させた後、メタクリロニトリ
ルの滴下を止め、さらに30分撹拌を続け系内のメタクリ
ロニトリルを殆ど完全に反応させた。反応終了後、遠心
分離により菌体を除去し澄明液を得た。このもののメタ
クリルアミドを定量したところ13.0重量%の含有率であ
った。メタクリルアミドの収率は約95%であった。
1) Glucose 1.0% by weight Peptone 0.5 〃 Yeast extract 0.3 〃 Malt extract 0.3 〃 pH 7.2 2) Culture conditions 28 ℃ / 3 days (2) Hydration reaction of methacrylonitrile Isolate cells from the obtained culture solution. Wash with water and dry
Parts of water and 97 parts of water are mixed to prepare a suspension cell suspension, and methacrylonitrile is continuously added dropwise at a rate of 3 parts per hour while controlling the pH to 8.5 with potassium hydroxide under stirring at 30 ° C.
It was made to react with. After reacting for 4 hours, addition of methacrylonitrile was stopped, and stirring was continued for further 30 minutes to allow almost complete reaction of methacrylonitrile in the system. After completion of the reaction, cells were removed by centrifugation to obtain a clear liquid. When the methacrylamide of this product was quantified, the content was 13.0% by weight. The yield of methacrylamide was about 95%.

実施例2 (1) 培養 AK32を下記の条件で培養した。Example 2 (1) Culture AK32 was cultured under the following conditions.

1)培地 グルコース 1.0 重量% 肉エキス 1.0 〃 ペプトン 1.0 〃 イソブチロニトリル(インデューサー) 0.25 〃 食塩 0.1 〃 リン酸第一カリウム 0.1 〃 硫酸マグネシウム 0.05 〃 硫酸第一鉄 0.005 〃 硫酸マンガン 0.005 〃 硫酸アンモニウム 0.1 〃 硝酸カリウム 0.1 〃 pH 7.0 2)培養条件 30℃/3日間 (2) ニトリルの水和反応 菌体は、得られた培養液から実施例1と同様の方法で取
得した。
1) Glucose 1.0% by weight Meat extract 1.0 〃 Peptone 1.0 〃 Isobutyronitrile (inducer) 0.25 〃 Salt 0.1 〃 Potassium phosphate 0.1 〃 Magnesium sulfate 0.05 〃 Ferrous sulfate 0.005 〃 Manganese sulfate 0.005 〃 Ammonium sulfate 0.1 〃 Potassium nitrate 0.1 〃 pH 7.0 2) Culture conditions 30 ° C / 3 days (2) Hydration reaction of nitrile The cells were obtained from the obtained culture broth by the same method as in Example 1.

反応条件は下記の通りである。The reaction conditions are as follows.

乾燥菌体量 0.2重量% 基質のニトリル 2.0 〃 0.05Mリン酸バッファー(pH7.0) 97.8 〃 反応温度 10 ℃ 反応時間 5 分 得られた結果は次表に示す通りであった。Dry cell mass 0.2% by weight Substrate nitrile 2.0 〃 0.05M phosphate buffer (pH 7.0) 97.8 〃 Reaction temperature 10 ℃ Reaction time 5 minutes The results obtained are shown in the following table.

なお、分析は通常ガスクロマトグラフィーを用いたが、
沸点の高いサクシノニトリル、アジポニトリル、ベンゾ
ニトリル、テレフタロニトリル、ニコチノニトリルのア
ミド化生成物は液体クロマトグラフィーにより分析し
た。
The analysis was usually performed by gas chromatography,
The amidation products of succinonitrile, adiponitrile, benzonitrile, terephthalonitrile, and nicotinonitrile, which have high boiling points, were analyzed by liquid chromatography.

実施例3 (1) 培養 AK33を、実施例2と同様な条件で培養した。Example 3 (1) Culture AK33 was cultured under the same conditions as in Example 2.

(2) アクリロニトリルの水和反応 菌体は、得られた培養液から実施例1と同様の方法で取
得し、乾燥菌体重量として10gを0.05Mリン酸バッファー
(pH7.0)1に加え、休止菌体分散液を調製した。こ
の液に、アクリロニトリルを間欠的に添加してその水和
反応を行なった。すなわち、20分毎にアクリロニトリル
20gずつ添加し、2〜3℃で反応を行なった。反応混合
物中の未反応のアクリロニトリル及び生成したアクリル
アミドの濃度は、アクリロニトリル添加直前の反応混合
物をガスクロマトグラフィーで分析して定量した。反応
開始後ほぼ直線的に反応混合物中のアクリルアミドの量
が増加し、反応開始後5時間で、450g/−バッファー
のアクリルアミドが生産された。反応はまだ進行するよ
うであったが、この時点で反応速度がやや低下したので
反応を停止した。アクリルアミド収率はほぼ100%であ
り、副生物としてのアクリル酸は、添加したアクリロニ
トリルに対し0.1%程度にすぎなかった。
(2) Hydration reaction of acrylonitrile Bacterial cells were obtained from the obtained culture solution in the same manner as in Example 1, and 10 g of the dry cell weight was added to 0.05 M phosphate buffer (pH 7.0) 1, A suspension cell suspension was prepared. Acrylonitrile was intermittently added to this solution to carry out its hydration reaction. That is, acrylonitrile every 20 minutes
20 g each was added and the reaction was carried out at 2-3 ° C. The concentrations of unreacted acrylonitrile and acrylamide produced in the reaction mixture were determined by analyzing the reaction mixture immediately before the addition of acrylonitrile by gas chromatography. The amount of acrylamide in the reaction mixture increased almost linearly after the start of the reaction, and 450 g / -buffer of acrylamide was produced 5 hours after the start of the reaction. The reaction still seemed to proceed, but at this point the reaction rate slowed slightly and was stopped. The acrylamide yield was almost 100%, and acrylic acid as a by-product was only about 0.1% with respect to the added acrylonitrile.

比較例2 (1) 培養 シュウドモナス・クロロラフィス(Pseudomonas Chloro
raphis)B23株(微工研菌寄第187号)を下記の条件で培
養した。
Comparative Example 2 (1) Cultured Pseudomonas Chloro
The raphis) B23 strain (Microtechnology Research Institute No. 187) was cultured under the following conditions.

1)培地 デキストリン 0.5 重量% リン酸第二カリウム 0.2 〃 硫酸マグネシウム 0.02 〃 イソブチロニトリル(インデューサー) 0.2 〃 食塩 0.1 〃 pH 7.0 2)培養条件 28℃/3日間 (2) アクリロニトリルの水和反応 得られた培養液から菌体を分離して水洗し、乾燥菌体重
量として20g/の濃度となるようにリン酸バッファー
(pH7.0)に分散させてなる休止菌体分散液にアクリロ
ニトリルを間欠的に添加してその水和反応を行なった。
反応は0〜4℃で行ない、アクリロニトリル濃度が0.4M
となるようにアクリロニトリルを間欠的に添加した。反
応開始後ほぼ直線的に反応混合物中のアクリルアミドの
量が増加し、反応開始後7.5時間で400g/のアクリルア
ミドが生成された。反応はまだ十分に進行するようであ
ったが、この時点で反応液が粘稠となったので反応を停
止した。
1) Medium Dextrin 0.5 wt% Dibasic potassium phosphate 0.2〃 Magnesium sulfate 0.02〃 Isobutyronitrile (inducer) 0.2〃 Salt 0.1〃 pH 7.0 2) Culture conditions 28 ℃ / 3 days (2) Hydration reaction of acrylonitrile Cells were separated from the obtained culture broth, washed with water, and acrylonitrile was intermittently added to a resting cell suspension prepared by dispersing the cells in phosphate buffer (pH 7.0) to a concentration of 20 g / dry cell weight. Hydration reaction was carried out.
The reaction is carried out at 0-4 ° C and the concentration of acrylonitrile is 0.4M.
Acrylonitrile was added intermittently so that The amount of acrylamide in the reaction mixture increased almost linearly after the reaction started, and 400 g / acrylamide was produced 7.5 hours after the reaction started. The reaction still seemed to proceed sufficiently, but at this point the reaction became viscous and was stopped.

アクリルアミドの収率は約99%であり、副生物としての
アクリル酸は添加したアクリロニトリルの約0.7%であ
った。
The yield of acrylamide was about 99% and acrylic acid as a by-product was about 0.7% of the added acrylonitrile.

実施例4 (1) 培養 AK32を、実施例2と同様な条件で培養した。Example 4 (1) Culture AK32 was cultured under the same conditions as in Example 2.

(2) メタクリロニトリルの水和反応 菌体は、実施例3と同様の方法で取得し、乾燥菌体重量
として5gを、0.05Mリン酸バッファー(pH7.0)1に加
え、休止菌体分散液を調製した。この液に、メタクリロ
ニトリルを間欠的に添加してその水和反応を行なった。
すなわち1時間毎に、メタクリロニトリルを20gずつ添
加し、2〜3℃で反応を行なった。反応混合物中の未反
応のメタクリロニトリルの濃度は、メタクリロニトリル
添加直前の反応混合物をガスクロマトグラティーで分析
して定量した。反応開始後5時間経過したあたりからメ
タクリルアミドが結晶として析出し始めた。以後、未反
応メタクリロニトリルが若干残存し始めたので、メタク
リロニトリルの添加を2時間毎に20gずつと改め、25時
間反応を継続したところ、245gのメタクリルアミド結晶
が得られた。この反応液を4℃にて1600時間冷蔵保存し
ておいた後、メタクリロニトリル20gを添加し、2〜3
℃で反応を行なったところ、2時間後には未反応メタク
リロニトリルは全く検出されず、ほぼ100%収率でメタ
クリルアミドに転換していた。なお、副生物としてのメ
タクリル酸は添加したメタクリロニトリルの0.1%程度
にすぎなかった。
(2) Methacrylonitrile hydration reaction The bacterial cells were obtained in the same manner as in Example 3, and 5 g of the dry bacterial cell weight was added to 0.05 M phosphate buffer (pH 7.0) 1 to give resting bacterial cells. A dispersion was prepared. Methacrylonitrile was intermittently added to this solution to carry out its hydration reaction.
That is, every 1 hour, 20 g of methacrylonitrile was added and the reaction was carried out at 2-3 ° C. The concentration of unreacted methacrylonitrile in the reaction mixture was quantified by analyzing the reaction mixture immediately before the addition of methacrylonitrile by gas chromatography. Around 5 hours after the start of the reaction, methacrylamide began to precipitate as crystals. After that, some unreacted methacrylonitrile began to remain, so the addition of methacrylonitrile was changed to 20 g every 2 hours, and the reaction was continued for 25 hours. As a result, 245 g of methacrylamide crystals were obtained. After the reaction solution was refrigerated at 4 ° C for 1600 hours, 20 g of methacrylonitrile was added,
When the reaction was carried out at ° C, unreacted methacrylonitrile was not detected at all after 2 hours, and it was converted to methacrylamide at a yield of almost 100%. Methacrylic acid as a by-product was only about 0.1% of the added methacrylonitrile.

実施例5 (1) 培養 AK32を、実施例2と同様な条件で培養した。Example 5 (1) Culture AK32 was cultured under the same conditions as in Example 2.

(2) メタクリロニトリルの水和反応 菌体は、実施例3と同様の方法で取得した後、アルギン
酸カルシウムゲルを用い固定化菌体を調製した。固定化
菌体25g(乾燥菌体重量換算0.5g)を、0.5重量%塩化カ
ルシウム水溶液(pH7.0)75gに加えた休止固定化菌体分
散液に、メタクリロニトリルを間欠的に添加しその水和
反応を行なった。すなわち、1時間毎にメタクリロニト
リルを2gずつ添加し、2〜3℃で反応を行なった。反応
混合物中の未反応のメタクリロニトリルの濃度は、メタ
クリロニトリル添加直前の反応混合物をガスクロマトグ
ラフィーで分析して定量した。反応開始後5時間経過し
たあたりからメタクリルアミドが結晶として析出し始め
た。以後、未反応メタクリロニトリルが若干残存し始め
たので、メタクリロニトリルの添加を2時間毎に2gずつ
と改め、15時間反応を継続したところ、10.8gのメタク
リルアミド結晶が得られた。なお、副生物としてのメタ
クリル酸は添加したメタクリロニトリルの0.3%程度に
すぎなかった。
(2) Hydration reaction of methacrylonitrile After obtaining the cells by the same method as in Example 3, immobilized cells were prepared using calcium alginate gel. Methacrylonitrile was intermittently added to a suspension-immobilized bacterial cell dispersion prepared by adding 25 g of immobilized bacterial cells (0.5 g of dry bacterial cell weight conversion) to 75 g of 0.5 wt% calcium chloride aqueous solution (pH 7.0). A hydration reaction was performed. That is, 2 g of methacrylonitrile was added every hour and the reaction was carried out at 2-3 ° C. The concentration of unreacted methacrylonitrile in the reaction mixture was quantified by analyzing the reaction mixture immediately before the addition of methacrylonitrile by gas chromatography. Around 5 hours after the start of the reaction, methacrylamide began to precipitate as crystals. After that, some unreacted methacrylonitrile began to remain, so the addition of methacrylonitrile was changed to 2 g every 2 hours, and the reaction was continued for 15 hours. As a result, 10.8 g of methacrylamide crystals were obtained. Methacrylic acid as a by-product was only about 0.3% of the added methacrylonitrile.

参考例 (1) 培養 AK3132を、下記の条件で培養した。Reference Example (1) Culture The AK3132 was cultured under the following conditions.

1)培地 イソブチロニトリル(インデューサー) 0.5 重量% リン酸第一カリウム 0.1 〃 硫酸マグネシウム 0.05 〃 硫酸第一鉄 0.005 〃 硫酸マンガン 0.005 〃 硫酸アンモニウム 0.1 〃 硝酸カリウム 0.1 〃 pH 7.0 2)培養条件 30℃/5日間 (2)メタクリロニトリルの水和反応 菌体は、得られた培養液から実施例1と同様の方法で取
得し反応に供した。すなわち、乾燥菌体量として1.0重
量%、メタクリロニトリル1.0重量%、0.05Mリン酸バッ
ファー液(pH7.0)98.0重量%の反応液を調合し、30℃
にて反応を開始した。反応開始30分後に、反応液をガス
クロマトグラフィーにより分析したところ、0.1重量%
のメタアクリルアミドが生成していた以外には、未反応
メタクリロニトリルがほぼ定量的に残存していた。
1) Medium Isobutyronitrile (inducer) 0.5 wt% Potassium phosphate 0.1 〃 Magnesium sulfate 0.05 〃 Ferrous sulfate 0.005 〃 Manganese sulfate 0.005 〃 Ammonium sulfate 0.1 〃 Potassium nitrate 0.1 〃 pH 7.0 2) Culture conditions 30 ℃ / 5 days (2) Hydration reaction of methacrylonitrile The bacterial cells were obtained from the obtained culture solution in the same manner as in Example 1 and used for the reaction. That is, a reaction solution containing 1.0% by weight of dry cells, 1.0% by weight of methacrylonitrile, and 98.0% by weight of 0.05M phosphate buffer solution (pH 7.0) was prepared at 30 ° C.
The reaction started at. After 30 minutes from the start of the reaction, the reaction solution was analyzed by gas chromatography to find that it was 0.1% by weight.
The unreacted methacrylonitrile remained almost quantitatively except that methacrylamide was produced.

実施例6 実施例2に記載した培地200gを2本の500ml三角フラス
コの各々に入れAK33をロータリー振盪器を用いて30℃、
220rpmで24時間培養した。2本のフラスコのうち1本は
菌体濃度を測定する為24時間で培養を中断し濁度測定を
行なった。その結果1050ppmの菌体が増殖していること
がわかった。他のフラスコについてはメタクリロニトリ
ルを1時間に0.25gずつ添加しながらさらに上記に記載
した条件下で培養を続けた。培養開始から72時間で培養
を止め、フラスコ中の菌濃度とメタクリルアミドの濃度
測定を行なったところ菌体は5100ppmまで増殖してお
り、メタクリルアミドはフラスコ内に11.2g蓄積してい
ることがわかった。尚、メタクリルアミド量はガスクロ
マトグラフィーにより定量した。またこの時、培養液中
にメタクリル酸は検出されなかったがメタクリロニトリ
ルは500ppm残存していた。
Example 6 200 g of the medium described in Example 2 was placed in each of two 500 ml Erlenmeyer flasks and AK33 was placed on a rotary shaker at 30 ° C.
It was cultured at 220 rpm for 24 hours. In one of the two flasks, the culture was suspended for 24 hours to measure the bacterial cell concentration, and the turbidity was measured. As a result, it was found that 1050 ppm of bacterial cells were growing. In the other flasks, methacrylonitrile was added in an amount of 0.25 g per hour, and the culture was further continued under the conditions described above. The culturing was stopped 72 hours after the start of culturing, and the bacterial concentration in the flask and the concentration of methacrylamide were measured.As a result, it was found that the bacterial cells had grown to 5100 ppm, and 11.2 g of methacrylamide was accumulated in the flask. It was The amount of methacrylamide was quantified by gas chromatography. At this time, methacrylic acid was not detected in the culture solution, but methacrylonitrile remained at 500 ppm.

実施例7 (1) 培養 AK32を、実施例2と同様な条件で培養した。Example 7 (1) Culture AK32 was cultured under the same conditions as in Example 2.

(2) メタクリロニトリルの水和反応 菌体を含む培養液20gを磁気回転子を入れた50mlの三角
フラスコに摂取し、さらに4℃に設定したウォーターバ
スに入れ、マグネティックスターラーで撹拌しながら2
時間放置した。次にメタクリロニトリルを1時間に0.4g
ずつ添加していったところ添加開始から8時間を過ぎた
頃よりメタクリルアミドの結晶が析出し始めた。さらに
メタクリロニトリルの添加を継続したところ、18時間が
過ぎた時点でフラスコ内に析出した結晶の為回転子が回
らなくなったので実験を打ち切った。フラスコ内の全ス
ラリーを水で希釈し1000gとし、メタクリルアミドの結
晶を溶解させてからガスクロマトグラフィーでメタクリ
ルアミドの濃度を分析したところ0.91重量%であった。
またこの時、メタクリロニトリル及びメタクリル酸は検
出されなかった。
(2) Hydration reaction of methacrylonitrile 20 g of the culture solution containing the bacterial cells was ingested in a 50 ml Erlenmeyer flask containing a magnetic rotor, and further placed in a water bath set at 4 ° C. while stirring with a magnetic stirrer.
Left for hours. Then 0.4g of methacrylonitrile per hour
When added one by one, methacrylamide crystals began to precipitate from 8 hours after the start of addition. When the addition of methacrylonitrile was continued, the experiment was terminated because the rotor could not rotate due to the crystals precipitated in the flask after 18 hours. The total slurry in the flask was diluted with water to 1000 g, and after dissolving the methacrylamide crystals, the concentration of methacrylamide was analyzed by gas chromatography to find that it was 0.91% by weight.
At this time, methacrylonitrile and methacrylic acid were not detected.

実施例8 (1) 培養 AK32を、実施例2と同様な方法で培養した。Example 8 (1) Culture AK32 was cultured in the same manner as in Example 2.

(2) メタクリロニトリルの水和反応 得られた培養液から遠心分離により集菌し、塩化カリウ
ム水溶液(0.05M、pH7.0)で洗浄した後、再度遠心分離
操作を施した。こうして得られたAK32の休止菌体(含水
率80%)2gと0.05Mリン酸バッファー(pH8.0)15g及び
0.17〜1.18mmφのガラスビーズ40gをホモジナイザーに
仕込み、CO2を吹き込み0〜5℃に冷却しながら1.5分間
ホモジナイザー処理をして菌体細胞を破砕した。この破
砕物3gを取り出し破砕物98.0重量%、メタクリロニトリ
ル2.0重量%の反応液を調合し、実施例1と同様に30℃
にてメタクリロニトリルの水和反応を開始した。反応開
始5分後に反応液を分析したところ、2.5重量%のメタ
クリルアミドの生成が認められ、メタクリルアミドの収
率は約100%であった。
(2) Hydration reaction of methacrylonitrile The cells were collected from the obtained culture broth by centrifugation, washed with an aqueous potassium chloride solution (0.05 M, pH 7.0), and then centrifuged again. 2 g of resting AK32 cells (water content 80%) and 0.05 g phosphate buffer (pH 8.0) 15 g
40 g of glass beads having a diameter of 0.17 to 1.18 mm was charged into a homogenizer, and the cells were homogenized for 1.5 minutes while being blown with CO 2 and cooled to 0 to 5 ° C. to crush the microbial cells. 3 g of this crushed product was taken out, and a reaction solution containing 98.0% by weight of the crushed product and 2.0% by weight of methacrylonitrile was prepared, and the same as in Example 1
The hydration reaction of methacrylonitrile was started. When the reaction solution was analyzed 5 minutes after the start of the reaction, formation of 2.5% by weight of methacrylamide was observed, and the yield of methacrylamide was about 100%.

フロントページの続き (56)参考文献 特開 昭61−162193(JP,A)Continuation of the front page (56) References JP-A-61-162193 (JP, A)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】原料ニトリルを微生物の作用による水和反
応に付して対応するアミドに変換させ、生成するアミド
を反応混合物から分離するアミドの製造方法において、
該微生物としてロドコッカスsp.AK32菌株(Rhodococcus
sp.AK32)(微工研条寄第1046号)及びロドコッカスs
p.AK33菌株(Rhodococcus sp.AK33)(微工研条寄第104
7号)よりなる群から選ばれる菌株を用い且つ該菌株の
培養にプロピオニトリル、イソブチロニトリル及びメタ
クリロニトリルよりなる群から選ばれる誘導ニトリルを
用いることを特徴とするアミドの微生物学的製造方法。
1. A method for producing an amide, wherein a raw material nitrile is subjected to a hydration reaction by the action of a microorganism to be converted into a corresponding amide, and the resulting amide is separated from a reaction mixture.
As the microorganism, Rhodococcus sp. AK32 strain (Rhodococcus
sp.AK32) (Mikori Kenjoyori No. 1046) and Rhodococcus s
p.AK33 strain (Rhodococcus sp.AK33)
No. 7) using a strain selected from the group consisting of, and for culturing the strain, a derivatized nitrile selected from the group consisting of propionitrile, isobutyronitrile and methacrylonitrile. Production method.
【請求項2】該原料ニトリルが脂肪族飽和ニトリル、脂
肪族不飽和ニトリル、芳香族ニトリル及び複素環式ニト
リルから選ばれた一種であることを特徴とする特許請求
の範囲第(1)項に記載の方法。
2. The raw material nitrile is one selected from an aliphatic saturated nitrile, an aliphatic unsaturated nitrile, an aromatic nitrile and a heterocyclic nitrile, and in the claim (1), The method described.
【請求項3】該脂肪族飽和ニトリルがアセトニトリル、
プロピオニトリル、サクシノニトリル及びアジポニトリ
ルから選ばれた一種であることを特徴とする特許請求の
範囲第(2)項に記載の方法。
3. The aliphatic saturated nitrile is acetonitrile,
The method according to claim (2), wherein the method is one selected from propionitrile, succinonitrile, and adiponitrile.
【請求項4】該脂肪族不飽和ニトリルがアクリロニトリ
ル又はメタクリロニトリルであることを特徴とする特許
請求の範囲第(2)項に記載の方法。
4. The method according to claim 2, wherein the aliphatic unsaturated nitrile is acrylonitrile or methacrylonitrile.
【請求項5】該芳香族ニトリルがベンゾニトリル又はフ
タロジニトリルであることを特徴とする特許請求の範囲
第(2)項に記載の方法。
5. The method according to claim 2, wherein the aromatic nitrile is benzonitrile or phthalodinitrile.
【請求項6】該複素環式ニトリルがニコチノニトリルで
あることを特徴とする特許請求の範囲第(2)項に記載
の方法。
6. The method according to claim (2), wherein the heterocyclic nitrile is nicotinonitrile.
JP61127176A 1985-06-04 1986-06-03 Microbiological production of amides Expired - Fee Related JPH0740948B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-119761 1985-06-04
JP11976185 1985-06-04

Publications (2)

Publication Number Publication Date
JPS6291189A JPS6291189A (en) 1987-04-25
JPH0740948B2 true JPH0740948B2 (en) 1995-05-10

Family

ID=14769519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127176A Expired - Fee Related JPH0740948B2 (en) 1985-06-04 1986-06-03 Microbiological production of amides

Country Status (5)

Country Link
EP (1) EP0204555B1 (en)
JP (1) JPH0740948B2 (en)
KR (1) KR870001811B1 (en)
AT (1) ATE76432T1 (en)
DE (1) DE3685371D1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162193A (en) * 1985-01-08 1986-07-22 Nitto Chem Ind Co Ltd Production of amide with bacterium
US5179014A (en) * 1985-01-08 1993-01-12 Nitto Chemical Industry Co., Ltd. Process for the preparation of amides using microorganisms
MX169933B (en) * 1987-09-18 1993-08-02 Hideaki Yamada PROCEDURE FOR THE BIOLOGICAL PRODUCTION OF AMIDES
JP2840253B2 (en) * 1988-07-06 1998-12-24 輝彦 別府 Genetic DNA encoding a polypeptide having nitrile hydratase activity, and method for producing amides from nitriles using transformants containing the same
EP0486289B1 (en) * 1990-11-14 1997-07-09 Nitto Chemical Industry Co., Ltd. Biological process for producing alpha-hydroxyamide or alpha-hydroxy acid
RU2053300C1 (en) * 1993-12-17 1996-01-27 Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Strain of bacterium rhodococcus rhodochrous - a producer of nitrile hydratase
JP3235934B2 (en) 1994-08-04 2001-12-04 三菱レイヨン株式会社 Kanamycin resistance gene from Rhodococcus bacteria
DE10042835A1 (en) * 2000-08-30 2002-03-14 Basf Ag Process for the enzymatic conversion of compounds with at least one nitrile function and / or at least one amide function
RU2288270C2 (en) 2000-12-20 2006-11-27 Диа-Нитрикс Ко., Лтд. Method for producing amide compound using bacterial catalyst
JP4493011B2 (en) * 2004-06-11 2010-06-30 三菱レイヨン株式会社 Trimethoprim-resistant dihydrofolate reductase and its gene from Rhodococcus spp.
BR112013029510B1 (en) 2011-05-19 2020-03-03 Mitsubishi Chemical Corporation METHOD FOR PRODUCING A WATER ACRYLAMIDE SOLUTION
BR112013029504B1 (en) 2011-05-19 2020-10-06 Mitsubishi Chemical Corporation METHOD FOR PRODUCING A WATER ACRYLAMIDE SOLUTION

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2294999A1 (en) * 1974-12-18 1976-07-16 Anvar PROCESS FOR THE PREPARATION OF AMIDES BY BIOLOGICAL HYDROLYSIS
GB2018240B (en) * 1978-03-29 1982-12-22 Nitto Chemical Industry Co Ltd Process for producing acrylamide or methacrylamide utilizing microoganisms
US4629700A (en) * 1983-11-30 1986-12-16 Standard Oil Company (Indiana) Selective conversion of cyano compounds to amides and carboxylic acids
CN85107055A (en) * 1984-10-01 1986-06-10 诺沃工业联合股票公司 Emzymatic process
JPS61162193A (en) * 1985-01-08 1986-07-22 Nitto Chem Ind Co Ltd Production of amide with bacterium
JPS62107792A (en) * 1985-11-06 1987-05-19 Res Assoc Util Of Light Oil Production of methacrylamide crystal by microorganism

Also Published As

Publication number Publication date
KR870001811B1 (en) 1987-10-13
KR870000430A (en) 1987-02-18
DE3685371D1 (en) 1992-06-25
EP0204555B1 (en) 1992-05-20
JPS6291189A (en) 1987-04-25
EP0204555A2 (en) 1986-12-10
ATE76432T1 (en) 1992-06-15
EP0204555A3 (en) 1988-03-02

Similar Documents

Publication Publication Date Title
EP0188316B1 (en) Process for the preparation of amides using microorganisms
US6043061A (en) Process for producing amide compound
JPS6221519B2 (en)
JPS5937951B2 (en) Biological production of amides
US5179014A (en) Process for the preparation of amides using microorganisms
JPH06284899A (en) Production of optically active alpha-hydoxy-carboxylic acid having phenyl group
JPH0740948B2 (en) Microbiological production of amides
US5200331A (en) Method of producing an amide utilizing a microorganism
JP3409353B2 (en) Method for producing amide compound and microorganism used
US5206158A (en) Process for the preparation of difluorobenzamide
JP3154646B2 (en) Microbial production of glycolic acid
JP2696424B2 (en) Method for producing R (-)-mandelic acid
JPH0440898A (en) Biological production of alpha-hydroxy-4-methylthiobutyric acid
JPH0440899A (en) Biological production of alpha-hydroxy-4-methylthiobutyramide
JP3081649B2 (en) Process for producing S-(+)-mandelamide and its derivatives
JPS632596B2 (en)
GB2076820A (en) Process for producing acrylamide or methacrylamide utilizing micro-organisms
EP0252564B1 (en) Process for the preparation of difluorobenzamide
JPS58201992A (en) Preparation of beta-substituted propionic acid or amide thereof by microorganism
JPH04197189A (en) Biological production of amide
JPS592693A (en) Biological method for preparing amide
RU2223316C2 (en) Strain of bacterium rhodococcus ruber as producer of nitrile hydratase
JPH01132392A (en) Microbiological production of monocarboxylic acid
JP3090761B2 (en) Production method of optically active lactic acid
JPH057000B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees