JPH0739834B2 - Scroll compressor - Google Patents
Scroll compressorInfo
- Publication number
- JPH0739834B2 JPH0739834B2 JP63118759A JP11875988A JPH0739834B2 JP H0739834 B2 JPH0739834 B2 JP H0739834B2 JP 63118759 A JP63118759 A JP 63118759A JP 11875988 A JP11875988 A JP 11875988A JP H0739834 B2 JPH0739834 B2 JP H0739834B2
- Authority
- JP
- Japan
- Prior art keywords
- scroll
- groove
- compression chamber
- spiral
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/005—Axial sealings for working fluid
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、空調用,冷凍用等に用いられるスクロール
冷媒圧縮機のシールに関するものである。TECHNICAL FIELD The present invention relates to a seal for a scroll refrigerant compressor used for air conditioning, refrigeration, and the like.
スクロール流体機械は、その原理が従来より周知であ
り、例えば圧縮機,ポンプあるいは膨張機等の種々様々
なものに応用が考えられている。その基本的な構成要素
は第6図に示すように構成されている。これを同図に基
づいて説明すると、同図において、符号(1)は固定ス
クロール、(2)は揺動スクロール、(1a)は吐出口、
Pは圧縮室、Oは固定スクロール(1)上の定点、O′
は揺動スクロール(2)上の定点である。このうち固定
スクロール(1)および揺動スクロール(2)には、後
述する台板上にB点各部で各軸線方向側面を接触させて
互いに組み合わされた同一形状の渦巻側板(101),(2
01)が一体に巻き方向反対にして設けられている。これ
ら渦巻側板(101),(201)の形状は周知のインボリュ
ート曲線等で形成されている。The principle of scroll fluid machines has been well known in the past, and it is considered to be applied to various things such as compressors, pumps, expanders and the like. Its basic components are configured as shown in FIG. This will be described with reference to the figure. In the figure, reference numeral (1) is a fixed scroll, (2) is an orbiting scroll, (1a) is a discharge port,
P is a compression chamber, O is a fixed point on the fixed scroll (1), O '
Is a fixed point on the orbiting scroll (2). Among them, the fixed scroll (1) and the orbiting scroll (2) have the same shape spiral side plates (101), (2) which are combined with each other by contacting side faces in the axial direction at points B on a base plate described later.
01) are integrally provided in the opposite winding direction. The shape of these spiral side plates (101), (201) is formed by a known involute curve or the like.
次に、このように構成されたスクロール流体機械が圧縮
機として作動する場合の動作について説明する。Next, the operation when the scroll fluid machine configured as described above operates as a compressor will be described.
第6図において、固定スクロール(1)は空間に対して
静止しており、揺動スクロール(2)は空間に対してそ
の姿勢を変化させないで回転運動を行い、同図0゜,90
゜,180゜,270゜のように運動する。この揺動スクロール
(2)の運動に伴い前記各点Bは中心に向かつて移動す
ると、固定スクロール(1)の渦巻側板(101)および
揺動スクロール(2)の渦巻側板(201)の間に形成さ
れる三日月状の圧縮室Pは順次その容積を減じるため、
この圧縮室Pに吸い込まれた気体は圧縮され吐出口(1
a)から吐き出される。この間同図O〜O′の距離は一
定に保持されており、渦巻側板(101),(201)の間隙
をZ,厚さをtで表せばOO′=Z/2−tとなつている。こ
こで、Zは渦巻側板101,201のピツチに相当している。In FIG. 6, the fixed scroll (1) is stationary with respect to the space, and the orbiting scroll (2) performs a rotational motion with respect to the space without changing its posture.
Exercise like °, 180 °, 270 °. When each of the points B moves toward the center along with the motion of the orbiting scroll (2), it is between the spiral side plate (101) of the fixed scroll (1) and the spiral side plate (201) of the orbiting scroll (2). Since the crescent-shaped compression chamber P that is formed gradually decreases its volume,
The gas sucked into the compression chamber P is compressed and discharged (1
Exhaled from a). During this period, the distances O to O'in the figure are kept constant, and if the gap between the spiral side plates (101) and (201) is Z and the thickness is t, then OO '= Z / 2-t. . Here, Z corresponds to the pitch of the spiral side plates 101 and 201.
このような作動原理によつて動作する圧縮機の具体的な
構成について第7図を用い説明すると、(1)は固定ス
クロール、(2)は揺動スクロール、(1a)は吐出口、
(P)は圧縮室、(1b)は吸入口、(3)は主軸、
(4)はフレームである。また、(101)および(201)
は各々固定スクロール(1)と揺動スクロール(2)の
側板、(102)および(202)は台板、(A)は渦巻側板
(101),(201)の端面(101a)、(201a)と台板(20
2)、(102)の底面(202a),(102a)との間に形成さ
れた軸線方向の間隙である。A concrete configuration of a compressor that operates according to such an operating principle will be described with reference to FIG. 7. (1) is a fixed scroll, (2) is an orbiting scroll, (1a) is a discharge port,
(P) is the compression chamber, (1b) is the inlet, (3) is the main shaft,
(4) is a frame. Also, (101) and (201)
Are side plates of the fixed scroll (1) and the orbiting scroll (2), (102) and (202) are base plates, and (A) are end faces (101a) and (201a) of the spiral side plates (101) and (201). And base plate (20
2), a gap in the axial direction formed between the bottom surfaces (202a) and (102a) of (102).
ここで、揺動スクロール(2)は、台板(202)の渦巻
側板(201)が形成された面と反対の面をフレーム
(4)に支持された状態で固定スクロール(1)と第7
図に示すように組み合わされ、固定スクロール(1)は
フレーム(4)に固定されている。そして、主軸(3)
が同図に矢印で示すように回転すると、これに連結した
揺動スクロール(2)が運動を始める。この場合、揺動
スクロール(2)は、自転防止装置(図示せず)によつ
て自転しない公転運動を行う。この結果、吸入口(1b)
より被圧縮流体が吸引され、第6図に示した作動原理に
よつて圧縮されて吐出口(1a)より吐き出される。Here, the orbiting scroll (2) and the fixed scroll (1) and the seventh scroll are supported by a frame (4) supporting a surface of the base plate (202) opposite to the surface on which the spiral side plate (201) is formed.
Combined as shown, the fixed scroll (1) is fixed to the frame (4). And the spindle (3)
When is rotated as shown by the arrow in the figure, the orbiting scroll (2) connected to it starts to move. In this case, the orbiting scroll (2) makes an orbital motion that does not rotate by a rotation preventing device (not shown). As a result, the inlet (1b)
The fluid to be compressed is further sucked, compressed according to the operating principle shown in FIG. 6, and discharged from the discharge port (1a).
このようなスクロール圧縮機においては、隙間(A)を
通る渦巻径方向への漏れが渦巻の長手方向寸法に対応す
るため、その流体吸い込み容積に比して相対的に大き
く、圧縮機の効率に与える影響は大きい。この径方向の
洩れを防止する手段としては、例えば特開昭55−46081
号に開示されているように、隙間(A)を小さくして吸
入口(1b)より被圧縮流体と共に油を吸引させ、微小隙
間(A)に油膜を生成するものが採用されている。In such a scroll compressor, since the leakage in the radial direction of the spiral passing through the gap (A) corresponds to the size of the spiral in the longitudinal direction, it is relatively large compared to the fluid suction volume, and the efficiency of the compressor is improved. It has a great impact. As means for preventing this radial leakage, for example, Japanese Patent Laid-Open No. 55-46081.
As disclosed in Japanese Patent Laid-Open Publication No. 2000-242242, a method is adopted in which the clearance (A) is made small so that oil is sucked together with the fluid to be compressed through the suction port (1b) and an oil film is generated in the minute clearance (A).
ところが、このような手段においては、微小隙間を均一
に設定するために固定スクロール(1),揺動スクロー
ル(2)およびフレーム(4)等の各部品の寸法精度を
高くすることが要求され、場合によつては組立時に各部
品を選択しなければならない等,工作性や組立性に問題
があつた。また、運転時に吐出口(1a)の近傍は圧縮さ
れた流体により高温になるが、その結果微小隙間(A)
以上に局部的に熱膨張すると、逃げがないため焼き付き
が生じる。したがつて、熱膨張量を想定して予め均一に
隙間を大きく設定しなければならず、このため効果的な
油膜を形成するのに必要な最適隙間以上の隙間になり、
結果として漏れが大きくなり、シール性が低下すること
が多かつた。However, in such means, it is required to increase the dimensional accuracy of each component such as the fixed scroll (1), the orbiting scroll (2) and the frame (4) in order to uniformly set the minute gaps. In some cases, there was a problem in workability and assembling, such as having to select each part during assembly. Also, during operation, the temperature near the discharge port (1a) becomes high due to the compressed fluid, and as a result, the minute gap (A)
If the thermal expansion locally occurs, there is no escape and seizure occurs. Therefore, it is necessary to set a large gap in advance in consideration of the amount of thermal expansion, so that the gap is larger than the optimum gap required to form an effective oil film,
As a result, leakage often becomes large and the sealing performance is often deteriorated.
そこで、特開昭61−26160号に開示されているように、
両スクロールの各渦巻側板と同一の渦巻形状を有する微
調整用エレメントを圧入嵌合するガイド部を渦巻側板の
端面に設け、各微調整用エレメントとガイド部との間に
直線方向に空隙を形成し、この空隙と圧縮室が連通する
連通溝(均圧溝)を有する隙間微調整機構を備えたもの
が採用されていた。これを第8図,第9図および第10図
に基づいて説明すると、同図において、(5)は渦巻側
板(201)の端面(201a)に設けられたガイド溝、
(6)はこのガイド溝(5)内に空隙(501)を介して
調整自在に装着されたエレメント、(601)はこのエレ
メント(6)に設けられ圧縮室(P)および空隙(50
1)に連通する連通溝である。また(g1)は巻側板(20
1)の端面(201a)と台板(102)の端面(102a)との間
に形成される隙間、(g2)はエレメント(6)の端面
(6a)と台板(102)の底面(102a)との間に形成され
る隙間である。ここで、第11図(a),(b)および
(c)は空隙(501)と圧縮室(P)における運転中の
圧力を測定した結果を示す図であり、同図(a)および
(b)は連通溝(601)を備えていない場合を示し、ま
た(c)は連通溝(601)を使用した場合を示す。同図
において、測定ポイントSから測定ポイントTまでの空
隙(501)の変動圧力をP1,これに対応した圧縮室Pの変
動圧力P2とし、両者の差圧を△Pとすると、同図(a)
に示すように圧縮室Pの圧力P2より空隙(501)の圧力P
1の方が△Pだけ大きくなる場合にエレメント(6)は
ガイド溝(5)より突出し、台板102,202上を摺動して
摩耗することになる。また、同図(b)に示すようにP2
よりP1の方が△Pだけ小さくなる場合にはエレメント
(6)はガイド溝(5)内に陥没することになる。これ
に対してエレメント(6)に連通溝(601)をもつ場合
には、同図(c)に示すように△Pは大幅に小さくなる
ことが判明する。すなわち、空隙(501)と圧縮室
(P)が連通溝(601)によつて略均圧されるから、運
転中に圧縮室(P)の圧力変動によるエレメント(6)
の軸線方向の移動を防止することができ、エレメント
(6)と台板(102),(202)との間の摩耗がなく、さ
らにエレメント(6)がガイド溝(5)内に陥没するこ
となく、安定した状態でエレメント(6)がガイド溝
(5)内に位置付けられる。Therefore, as disclosed in JP-A-61-26160,
A guide part for press-fitting a fine adjustment element having the same spiral shape as each scroll side plate of both scrolls is provided on the end face of the spiral side plate, and a gap is formed in a linear direction between each fine adjustment element and the guide part. However, a device having a gap fine adjustment mechanism having a communication groove (equal pressure equalizing groove) that allows the gap to communicate with the compression chamber has been adopted. This will be described with reference to FIGS. 8, 9 and 10, in which (5) is a guide groove provided on the end surface (201a) of the spiral side plate (201),
(6) is an element that is adjustably mounted in the guide groove (5) through a void (501), and (601) is provided in the element (6) and is provided with a compression chamber (P) and a void (50).
It is a communication groove that communicates with 1). Also, (g 1 ) is the winding side plate (20
The gap formed between the end face (201a) of 1) and the end face (102a) of the base plate (102), (g 2 ) is the end face (6a) of the element (6) and the bottom face of the base plate (102) ( 102a) is a gap formed between the two. Here, FIGS. 11 (a), (b) and (c) are diagrams showing the results of measuring the pressure during operation in the void (501) and the compression chamber (P), and FIGS. b) shows the case where the communication groove (601) is not provided, and (c) shows the case where the communication groove (601) is used. In the figure, if the fluctuating pressure of the air gap (501) from the measuring point S to the measuring point T is P 1 , the corresponding fluctuating pressure P 2 of the compression chamber P is ΔP, and the pressure difference between them is ΔP, (A)
As shown in, the pressure P 2 in the compression chamber P is more than the pressure P 2 in the void (501).
When 1 becomes larger by ΔP, the element (6) projects from the guide groove (5) and slides on the base plates 102 and 202 to be worn. Further, as shown in FIG. (B) P 2
If P 1 becomes smaller than ΔP, the element (6) will be depressed in the guide groove (5). On the other hand, when the element (6) has the communication groove (601), it is found that ΔP is significantly reduced as shown in FIG. That is, since the gap (501) and the compression chamber (P) are approximately pressure-equalized by the communication groove (601), the element (6) due to the pressure fluctuation of the compression chamber (P) during operation.
Can be prevented from moving in the axial direction, there is no wear between the element (6) and the base plates (102) and (202), and the element (6) is depressed into the guide groove (5). Instead, the element (6) is positioned in the guide groove (5) in a stable state.
ところが、従来のスクロール圧縮機においては、微調整
用のエレメント(6)に複数の連通溝(601)を設け、
かつこれら連通溝(601)を揺動スクロール(2)の運
動位置を考慮することなく設定するものであるため、連
通溝(601)および空隙(501)を介して各圧縮室Pが連
通することになり、それだけ各圧縮室間のシール性が悪
くなり、圧縮機としての性能が低下するという問題があ
つた。また、連通溝(601)の設定位置が適切でない
と、寝込起動時や液バツク時等,多量に液冷媒を圧縮室
に吸引すると、液圧縮によるエレメント(6)の局部的
な陥没が生じ、その部分の圧縮ガスの漏れによる再圧縮
により性能が低下したり、吐出ガス温度が上昇したりす
る問題があつた。この発明はこのような事情に鑑みなさ
れたもので、各圧縮室間のシール性を良好なものにし、
もつて圧縮機としての性能を向上させることができるス
クロール圧縮機を提供するものである。However, in the conventional scroll compressor, a plurality of communication grooves (601) are provided in the fine adjustment element (6),
Moreover, since the communication grooves (601) are set without considering the movement position of the orbiting scroll (2), the respective compression chambers P communicate with each other through the communication grooves (601) and the voids (501). Therefore, there is a problem in that the sealability between the compression chambers is deteriorated and the performance of the compressor is deteriorated. In addition, if the setting position of the communication groove (601) is not appropriate, when a large amount of liquid refrigerant is sucked into the compression chamber at the time of starting the bed or backing up the liquid, the element (6) locally collapses due to liquid compression. However, there is a problem that the performance is deteriorated due to the recompression due to the leakage of the compressed gas in that portion, and the discharge gas temperature rises. The present invention has been made in view of such circumstances, and improves the sealing property between the compression chambers,
(EN) Provided is a scroll compressor capable of improving the performance as a compressor.
この発明に係るスクロール圧縮機は、最内周側の一対の
圧縮室と吐出室とが連通する直前の状態において最内周
側の圧出室とその外側の圧出室を画成する各スクロール
の渦巻側板が互いに接触する一対の部位のうち、少なく
とも一方の部位近傍に最内周側の圧縮室とエレメント背
面の空隙を導通させる連通溝を設けたことである。A scroll compressor according to the present invention is a scroll compressor that defines an innermost pressure chamber and an outer pressure chamber in a state immediately before a pair of innermost compression chambers and a discharge chamber communicate with each other. In the pair of parts where the spiral side plates come into contact with each other, a communication groove is provided in the vicinity of at least one of the parts so as to electrically connect the compression chamber on the innermost peripheral side and the gap on the back surface of the element.
この発明においては、液圧縮時、内圧が最大となる最内
周側の圧縮室と吐出室が連通する直前の状態において、
この内圧が最大となっている最内周側の圧縮室と、エレ
メント背面空隙が導通されるように連通溝を設けたので
この最大内圧に空隙部の圧力が均圧されてエレメントの
陥没を防止できるとともに、上記連通溝は、同一圧力の
圧縮室に開口しているので、高圧の圧縮室から低圧の圧
縮室へリークすることはない。In the present invention, at the time of liquid compression, in the state immediately before the innermost peripheral compression chamber and the discharge chamber where the internal pressure is maximized communicate with each other,
Since a communication groove is provided so that the innermost circumferential compression chamber where this internal pressure is maximum and the element rear surface void are connected, the pressure in the void is equalized to this maximum internal pressure and element collapse is prevented. In addition, since the communication groove is open to the compression chamber of the same pressure, there is no leakage from the high pressure compression chamber to the low pressure compression chamber.
以下、この発明の構成を図に示す実施例によつて詳細に
説明する。Hereinafter, the configuration of the present invention will be described in detail with reference to the embodiments shown in the drawings.
第1図はこの発明に係る固定スクロールと揺動スクロー
ルを組み合わせた圧縮部の断面図である。第2図はこの
発明の微調整用エレメントを揺動スクロールに組込むと
きの状態を示す斜視図、第3図は同じく要部拡大斜視
図,第4図,第5図はもう1つの発明を含めた微調整用
エレメントの組込断面図である。FIG. 1 is a cross-sectional view of a compression section in which a fixed scroll and an orbiting scroll according to the present invention are combined. FIG. 2 is a perspective view showing a state in which the fine adjustment element of the present invention is incorporated into an orbiting scroll, FIG. 3 is an enlarged perspective view of the same main parts, and FIGS. 4 and 5 include another invention. It is an assembled sectional view of the fine adjustment element.
第1図は、固定スクロール(1)と、揺動スクロール
(2)が吐出室(70)と対称な1対の最内周側の圧縮室
(81),(82)とが連通する直前の状態を示しており、
固定スクロール(1)と揺動スクロール(2)の渦巻側
板(101),(201)は、それぞれのインボリュート基礎
円(100),(200)の接線を結ぶ線E及びF上の点
(B1)〜(B6)において、互いに接触している。ここ
で、最内周側の圧縮室(81),(82)とその外側の対称
な一対の圧縮室(91),(92)とは、それぞれ(B2),
(B5)で仕切られており、また、圧縮室(81),(82)
と、吐出室(70)とは(B1),(B4)で仕切られてい
る。その結果吐出室(70)は圧力P0,圧縮室(81)及び
(82)の圧力は等しくてP1圧縮室(91)及び(92)の圧
力はP2となり,更にその外側はまだ圧縮室が形成されて
おらず圧力はP3となる。通常圧縮時はP3は吸入圧力,P0
は吐出圧力でありP0≧P1>P2>P3となる。一方、冷媒の
寝込起動時や液バツク時、多量の液冷媒を吸引すると、
液圧縮状態となり実測によれば、圧縮室(81),(82)
が吐出室(70)と連通する直前に圧力P1最大圧力となり
パルス状に100〜200atgに達する場合もある。この場合P
0<P1>P2>P3となる。FIG. 1 shows immediately before the fixed scroll (1) and the orbiting scroll (2) communicate with a pair of innermost compression chambers (81), (82) symmetrical to the discharge chamber (70). Shows the state,
The spiral side plates (101) and (201) of the fixed scroll (1) and the orbiting scroll (2) have points (B 1 on the lines E and F connecting the tangents of the respective involute base circles (100) and (200). ) To (B 6 ) are in contact with each other. Here, the compression chambers (81), (82) on the innermost peripheral side and the pair of symmetrical compression chambers (91), (92) on the outer side are (B 2 ),
It is divided by (B 5 ), and the compression chambers (81), (82)
And the discharge chamber (70) are separated by (B 1 ) and (B 4 ). As a result the discharge chamber (70) is a pressure P 0, the pressure of the compression chamber (81) and (82) pressure is equal to P 1 compression chamber (91) and (92) is P 2, and the further outside thereof is still compressed The chamber is not formed and the pressure is P 3 . During normal compression, P 3 is suction pressure, P 0
Is the discharge pressure and P 0 ≧ P 1 > P 2 > P 3 . On the other hand, when a large amount of liquid refrigerant is sucked in when the refrigerant starts sleeping or when the liquid is backed up,
It is in a liquid compression state, and according to actual measurement, the compression chambers (81), (82)
May reach 100 to 200 atg in a pulsed manner with the maximum pressure P1 immediately before communicating with the discharge chamber (70). In this case P
0 <P 1 > P 2 > P 3
この様な位置関係において、接点(B2)及び(B5)の近
傍のそれぞれ圧縮室(81),(82)に導通するように点
対称な位置に連通溝(601a),(601b)が設けてある。
この溝(601)はエレメント(6)の側面部に設けられ
ており、圧縮室(81)に導通する連通溝(601a)はエレ
メント(6)のエレメント内端側の外側面側(6a)に、
圧縮室(82)に導通する連通溝(601b)はエレメント
(6)のエレメント外端側の内側面側(6b)に縦溝とし
て形成されている。In such a positional relationship, communication grooves (601a) and (601b) are provided at point-symmetrical positions so as to conduct to the compression chambers (81) and (82) near the contacts (B2) and (B5), respectively. is there.
This groove (601) is provided on the side surface of the element (6), and the communication groove (601a) that is in conduction with the compression chamber (81) is on the outer surface side (6a) of the element (6) on the inner end side of the element. ,
The communication groove (601b) that is electrically connected to the compression chamber (82) is formed as a vertical groove on the inner surface side (6b) of the element (6) on the element outer end side.
第2図に揺動スクロール(2)の溝(5)にエレメント
(6)を装着する組立状態を示す斜視図である。また連
通溝(601a)の具体的形状を第3図に示す。連通溝(60
1b)も、同一形状であり、本図ではUノツチ形状の縦溝
となつている。FIG. 2 is a perspective view showing an assembled state in which the element (6) is mounted in the groove (5) of the orbiting scroll (2). A concrete shape of the communication groove (601a) is shown in FIG. Communication groove (60
1b) also has the same shape and is a U-notch-shaped vertical groove in this figure.
また固定スクロール(1)に関しても、渦巻側板(10
1)の巻き方向が揺動スクロール(2)と逆になり、連
通溝(601a),(601b)の位置が揺動スクロール(2)
と180゜ずれて、それぞれ接点(B5),(B2)近傍とな
るが、その他の配置関係,形状は、揺動スクロール
(2)と全く同一である。Also for the fixed scroll (1), the spiral side plate (10
The winding direction of 1) is opposite to that of the orbiting scroll (2), and the positions of the communication grooves (601a) and (601b) are the orbiting scroll (2).
180 ° apart from the contact points (B5) and (B2), respectively, but the other arrangements and shapes are exactly the same as those of the orbiting scroll (2).
第4図,第5図はこの発明の更に詳細な形状の一例を示
す断面図であつて、第4図はエレメント(6)を溝
(5)に組込む前の状態を示し、第5図は組込後の状態
を示す。組立方法等の詳細は特開昭62−126207に述べら
れているので、ここでは省略するが、エレメント(6)
は可撓性材料等で作られており第4図に示す如く断面形
状が矩形状で、その巾W,厚みDをもつものである。一
方、溝(5)は深さD1を有し渦巻長手方向に沿つて、そ
の深さ方向の途中に段付部(5c)を有し、上方の開口部
の溝巾はW1,下方の底部溝巾はW2であつて、W1>W>W2
の関係を有している。4 and 5 are sectional views showing an example of a more detailed shape of the present invention. FIG. 4 shows a state before the element (6) is assembled in the groove (5), and FIG. The state after installation is shown. Since details of the assembling method and the like are described in JP-A-62-126207, the description thereof is omitted here, but the element (6)
Is made of a flexible material and has a rectangular cross section as shown in FIG. 4 and has a width W and a thickness D. On the other hand, the groove (5) has a depth D1 and has a step (5c) along the longitudinal direction of the spiral in the depth direction, and the groove width of the upper opening is W1, the bottom width of the lower part. The groove width is W2, where W1>W> W2
Have a relationship.
この様な形状でエレメント(6)を溝(5)に圧入した
状態を第5図に示す。渦巻側板(201)の端面は、相手
側の台板(102)とA部で微少隙間δ1を保つた状態で
組み合わされ、エレメント(6)は台板(102)に密着
した状態となるので、圧力P1>P2の時、この差圧に対す
る密封が得られる。またエレメント(6)は圧入時溝
(5)の形状に塑性変形され、段部(5c)により係止さ
れ通常の圧縮機作動時は、落ち込み等が防止されてい
る。空隙(501)は組立時の形状公差を吸収したり、熱
膨張等により矢印方向の反力をエレメント(6)が受け
たときの逃がしとなるところでδ2の寸法を有する。連
通溝(601b)は、この空隙(501)と圧縮室(82)を導
通させる。FIG. 5 shows a state in which the element (6) having such a shape is press-fitted into the groove (5). The end face of the spiral side plate (201) is combined with the mating base plate (102) in a state where a small gap δ 1 is maintained in the section A, and the element (6) is in close contact with the base plate (102). , When pressure P 1 > P 2 , a seal is obtained against this differential pressure. Further, the element (6) is plastically deformed into the shape of the groove (5) at the time of press-fitting, and is locked by the step portion (5c) to prevent the depression or the like during normal operation of the compressor. The void (501) has a size of δ 2 where it absorbs a shape tolerance at the time of assembly and is a relief when the element (6) receives a reaction force in the arrow direction due to thermal expansion or the like. The communication groove (601b) electrically connects the space (501) and the compression chamber (82).
前述した様に、液圧縮等により、圧縮室(82)の内圧P1
が異常に上昇した時、連通溝(601b)を通じて空隙(50
1)は均圧される為、エレメント(6)の溝(5)内へ
の落ち込みは防止されるわけである。As described above, due to liquid compression, etc., the internal pressure P 1 of the compression chamber (82)
When it rises abnormally, the gap (50
Since 1) is pressure-equalized, the element (6) is prevented from falling into the groove (5).
一方、空隙(501)は連通溝(601a)とも導通しており
更に圧縮室(81)に開口しているが、圧縮室(81),
(82)は対称な形状であるので、ほぼ同圧であり従つて
均圧のアンバランスは無く、しかも均圧される時間は、
片側のみ開口しているのに比べ1/2で済み落ち込み防止
に対する効果は更に上がる。また、通常圧縮時において
も、常に、圧縮室(81),及び(82)は同圧であるの
で、例えば、連通溝(601a)から空隙(501)を通り連
通溝(601b)へリークするようなことはない。On the other hand, the void (501) is also in communication with the communication groove (601a) and further opens to the compression chamber (81), but the compression chamber (81),
Since (82) has a symmetrical shape, the pressures are almost the same, so there is no pressure imbalance and the time for pressure equalization is
Compared to the case where only one side is opened, it is only half as effective as the fall prevention effect. Further, even during normal compression, the compression chambers (81) and (82) always have the same pressure, so that, for example, the communication groove (601a) may leak to the communication groove (601b) through the void (501). There is no such thing.
また液圧縮は圧縮室(81)及び(82)が吐出室(70)と
連通する直前にピークとなり、連通後は冷凍サイクルの
高圧側ラインへ導通し、圧縮しない為、急激に圧力は低
下する。この様に圧縮機回転速度に同期してパルス状に
発生する為、上記空隙(501)と圧縮室(81),(82)
の圧力P1との均圧速度は、少なくとも上記回転速度と同
じオーダーであることが望ましい。この為、第4図にお
いてD=D1として第5図の様にエレメント(6)を渦巻
側板(201)端面からδ1だけ突出させた時、空隙隙間
δ2δ1となるように設定することにより均圧に対す
る時間遅れが生じず従つて液圧縮によるエレメント
(6)の落ち込み防止の信頼性は更に向上することを確
認した。Further, the liquid compression reaches a peak immediately before the compression chambers (81) and (82) communicate with the discharge chamber (70), and after the communication, it is conducted to the high-pressure side line of the refrigeration cycle and does not compress, so the pressure drops sharply. . Since pulses are generated in synchronism with the rotation speed of the compressor, the air gap (501) and the compression chambers (81), (82) are
The pressure equalizing speed with the pressure P 1 is preferably at least the same order as the rotational speed. Therefore, as shown in FIG. 5, setting D = D1 in FIG. 4 so that when the element (6) is projected from the end face of the spiral side plate (201) by δ 1 , a gap gap δ 2 δ 1 is set. Thus, it was confirmed that there is no time delay with respect to pressure equalization, and therefore the reliability of preventing the element (6) from falling due to liquid compression is further improved.
以上のように、この発明によれば、最内周側の圧縮室
と、その外側の圧縮室を画成する各スクロールの渦巻側
板が互いに接触する一対の部位のうち、少なくとも一方
の部位近傍に、上記最内周側の圧縮室と凹溝の空隙を導
通させる連通溝を設けたので、液圧縮時等圧縮室内圧が
異常上昇してもエレメントの局部的な陥没が生じること
がなく局部的な陥没により圧縮ガスの漏れが生じ最圧縮
による性能低下や吐出ガス温度の異常上昇の問題発生が
防止できるとともに、通常運転時に、通常溝および空隙
を介して圧力の異なる圧縮室が連通することがなく、各
圧縮室間のシール性が確保でき、構造簡単で、シール信
頼性の高いスクロール圧縮機が得られる。As described above, according to the present invention, the compression chamber on the innermost peripheral side and the spiral side plates of each scroll that define the compression chamber on the outer side of the compression chamber are located near at least one of the pair of regions that are in contact with each other. Since the communication groove that connects the compression chamber on the innermost peripheral side and the gap of the concave groove is provided, the element does not locally collapse even if the pressure in the compression chamber increases abnormally during liquid compression. It is possible to prevent compressed gas from leaking due to such depression and to prevent performance deterioration due to maximum compression and abnormal rise in discharge gas temperature.In addition, during normal operation, compression chambers with different pressures may communicate via normal grooves and gaps. In addition, it is possible to secure a sealing property between the compression chambers, a simple structure, and a scroll compressor with high sealing reliability.
第1図はこの発明に係る固定スクロールと揺動スクロー
ルを組み合わせた圧縮部の断面図である。第2図はこの
発明の微調整用エレメントを揺動スクロールに組込むと
きの状態を示す斜視図。第3図は、同じく要部拡大斜視
図,第4図,第5図はもう1つの発明を含めた微調整用
エレメントの組込断面図。第6図(a),(b),
(c),(d)はスクロール圧縮機の動作状態を示す断
面図。第7図はスクロール圧縮機の要部を示す断面図,
第8図,第9図,第10図は従来の隙間微調整機構を示す
断面図。第11図(a),(b),(c)は、スクロール
圧縮機の運転中における隙間微調整機構のエレメントに
作用する圧力と圧縮室に作用する圧力との関係を示す図
である。 これらの図において、(1)は固定スクロール,(2)
は揺動スクロール、(101),(201)は渦巻側板,
(5)は凹溝,(501)は空隙,(102)(202)は台
板,(6)はエレメント,(601a),(601b)は連通
溝,(70)は吐出室,(81),(82),(91),(92)
は圧縮室である。 なお各図中,同一符号は同一,又は相当部分を示す。FIG. 1 is a cross-sectional view of a compression section in which a fixed scroll and an orbiting scroll according to the present invention are combined. FIG. 2 is a perspective view showing a state where the fine adjustment element of the present invention is incorporated in an orbiting scroll. FIG. 3 is an enlarged perspective view of an essential part, and FIGS. 4 and 5 are sectional views showing a fine adjustment element including another invention. 6 (a), (b),
(C), (d) is sectional drawing which shows the operation state of a scroll compressor. FIG. 7 is a sectional view showing the main part of the scroll compressor,
8, 9 and 10 are sectional views showing a conventional gap fine adjustment mechanism. 11 (a), (b), and (c) are diagrams showing the relationship between the pressure acting on the element of the gap fine adjustment mechanism and the pressure acting on the compression chamber during the operation of the scroll compressor. In these figures, (1) is a fixed scroll, (2)
Is an orbiting scroll, (101) and (201) are spiral side plates,
(5) is a concave groove, (501) is a void, (102) (202) is a base plate, (6) is an element, (601a) and (601b) are communication grooves, (70) is a discharge chamber, (81) , (82), (91), (92)
Is a compression chamber. In each figure, the same reference numerals indicate the same or corresponding parts.
Claims (5)
れた固定スクロール及び揺動スクロールを互いに組合わ
せて上記各渦巻側板及び台板間に複数の対称な対となる
圧縮室と吐出室を形成し、揺動スクロールを旋回させる
ことにより上記圧縮室に取り込まれた流体を圧縮して、
中心部の吐出室に連通させるとともに、上記各渦巻側板
の端面に渦巻長手方向に沿って凹溝を形成し、この凹溝
の溝底の空隙を介して渦巻状の凹溝に沿って圧入装着さ
れた微調整用エレメントを備えたスクロール圧縮機にお
いて、上記圧縮室のうち、最内周側の一対の圧縮室と上
記吐出室とが連通する直前の状態において、上記最内周
側の圧縮室と、その外側の圧縮室を画成する各スクロー
ルの渦巻側板が互いに接触する一対の部位のうち、少な
くとも一方の部位近傍に、上記最内周側の圧縮室と上記
空隙を導通させる連通溝を設けたことを特徴とするスク
ロール圧縮機。1. A compression chamber and a discharge which form a plurality of symmetrical pairs between the scroll side plate and the base plate by combining a fixed scroll and an orbiting scroll formed by projecting the spiral side plate on the base plate, respectively. A chamber is formed, and the fluid taken into the compression chamber is compressed by orbiting the orbiting scroll,
In addition to communicating with the central discharge chamber, a concave groove is formed on the end surface of each spiral side plate along the longitudinal direction of the spiral, and is press-fitted along the spiral concave groove through the gap at the groove bottom of the concave groove. In the scroll compressor provided with the fine adjustment element described above, in the state immediately before the pair of innermost compression chambers of the compression chambers communicate with the discharge chamber, the innermost compression chambers And, of the pair of parts where the scroll side plates of each scroll defining the outer compression chamber contact each other, at least in the vicinity of one part, a communication groove for conducting the above-mentioned innermost compression chamber and the above-mentioned void is formed. A scroll compressor characterized by being provided.
画成する各スクロールの渦巻側板が互いに接触する一対
の部位近傍に、上記最内周側の圧縮室と凹溝の空隙を導
通させる連通溝をそれぞれ設けたことを特徴とする特許
請求の範囲第(1)項記載のスクロール圧縮機。2. An innermost compression chamber and a groove are formed in the vicinity of a pair of portions where the scroll side plates of each scroll defining the innermost compression chamber and the outer compression chamber contact each other. The scroll compressor according to claim (1), characterized in that each of the communication grooves is provided with a communication groove that allows the voids to communicate with each other.
の深さとを実質等しくし、固定スクロールと揺動スクロ
ールを互いに組合わせた時、渦巻側板端面と、相手のス
クロール台板との間に形成される微小隙間分だけ上記微
調整用エレメントを上記渦巻側板端面より突出させたこ
とを特徴とする特許請求の範囲第(1)項記載のスクロ
ール圧縮機。3. The fine adjustment element has a thickness substantially equal to the depth of the concave groove, and when the fixed scroll and the orbiting scroll are combined with each other, the end face of the spiral side plate and the other scroll base plate The scroll compressor according to claim (1), characterized in that the fine adjustment element is protruded from the end face of the spiral side plate by a minute gap formed therebetween.
成し、段付部より上方の開口部の溝巾が下方の底部溝巾
より大きくなっているとともに、上記微調整用エレメン
トの巾は上記段付部上方に開口部溝巾より小さく、下方
の底部溝巾より大きいことを特徴とする特許請求の範囲
第(1)項記載のスクロール圧縮機。4. The recessed groove has a stepped portion midway in the depth direction, the groove width of the opening above the stepped portion is larger than the groove width of the lower bottom portion, and the fine adjustment is performed. The scroll compressor according to claim (1), characterized in that the width of the working element is smaller than the opening groove width above the stepped portion and larger than the bottom groove width below.
ルにそれぞれ装着された微調整用エレメントの、凹溝側
面に接する側面部に形成された縦て溝であることを特徴
とする特許請求の範囲第(2)、(3)、又は(4)項
記載のスクロール圧縮機。5. The communication groove is a vertical groove formed on a side surface portion of the fine adjustment element mounted on each of the fixed scroll and the orbiting scroll, the side surface being in contact with the side surface of the concave groove. The scroll compressor according to item (2), (3), or (4).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63118759A JPH0739834B2 (en) | 1988-05-16 | 1988-05-16 | Scroll compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63118759A JPH0739834B2 (en) | 1988-05-16 | 1988-05-16 | Scroll compressor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01290987A JPH01290987A (en) | 1989-11-22 |
JPH0739834B2 true JPH0739834B2 (en) | 1995-05-01 |
Family
ID=14744356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63118759A Expired - Fee Related JPH0739834B2 (en) | 1988-05-16 | 1988-05-16 | Scroll compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0739834B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5145345A (en) * | 1989-12-18 | 1992-09-08 | Carrier Corporation | Magnetically actuated seal for scroll compressor |
JP4847054B2 (en) * | 2005-06-30 | 2011-12-28 | 株式会社日立産機システム | Scroll type fluid machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6180381U (en) * | 1984-10-31 | 1986-05-28 |
-
1988
- 1988-05-16 JP JP63118759A patent/JPH0739834B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01290987A (en) | 1989-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0227249B1 (en) | Axial sealing mechanism for scroll type fluid displacement apparatus | |
US4437820A (en) | Scroll type fluid compressor unit with axial end surface sealing means | |
US5931650A (en) | Hermetic electric scroll compressor having a lubricating passage in the orbiting scroll | |
US7967584B2 (en) | Scroll machine using floating seal with backer | |
US20200102956A1 (en) | Motor operated compressor | |
US6659745B2 (en) | Scroll compressor having different tip clearances for spiral bodies having different heights | |
JP2602869B2 (en) | Fluid compressor | |
JPH01163401A (en) | Scroll type machine | |
JP2000249086A (en) | Scroll type compressor | |
EP0189650A2 (en) | Axial sealing mechanism for a scroll compressor | |
WO2005010372A1 (en) | Scroll compressor | |
JPH0739834B2 (en) | Scroll compressor | |
JP3445794B2 (en) | Scroll type fluid discharge device with high specific volume ratio and semi-compliant bias mechanism | |
JPS61223288A (en) | Scroll compressor | |
JPH0127273B2 (en) | ||
JPH0378586A (en) | Scroll type fluid device | |
JPH08165994A (en) | Scroll type fluid device | |
JPH09195958A (en) | Scroll compressor | |
JPH07310682A (en) | Scroll type fluid machine | |
JP2820137B2 (en) | Scroll gas compressor | |
JP3360303B2 (en) | Scroll type fluid machine | |
JPH0615804B2 (en) | Scroll type fluid machine | |
KR930008487B1 (en) | Scroll compressor | |
JPH0643513Y2 (en) | Scroll compressor | |
JP2024073734A (en) | Scroll Compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |