JPH0740619B2 - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH0740619B2 JPH0740619B2 JP60228002A JP22800285A JPH0740619B2 JP H0740619 B2 JPH0740619 B2 JP H0740619B2 JP 60228002 A JP60228002 A JP 60228002A JP 22800285 A JP22800285 A JP 22800285A JP H0740619 B2 JPH0740619 B2 JP H0740619B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- semiconductor laser
- quantum well
- laser device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18305—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18322—Position of the structure
- H01S5/1833—Position of the structure with more than one structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2059—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
- H01S5/2072—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by vacancy induced diffusion
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、製作が容易で良好な特性を有する面発光型の
半導体レーザ装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface emitting semiconductor laser device which is easy to manufacture and has good characteristics.
従来の技術 面発光型半導体レーザ装置はモノリシックな2次元アレ
イ化や積層による集積化が可能であり、光情報処理や光
エレクトロニクスの分野で新しい応用が期待されてい
る。2. Description of the Related Art Surface-emitting type semiconductor laser devices can be monolithically formed into a two-dimensional array or integrated by stacking, and new applications are expected in the fields of optical information processing and optical electronics.
従来、この種の半導体レーザ装置の一例として第4図に
示す構造が提案されている(第32回応用物理学関係連合
講演会予稿31a−ZB−2)。第4図において、1は電
極、2はN型InP基板、3はN型InGaAsP層、4はN型In
P層、5はP型InP層、6はP型InGaAsP層、7は電極、
8はノンドープInGaAsP活性層、9はSiO2絶縁膜、10お
よび11は薄い金属の反射膜、12はポリイミド樹脂、13お
よび13′はレーザ出射光である。電極7および8間に電
流を流すとp型InP層5から正孔がN型InP層4層から電
子がInGaAsP活性層6に注入して発光する。この光は反
射膜10および11間で反射してレーザ発振を起こす。Conventionally, a structure shown in FIG. 4 has been proposed as an example of this type of semiconductor laser device (Proceedings of the 32nd Joint Lecture on Applied Physics 31a-ZB-2). In FIG. 4, 1 is an electrode, 2 is an N-type InP substrate, 3 is an N-type InGaAsP layer, and 4 is an N-type InP substrate.
P layer, 5 is P type InP layer, 6 is P type InGaAsP layer, 7 is an electrode,
Reference numeral 8 is a non-doped InGaAsP active layer, 9 is a SiO 2 insulating film, 10 and 11 are thin metal reflective films, 12 is a polyimide resin, and 13 and 13 'are laser emission lights. When a current is applied between the electrodes 7 and 8, holes are injected from the p-type InP layer 5 and electrons are injected into the InGaAsP active layer 6 from the N-type InP layer 4 layer to emit light. This light is reflected between the reflection films 10 and 11 to cause laser oscillation.
発明が解決しようとする問題点 前述した従来のレーザ装置の構造では電流がInGaAsP活
性層8の一部に有効に注入するようにメサ状に加工した
後、絶縁性のポリイミド樹脂で埋込んで表面を平坦化し
ているので、製作上複雑な工程を要し素子の歩留まりを
上げることは困難である。またInGaAsP活性層8を、エ
ッチングにより外部に露出するため、表面に非発光再結
合中心を作ってしまう問題もある。また発光領域を小さ
くしようとするとメサ部の電極コンタクト面積が小さく
なり接触抵抗が高くなってしまう問題もある。またポリ
イミド樹脂の熱伝導率が小さいために素子の放熱効果を
妨げ、連続発振動作が難しいという問題点もあった。Problems to be Solved by the Invention In the structure of the conventional laser device described above, a current is effectively injected into a part of the InGaAsP active layer 8 after being processed into a mesa shape, and then embedded with an insulating polyimide resin to form a surface. Since it is flattened, it is difficult to increase the yield of the device by requiring a complicated process in manufacturing. Further, since the InGaAsP active layer 8 is exposed to the outside by etching, there is a problem that non-radiative recombination centers are formed on the surface. Further, if the light emitting region is made small, there is a problem that the electrode contact area of the mesa portion becomes small and the contact resistance becomes high. Further, since the polyimide resin has a low thermal conductivity, the heat dissipation effect of the device is hindered, and continuous oscillation operation is difficult.
本発明はかかる点に鑑みてなされたもので製作が容易で
良好な特性を有する半導体レーザ装置を提供するもので
ある。The present invention has been made in view of the above points, and provides a semiconductor laser device which is easy to manufacture and has good characteristics.
問題点を解決するための手段 本発明は、化合物半導体基板上に、キャリアのド・ブロ
イ波長以下の極微薄膜からなる第1の導電型の多重量子
井戸構造活性領域と第2の導電型のクラッド層を設け、
前記クラッド層の表面側よりレーザ発光部を除く周辺部
に第2の導電型の不純物を高濃度拡散して下部の前記多
重量子井戸構造を無秩序化することにより、プレーナ構
造で電流が活性領域に有効に注入するようにして前述し
た問題点を解決している。Means for Solving the Problems The present invention relates to a first conductive type multi-quantum well active region and a second conductive type clad, which are made of an ultrathin film having a carrier de Broglie wavelength or less on a compound semiconductor substrate. Layers,
A second conductive type impurity is diffused in high concentration from the surface side of the clad layer to the peripheral part except the laser emitting part to disorder the multi-quantum well structure in the lower part, so that a current flows in the active region in the planar structure. The above-mentioned problems are solved by injecting effectively.
また化合物半導体基板中に2種類の組成の異なる結晶層
をそれぞれ層内レーザ光波長の1/2倍もしくは1倍の厚
み程度ずつ交互に積層することにより、基板裏面の反射
部を不要にしかつ波長選択性を持たせている。Further, by alternately laminating two crystal layers having different compositions in the compound semiconductor substrate, each having a thickness of about 1/2 times or 1 times the wavelength of the laser light in the layer, the reflection portion on the back surface of the substrate is unnecessary and the wavelength is reduced. It has selectivity.
作用 本発明は上述した構成により、多重量子井戸構造が高濃
度不純物拡散で無秩序化し等価的な吸収端が短波長側に
移る効果を用い、プレーナ構造において所定の活性領域
のみへのキャリア注入を可能にしている。また2種類の
組成の異なる結晶層を交互に積層して屈折率変調型の回
折格子を形成し分布反射器とすることで、完全プレーナ
構造にすることが可能になる。Action The present invention has the above-described structure, and by utilizing the effect that the multiple quantum well structure is disordered by high-concentration impurity diffusion and the equivalent absorption edge shifts to the short wavelength side, it is possible to inject carriers into only a predetermined active region in the planar structure. I have to. Further, by completely laminating two types of crystal layers having different compositions to form a refractive index modulation type diffraction grating to form a distributed reflector, a complete planar structure can be obtained.
実施例 第1図は本発明の一実施例の断面構造図である。以下の
図面において前述の第4図における同一の箇所には同一
の番号を付し説明を省略する。第1図において、101は
多重量子井戸(MQW:Multi−Quantum Well)構造活性
層、102は高濃度P型不純物拡散領域、103は無秩序化し
たMQW層である。多重量子井戸構造活性層101の拡大図を
第2図に示す。第2図において、104はN型InPバリヤ
層、105はN型InGaAsPウエル層であり、2種類の層が交
互に周期的に積層して多重量子井戸構造を形成してい
る。Embodiment FIG. 1 is a sectional structural view of an embodiment of the present invention. In the following drawings, the same parts in FIG. In FIG. 1, 101 is an active layer having a multi-quantum well (MQW) structure, 102 is a high-concentration P-type impurity diffusion region, and 103 is a disordered MQW layer. An enlarged view of the multiple quantum well structure active layer 101 is shown in FIG. In FIG. 2, 104 is an N-type InP barrier layer and 105 is an N-type InGaAsP well layer, and two types of layers are alternately and periodically laminated to form a multiple quantum well structure.
素子作製手順は、まず従来法の結晶成長技術である液相
エピタキシャル法(LPE法)により、N型InP基板2上に
N型InGaAsP層3(〜0.5μm厚)、N型InP層4(〜5
μm厚)、ノンドープN型InPバリヤ層(〜300Å厚)と
ノンドープN型InGaAsPウエル層(〜150Å厚)の各10層
の周期構造からなる多重量子井戸構造活性層101、P型I
nP層5(〜2μm厚)、P型InGaAsP層6(〜0.5μm
厚)を続けて結晶成長する。次にP型InGaAsP層6上
に、従来法のプラズマCVD法によるシリコン窒化膜(〜
0.1μm厚)とCVD法によるシリコン酸化膜(〜0.2μm
厚)を堆積する。The element manufacturing procedure is as follows. First, the liquid crystal epitaxial method (LPE method), which is a conventional crystal growth technique, is used to form the N-type InGaAsP layer 3 (up to 0.5 μm thick) and the N-type InP layer 4 (up to 0.5 μm) on the N-type InP substrate 2. 5
μm thick), a non-doped N-type InP barrier layer (up to 300 Å thickness) and a non-doped N-type InGaAsP well layer (up to 150 Å thickness), each of which has a periodic structure of 10 layers, and the multiple quantum well structure active layer 101, P-type I
nP layer 5 (up to 2 μm thick), P-type InGaAsP layer 6 (up to 0.5 μm)
(Thickness) is continued to grow crystals. Next, on the P-type InGaAsP layer 6, a silicon nitride film (~
0.1 μm thick) and silicon oxide film by CVD method (up to 0.2 μm)
Thickness).
次に通常のフォトリソグラフィ技術とエッチング技術に
より例えば半径10μmの円形形状のレーザ発光部を除く
周辺部のシリコン窒化膜とシリコン酸化膜を除去し、然
る後ZnP2とZnAs2を拡散源として気相によるZnの熱拡散
(600℃、30min)を行ない高濃度P型不純物拡散領域10
2を形成する。この時に不純物を拡散した。MQW層101は
無秩序化したMQW層103となり、組成が均一化される効果
で禁止帯幅がMQW層101の最低量子間準位エネルギーより
も充分に大きくなるためレーザ発振する光の波長に対し
て透明となる。次にZnを熱拡散した領域にP型のオーミ
ック電極(An/Zn)を蒸着する。次にN型InP基板の裏面
側にN型のオーミック電極(Au/Sn)を蒸着し続いてシ
ンター処理(400℃,10min)を行なう。レーザ発光部の
裏面にパターニングを行ない塩酸系のエッチング液で孔
を開ける。塩酸系のエッチング液はInPに対してはエッ
チング速度は早いが、InGaAsP層3に対しては遅いのでI
nPのみのエッチングが容易に可能である。次に表面と裏
面にAnの薄膜(〜400Å)を蒸着し反射膜10,11とする。Next, the peripheral silicon nitride film and silicon oxide film except for the circular laser emitting part with a radius of 10 μm are removed by ordinary photolithography and etching techniques, and then ZnP 2 and ZnAs 2 are used as diffusion sources. High-concentration P-type impurity diffusion region 10 for thermal diffusion of Zn (600 ℃, 30min) by phase
Form 2. At this time, impurities were diffused. The MQW layer 101 becomes a disordered MQW layer 103, and the band gap is sufficiently larger than the lowest quantum level energy of the MQW layer 101 due to the effect of homogenizing the composition. It becomes transparent. Next, a P-type ohmic electrode (An / Zn) is vapor-deposited on the region where Zn is thermally diffused. Next, an N-type ohmic electrode (Au / Sn) is vapor-deposited on the back surface side of the N-type InP substrate, followed by sintering treatment (400 ° C., 10 min). Patterning is performed on the back surface of the laser emitting portion, and holes are opened with a hydrochloric acid-based etching solution. Since the etching rate of hydrochloric acid-based etchant is high for InP, but slow for InGaAsP layer 3,
Only nP can be easily etched. Next, a thin film of An (up to 400 Å) is vapor-deposited on the front and back surfaces to form the reflective films 10 and 11.
素子の動作原理は、電極7から電極1に電流を流すこと
により、p−InP層5および高濃度P型不純物拡散領域1
02からは正孔が、N−InP層4からは電子がそれぞれMQW
層101に注入されて再結合し発光する。この光は反射膜1
0,11間で共振してレーザ発振しレーザ出振光13,13′と
して外部に出力する。The operating principle of the device is that a current is passed from the electrode 7 to the electrode 1 so that the p-InP layer 5 and the high-concentration P-type impurity diffusion region 1 are formed.
Holes from 02 and electrons from the N-InP layer 4 are MQW, respectively.
It is injected into the layer 101 and recombines to emit light. This light is reflected film 1
It resonates between 0 and 11 and oscillates to generate laser oscillation light 13 and 13 'to the outside.
この構造では基板の表面側に複雑なエッチングを行なう
必要が無いため、歩留まりが向上するし、活性層が露出
しないため表面再結合も減らすことができる。またP型
電極のコンタクト面積を高濃度P型不純物拡散領域102
上に広く取れるためにコンタクト抵抗を低下することが
できる。また放熱特性が実施例に比較して良好であるの
で、室温における連続動作のレーザ発振を得ることがで
きる。In this structure, since it is not necessary to perform complicated etching on the surface side of the substrate, the yield is improved, and surface recombination can be reduced because the active layer is not exposed. Further, the contact area of the P-type electrode is set to the high-concentration P-type impurity diffusion region 102.
The contact resistance can be reduced because it can be widely formed. Further, since the heat dissipation characteristic is better than that of the embodiment, continuous operation laser oscillation at room temperature can be obtained.
次に本発明の第2の実施例を第2図に示す断面構造を用
いて示す。第2図において106は、InP低屈折率層107お
よびInGaAsP高屈折率層108の周期構造からなる分布反射
領域である。InP低屈折率層107とInGaAsP高屈折率層108
では屈折率が異なるので屈折率変調型の回折格子として
作用する。それぞれの層の厚みdは、レーザ光の波長λ
とこの波長に対する屈折率nとにより次のように表わす
ことができる。Next, a second embodiment of the present invention will be described using the sectional structure shown in FIG. In FIG. 2, reference numeral 106 denotes a distributed reflection region having a periodic structure of the InP low refractive index layer 107 and the InGaAsP high refractive index layer 108. InP low refractive index layer 107 and InGaAsP high refractive index layer 108
Since they have different refractive indexes, they act as a refractive index modulation type diffraction grating. The thickness d of each layer is the wavelength λ of the laser light.
And the refractive index n for this wavelength can be expressed as follows.
周期構造の数は多い程良いが適当に選べば良く20周期程
度でも効果が得られる。 The larger the number of periodic structures, the better, but it can be selected appropriately and an effect can be obtained even with about 20 periods.
この構造において、MQW層の発光は前実施例と同様であ
り、レーザ発振は反射膜10と分布反射領域106の間で光
が反射して起こる。この時、光の波長は分布反射領域の
反射率の波長依存性の影響により、単一波長のみで発振
する。この構造では完全にプレーナ化されているので高
い歩留まりをあげることができ、低しきい値電流を動作
する均一な特性の半導体レーザを得ることができる。In this structure, the light emission of the MQW layer is the same as that in the previous embodiment, and the laser oscillation occurs when light is reflected between the reflective film 10 and the distributed Bragg reflector region 106. At this time, the wavelength of light oscillates at only a single wavelength due to the influence of the wavelength dependence of the reflectance of the distributed Bragg reflector region. Since this structure is completely planarized, it is possible to increase the yield and obtain a semiconductor laser that operates at a low threshold current and has uniform characteristics.
なお本発明における1構成要素としての化合物半導体基
板とは、多重量子井戸構造活性層より下の部分を称して
おり結晶成長する前の基板とは異なる。Note that the compound semiconductor substrate as one component in the present invention refers to a portion below the multiple quantum well structure active layer and is different from the substrate before crystal growth.
以上の2つの実施例においては、InPおよびInGaAsPの結
晶を用いた赤外に発振波長を有する素子について述べた
が、GaAsおよびGaAlAs系結晶のみならず他の化合物半導
体結晶材料を用いても本発明に対して同等の効果を得る
ことができる。また素子構造において反射膜10,11をAn
の薄膜により形成したが、反射膜は無くても良くその厚
みは選択することができる。また本発明の実施例ではN
型の基板を用いた例を示したがP型あるいは半絶縁性の
基板を用いても同様の効果が得られることは言うまでも
ない。In the above two embodiments, the element having the oscillation wavelength in the infrared using the InP and InGaAsP crystals has been described, but the present invention can be applied not only to the GaAs and GaAlAs type crystals but also to other compound semiconductor crystal materials. The same effect can be obtained with respect to. In the element structure, the reflection films 10 and 11 are
However, the thickness can be selected without the reflective film. In the embodiment of the present invention, N
Although the example using the type substrate is shown, it goes without saying that the same effect can be obtained by using the P type or semi-insulating substrate.
発明の効果 本発明によれば半導体レーザ装置を高い歩留まりで、低
しきい値電流かつ高効率等の良好な特性を得ることがで
き産業上大きな意義がある。また、この半導体レーザ装
置はモノリシックな2次元アレイ化が簡単であり、光情
報処理や光エレクトロニクスの分野での新しい応用に向
けて大きく貢献するものである。EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain good characteristics such as a semiconductor laser device with a high yield and low threshold current and high efficiency, which is of great significance in industry. Further, this semiconductor laser device can be easily formed into a monolithic two-dimensional array, which greatly contributes to new applications in the fields of optical information processing and optical electronics.
第1図は本発明の一実施例における面発光型の半導体レ
ーザ装置の断面図、第2図は同装置の主要部の拡大断面
図、第3図は本発明の他の実施例の面発光型の半導体レ
ーザ装置の断面図、第4図は従来の面発光型の半導体レ
ーザ装置の断面図である。 101……多重量子井戸構造活性層(MQW層)、102……高
濃度P型不純物拡散領域、103……無秩序化した多重量
子井戸構造活性層、104……バリヤ層、105……ウエル
層、106……分布反射領域、107……低屈折率層、108…
…高屈折率層。1 is a sectional view of a surface emitting semiconductor laser device according to an embodiment of the present invention, FIG. 2 is an enlarged sectional view of a main part of the device, and FIG. 3 is a surface emitting device of another embodiment of the present invention. Type semiconductor laser device, and FIG. 4 is a sectional view of a conventional surface-emitting type semiconductor laser device. 101 ... Multiple quantum well structure active layer (MQW layer), 102 ... High-concentration P-type impurity diffusion region, 103 ... Disordered multiple quantum well structure active layer, 104 ... Barrier layer, 105 ... Well layer, 106 ... Distributed reflection region, 107 ... Low refractive index layer, 108 ...
… High refractive index layer.
Claims (1)
異なる結晶層をそれぞれ層内レーザ波長の1/2倍もしく
は1倍の厚み程度ずつ交互に積層した第1の導電型から
なる多重量子井戸構造と、 第2の導電型のクラッド層を設け、 前記クラッド層の平坦な表面側よりレーザ発光部を除く
周辺部に第2の導電型の不純物を高濃度拡散して下部の
前記多重量子井戸構造を無秩序化してなる面発光型の半
導体レーザ装置。1. A crystal semiconductor layer having a thickness equal to or less than a de Broglie wavelength of a carrier is formed on a substantially flat substrate of a compound semiconductor, and each of the crystal layers has a thickness about 1/2 or 1 times the laser wavelength in the layer. A multi-quantum well structure of the first conductivity type and a cladding layer of the second conductivity type, which are alternately laminated each other, are provided, and the second conductivity type is provided in the peripheral portion except the laser emitting portion from the flat surface side of the clad layer. Surface-emitting type semiconductor laser device in which the multi-quantum well structure below is disordered by diffusing high-concentration impurities of high type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60228002A JPH0740619B2 (en) | 1985-10-14 | 1985-10-14 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60228002A JPH0740619B2 (en) | 1985-10-14 | 1985-10-14 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6286883A JPS6286883A (en) | 1987-04-21 |
JPH0740619B2 true JPH0740619B2 (en) | 1995-05-01 |
Family
ID=16869636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60228002A Expired - Fee Related JPH0740619B2 (en) | 1985-10-14 | 1985-10-14 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0740619B2 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6351686A (en) * | 1986-08-21 | 1988-03-04 | Mitsubishi Electric Corp | Semiconductor laser device |
JPS6376390A (en) * | 1986-09-18 | 1988-04-06 | Nec Corp | Light emitting semiconductor element |
JPH01108789A (en) * | 1987-10-21 | 1989-04-26 | Sharp Corp | Surface emission semiconductor laser element |
US4943970A (en) * | 1988-10-24 | 1990-07-24 | General Dynamics Corporation, Electronics Division | Surface emitting laser |
JP2716774B2 (en) * | 1989-01-27 | 1998-02-18 | 沖電気工業株式会社 | Surface-emitting type semiconductor laser device |
JPH0828554B2 (en) * | 1989-10-20 | 1996-03-21 | 三菱電機株式会社 | Semiconductor laser and manufacturing method thereof |
US4999843A (en) * | 1990-01-09 | 1991-03-12 | At&T Bell Laboratories | Vertical semiconductor laser with lateral electrode contact |
US5012486A (en) * | 1990-04-06 | 1991-04-30 | At&T Bell Laboratories | Vertical cavity semiconductor laser with lattice-mismatched mirror stack |
US5115442A (en) * | 1990-04-13 | 1992-05-19 | At&T Bell Laboratories | Top-emitting surface emitting laser structures |
JP2880788B2 (en) * | 1990-11-15 | 1999-04-12 | 日本電気株式会社 | Surface emitting semiconductor laser and method of manufacturing the same |
JPH04199589A (en) * | 1990-11-28 | 1992-07-20 | Mitsubishi Electric Corp | Visible light plane emission laser device |
FR2671238B1 (en) * | 1990-12-28 | 1993-03-12 | Thomson Csf | METHOD FOR PRODUCING SURFACE EMITTING SEMICONDUCTOR LASERS, AND LASERS OBTAINED BY THE PROCESS. |
US5226053A (en) * | 1991-12-27 | 1993-07-06 | At&T Bell Laboratories | Light emitting diode |
US5244749A (en) * | 1992-08-03 | 1993-09-14 | At&T Bell Laboratories | Article comprising an epitaxial multilayer mirror |
US6064683A (en) * | 1997-12-12 | 2000-05-16 | Honeywell Inc. | Bandgap isolated light emitter |
JP2005026465A (en) * | 2003-07-02 | 2005-01-27 | Sharp Corp | Oxide semiconductor light emitting element |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6179280A (en) * | 1984-09-27 | 1986-04-22 | Agency Of Ind Science & Technol | Surface light-emitting type semiconductor laser device and manufacture thereof |
-
1985
- 1985-10-14 JP JP60228002A patent/JPH0740619B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS6286883A (en) | 1987-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5295150A (en) | Distributed feedback-channeled substrate planar semiconductor laser | |
JP2534444B2 (en) | Integrated short cavity laser | |
JPH0740619B2 (en) | Semiconductor laser device | |
JP2863773B2 (en) | Surface-emitting type semiconductor laser device | |
US5404370A (en) | Planar light emitting device having a reduced optical loss | |
JPH07107949B2 (en) | Phased array semiconductor laser | |
JPS62189785A (en) | Semiconductor device with distributed bragg reflector | |
US4416012A (en) | W-Guide buried heterostructure laser | |
JP3107660B2 (en) | Semiconductor light emitting device | |
JPH0156547B2 (en) | ||
JPH11186653A (en) | Semiconductor laser device and manufacture thereof | |
JPH0437598B2 (en) | ||
JPS62137893A (en) | Semiconductor laser | |
JPH10209565A (en) | Lateral current-injection type surface light-emitting semiconductor laser device, its manufacture, and semiconductor laser array | |
JPH084180B2 (en) | Semiconductor laser device and method of manufacturing the same | |
KR940010167B1 (en) | Manufacturing method of surface emitting laser diode | |
JPH04209583A (en) | Cycle gain type semiconductor laser element | |
JPS5834988A (en) | Manufacture of semiconductor laser | |
JP2769408B2 (en) | Super luminescent diode | |
JPH0114716B2 (en) | ||
JPH0277174A (en) | End face radiation type light emitting diode | |
JPS596588A (en) | Semiconductor laser | |
JPS6148277B2 (en) | ||
JPH03174793A (en) | Semiconductor laser | |
JPH0632335B2 (en) | Method for manufacturing semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |