[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0734171A - High capacity hydrogen occluding alloy - Google Patents

High capacity hydrogen occluding alloy

Info

Publication number
JPH0734171A
JPH0734171A JP5183098A JP18309893A JPH0734171A JP H0734171 A JPH0734171 A JP H0734171A JP 5183098 A JP5183098 A JP 5183098A JP 18309893 A JP18309893 A JP 18309893A JP H0734171 A JPH0734171 A JP H0734171A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
high capacity
hydrogen occluding
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5183098A
Other languages
Japanese (ja)
Inventor
Hiroshi Omori
浩志 大森
Takasumi Shimizu
孝純 清水
Makoto Matsuyama
誠 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5183098A priority Critical patent/JPH0734171A/en
Publication of JPH0734171A publication Critical patent/JPH0734171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To impart uniformity of plateau equilibrium in an ordinary temp. region and stable high capacity hydrogen occluding and releasing characteristics by specifying the compsn. of an alloy. CONSTITUTION:An alloy ingot having a compsn. represented by TiaZrbCrcMnd [where (a)-(d) show the contents (atomic %) of the separate elements, 25<=a<=30, 5<=b<=8, 30<=c<=35 and 30<=d<=35] is produced by direct melting such as Ar arc melting and powdered by mechanical pulverization or hydrogenation pulverization. The resulting powder is used as the objective hydrogen occluding alloy. In the case of Ti26.7Zr6.7Cr33.3Mn33.3, the plateau center of the equilibrium pressure of dissociation of hydrogen at 30 deg.C is at 1,102wt.% hydrogen content. At this time, dissociation pressure is 0.677MPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高容量水素吸蔵合金
に関するものである。さらに詳しくは、この発明は、ヒ
ートポンプ、水素エンジン等に有用な、大容量の水素を
安全に、かつ実用的に吸蔵させ、かつ放出させることの
できる新しい大容量水素吸蔵合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity hydrogen storage alloy. More specifically, the present invention relates to a new large-capacity hydrogen storage alloy that is useful for heat pumps, hydrogen engines and the like, and that can safely and practically store and release a large amount of hydrogen.

【0002】[0002]

【従来の技術とその課題】従来より、水素エネルギーの
実用的利用を目的として、水素を吸蔵させ、かつ放出さ
せることのできる水素吸蔵合金の開発が進められてきて
おり、これまでにも比較的実用性の高いものとして、M
g、Mg−Ti系、Mg−Cu系、Ti−Fe系、Ti
−Ni系、Zr−V系合金などが注目されるものとして
提案されている。
2. Description of the Related Art Conventionally, hydrogen storage alloys capable of storing and releasing hydrogen have been developed for the practical use of hydrogen energy, and have been relatively comparatively developed so far. As a highly practical item, M
g, Mg-Ti system, Mg-Cu system, Ti-Fe system, Ti
-Ni-based and Zr-V-based alloys have been proposed as being noticed.

【0003】これらの水素吸蔵合金は、それぞれ固有の
温度および水素圧力等の条件において水素を吸蔵して金
属水素化物を形成し、水素を高容量で保有することがで
き、また温度や圧力条件等を変化させることによって吸
蔵された水素を可逆的に放出させることができるという
特徴を有している。このため、この水素吸蔵合金を用い
た水素吸蔵は、ガスボンベによる従来からの水素貯蔵
や、液体水素による貯蔵とその利用に替るものとして大
きな利点がある。
Each of these hydrogen storage alloys can store hydrogen in a high capacity by storing hydrogen under conditions such as its own temperature and hydrogen pressure, and can also hold hydrogen in a high capacity. It is characterized in that the stored hydrogen can be reversibly released by changing Therefore, hydrogen storage using this hydrogen storage alloy has a great advantage as an alternative to conventional hydrogen storage by a gas cylinder or storage and use of liquid hydrogen.

【0004】しかしながら、これまでに提案されている
水素吸蔵合金の場合には、実際にヒートポンプや水素エ
ンジン等への利用を図るためにはいくつかの欠点があっ
た。すなわち、たとえば、Mg、Mg−Ni、Mg−C
u系合金の場合には、単位重量当りの水素吸蔵量は比較
的大きいが、水素の吸蔵・放出が250℃以上の高温で
行われなければならないという問題がある。このような
高温度での吸蔵・放出は、実用的に大きな障害となるも
のである。
However, the hydrogen storage alloys that have been proposed so far have some drawbacks for practical use in heat pumps, hydrogen engines and the like. That is, for example, Mg, Mg-Ni, Mg-C
In the case of the u-based alloy, the amount of hydrogen stored per unit weight is relatively large, but there is a problem that hydrogen must be stored and released at a high temperature of 250 ° C. or higher. Storage and release at such a high temperature poses a serious obstacle to practical use.

【0005】一方、Ti−Fe系、Zr−V系の合金等
は、常温域において水素の吸蔵および放出が可能である
ものの、金属単位重量当りの水素吸蔵能力が小さいこと
や、吸蔵・放出のサイクル寿命が短いこと等の欠点があ
った。また、初期活性化のための高温、高圧条件が必要
になるなどの問題もあった。そこで、この発明は、以上
の通りの従来技術の欠点を解消し、水素の吸蔵・放出の
ための操作条件を著しく緩和することができ、しかも単
位重量当りの吸蔵量が大きく、初期活性化も必要でない
等の実用的に優れた特性を有する、新しい大容量水素吸
蔵合金を提供することを目的としている。
On the other hand, Ti-Fe-based alloys and Zr-V-based alloys and the like are capable of absorbing and desorbing hydrogen at room temperature, but have a low hydrogen absorbing ability per unit weight of metal, and cannot absorb and desorb hydrogen. There were shortcomings such as short cycle life. There is also a problem that high temperature and high pressure conditions are required for initial activation. Therefore, the present invention overcomes the drawbacks of the prior art as described above, can remarkably relax the operating conditions for hydrogen storage / release, has a large storage capacity per unit weight, and is capable of initial activation. It is an object of the present invention to provide a new large-capacity hydrogen storage alloy that has practically excellent properties such as unnecessary.

【0006】[0006]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、次式 Tia Zrb Crc Mnd (a,b,cおよびdは各元素の原子百分率であって、 a=25〜30、 b=5〜8、 c=30〜35、 d=30〜35 を示す) で表わされる組成もしくはさらに不可避的不純物を含有
する組成を有することを特徴とする高容量水素吸蔵合金
を提供する。
In order to solve the above problems, the present invention provides the following formula: Ti a Zr b Cr c M n d (a, b, c and d are atomic percentages of each element, a = 25 to 30, b = 5 to 8, c = 30 to 35, and d = 30 to 35) or a composition containing further inevitable impurities. Provide alloy.

【0007】[0007]

【作用】この発明においては、前記の通りの特有の原子
百分率組成を有する合金であることによって、実用的に
も優れた大容量水素吸蔵合金が提供される。この合金の
場合には、略常温域において水素の吸蔵、放出が可能で
あって、しかも水素吸蔵量は極めて大きなものとなる。
しかも、吸蔵、放出のサイクル寿命に優れ、かつ、初期
活性化等も必要としない。このため、ヒートポンプ、水
素エンジン等に有用な大容量水素吸蔵合金としてその特
性は実用的に良好である。
In the present invention, a large capacity hydrogen storage alloy that is practically excellent is provided by using the alloy having the unique atomic percentage composition as described above. In the case of this alloy, hydrogen can be occluded and released in a room temperature range, and the amount of occluded hydrogen is extremely large.
Moreover, it has excellent cycle life of storage and release, and does not require initial activation. Therefore, the characteristics are practically good as a large capacity hydrogen storage alloy useful for heat pumps, hydrogen engines and the like.

【0008】なお、この合金においては、その組成限定
は以下の理由によるものである。 Ti:25〜30原子%とするが、25%未満の場合に
は、吸蔵水素量が減少して実用的に満足できるものとな
らず、また、30%を超える場合には、表面酸化膜によ
って活性化が難しくなり、しかも吸蔵・放出のサイクル
寿命も低下することになる。
The composition of this alloy is limited due to the following reasons. Ti: 25 to 30 atomic%, but if it is less than 25%, the amount of occluded hydrogen decreases and it is not practically satisfactory, and if it exceeds 30%, it depends on the surface oxide film. Activation becomes difficult, and the cycle life of occlusion / release is also shortened.

【0009】Zr:5〜8原子%とする。5%未満の場
合には水素吸蔵量が大きく減少し、また、8%を超える
場合には、不活性水素量が増加することになり好ましく
ない。 CrおよびMn:各々、30〜35原子%とする。30
%未満の場合には、合金固有の温度範囲での所定の圧力
が略水平となる、いわゆるプラトー域が上昇し、残留水
素が増大することになる。このため、耐圧容器の壁面を
厚くすることが必要となり、実際上は使用することが困
難となる。
Zr: 5 to 8 atomic% If it is less than 5%, the hydrogen storage amount is greatly reduced, and if it exceeds 8%, the amount of inert hydrogen is increased, which is not preferable. Cr and Mn: 30 to 35 atomic% each. Thirty
If it is less than%, the predetermined pressure in the temperature range peculiar to the alloy becomes substantially horizontal, that is, the so-called plateau region rises, and the residual hydrogen increases. For this reason, it is necessary to make the wall surface of the pressure resistant container thick, which makes it practically difficult to use.

【0010】一方、35%を超える場合には、吸蔵水素
量が大きく減少し、実用的に満足できるものとはならな
い。もちろん、この発明の合金においては、さらに不可
避的不純物を含有してもよいし、さらに上記特性を損わ
ない限り、Ni,Co,Fe,V等を併用添加してもよ
いことは言うまでもない。
On the other hand, if it exceeds 35%, the amount of hydrogen stored is greatly reduced, which is not practically satisfactory. Needless to say, the alloy of the present invention may further contain unavoidable impurities, and Ni, Co, Fe, V and the like may be added together unless the above characteristics are impaired.

【0011】また、この発明の合金は、公知の方法、た
とえば、アルゴンアーク溶解等の直接溶解法によって容
易に製造することができ、得られた合金塊は、機械的
に、あるいは水素化粉砕法等によって粉末化することも
できる。得られた水素吸蔵合金は気体の水素ガスとの接
触によって直ちに水素吸蔵し、また、圧力、温度のコン
トロールによって容易に吸蔵した水素を放出する。
The alloy of the present invention can be easily manufactured by a known method, for example, a direct melting method such as argon arc melting, and the obtained alloy ingot is mechanically or hydro-ground. It can also be pulverized by the method such as. The obtained hydrogen storage alloy immediately absorbs hydrogen upon contact with gaseous hydrogen gas, and easily releases the stored hydrogen by controlling the pressure and temperature.

【0012】以下、実施例を示し、さらに詳しくこの発
明の合金について詳しく説明する。
Examples will be shown below to describe the alloy of the present invention in more detail.

【0013】[0013]

【実施例】アルゴンアーク溶解による直接溶解法によ
り、次の組成合金(A) A:Ti26.7Zr6.7 Cr33.3Mn33.3(原子%) を製造し、機械粉砕して粉末とした。この合金(A)に
ついて、30℃の温度において水素の吸蔵・放出特性を
評価した。この時の水素解離平衡圧と水素化物組成等温
線図を示したものが図1である。この図1において、プ
ラトーセンターは、水素含量1.102wt%であり、
この時の解離圧は0.677MPaであった。
EXAMPLES The following composition alloy (A) A: Ti 26.7 Zr 6.7 Cr 33.3 Mn 33.3 (atomic%) was produced by a direct melting method by argon arc melting, and mechanically pulverized into powder. This alloy (A) was evaluated for hydrogen absorption / desorption characteristics at a temperature of 30 ° C. FIG. 1 shows a hydrogen dissociation equilibrium pressure and a hydride composition isotherm at this time. In FIG. 1, the plateau center has a hydrogen content of 1.102 wt%,
The dissociation pressure at this time was 0.677 MPa.

【0014】この図1より、常温域における吸蔵・放出
が可能であって、プラトー平衡が均一で、安定した大容
量の水素の吸蔵・放出が実現されることがわかる。ま
た、合金として、次の B:Ti25.5Zr7.9 Cr32.3Mn34.3 C:Ti28.0Zr7.0 Cr32.5Mn32.5 D:Ti29.0Zr6.0 Cr31.5Mn33.5 の組成のものについても同様にその特性を評価した。
From FIG. 1, it can be seen that storage / release at a normal temperature range is possible, plateau equilibrium is uniform, and stable storage / release of a large amount of hydrogen is realized. The characteristics of the alloy having the following composition B: Ti 25.5 Zr 7.9 Cr 32.3 Mn 34.3 C: Ti 28.0 Zr 7.0 Cr 32.5 Mn 32.5 D: Ti 29.0 Zr 6.0 Cr 31.5 Mn 33.5 were similarly evaluated. .

【0015】この場合にも、上記の結果と同様の良好な
特性が得られた。一方、比較のために、次の組成 E:Zr50Mn37.512.5 F:Zr20Mn6 15Co5 Ni28Ti15Cr5 Fe6 の合金を製造し、上記と同様にその特性を評価した。
Also in this case, good characteristics similar to the above results were obtained. On the other hand, for comparison, an alloy of the following composition E: Zr 50 Mn 37.5 V 12.5 F: Zr 20 Mn 6 V 15 Co 5 Ni 28 Ti 15 Cr 5 Fe 6 was manufactured and its characteristics were evaluated in the same manner as above. did.

【0016】この場合の水素解離平衡圧と水素化物組成
等温線も図1に示した。図1より明らかなように、この
発明の上記実施例の場合に比べて水素吸蔵量が少なく
(合金E)、また、安定した吸蔵・放出ができない(合
金F)など、その特性は実用的に満足できるものではな
かった。
The hydrogen dissociation equilibrium pressure and the hydride composition isotherm in this case are also shown in FIG. As is clear from FIG. 1, the hydrogen storage capacity is smaller (alloy E) and stable storage / release is not possible (alloy F) as compared with the above-mentioned embodiment of the present invention. I was not satisfied.

【0017】[0017]

【発明の効果】この発明の合金によって、以上詳しく説
明した通り、常温操作が可能で、安定して、大容量の水
素吸蔵とその放出が実現される。
As described in detail above, the alloy of the present invention can be operated at room temperature and stably realizes large-capacity hydrogen storage and release.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例並びに比較例の水素解離平衡
圧と水素化物組成等温線図である。
FIG. 1 is a hydrogen dissociation equilibrium pressure and a hydride composition isotherm of Examples and Comparative Examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 次式 Tia Zrb Crc Mnd (a,b,cおよびdは各元素の原子百分率であって、 a=25〜30、 b=5〜8、 c=30〜35、 d=30〜35 を示す) で表わされる組成もしくはさらに不可避的不純物を含有
する組成を有することを特徴とする高容量水素吸蔵合
金。
1. The following formula: Ti a Zr b Cr c M n d (a, b, c and d are atomic percentages of each element, and a = 25 to 30, b = 5 to 8, c = 30 to 35. , D = 30 to 35) or a composition containing further unavoidable impurities.
JP5183098A 1993-07-23 1993-07-23 High capacity hydrogen occluding alloy Pending JPH0734171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5183098A JPH0734171A (en) 1993-07-23 1993-07-23 High capacity hydrogen occluding alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5183098A JPH0734171A (en) 1993-07-23 1993-07-23 High capacity hydrogen occluding alloy

Publications (1)

Publication Number Publication Date
JPH0734171A true JPH0734171A (en) 1995-02-03

Family

ID=16129737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183098A Pending JPH0734171A (en) 1993-07-23 1993-07-23 High capacity hydrogen occluding alloy

Country Status (1)

Country Link
JP (1) JPH0734171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435325B1 (en) * 2001-12-27 2004-06-10 현대자동차주식회사 High Strength and Heat Resistant Mg-Zn Alloy and Its Preparation Method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100319A (en) * 1976-02-20 1977-08-23 Matsushita Electric Ind Co Ltd Hydrogen storing material
JPS5468702A (en) * 1977-11-11 1979-06-02 Matsushita Electric Ind Co Ltd Material for preserving hydrogen
JPS5791736A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Hydrogen occluding material
JPH0474845A (en) * 1990-07-18 1992-03-10 Sanyo Electric Co Ltd Hydrogen storage alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100319A (en) * 1976-02-20 1977-08-23 Matsushita Electric Ind Co Ltd Hydrogen storing material
JPS5468702A (en) * 1977-11-11 1979-06-02 Matsushita Electric Ind Co Ltd Material for preserving hydrogen
JPS5791736A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Hydrogen occluding material
JPH0474845A (en) * 1990-07-18 1992-03-10 Sanyo Electric Co Ltd Hydrogen storage alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435325B1 (en) * 2001-12-27 2004-06-10 현대자동차주식회사 High Strength and Heat Resistant Mg-Zn Alloy and Its Preparation Method

Similar Documents

Publication Publication Date Title
US4096639A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
US4744946A (en) Materials for storage of hydrogen
US4069303A (en) Alloy useful as hydrogen storage material
US5888317A (en) Hydrogen-storage material employing ti-mn alloy system
US4347082A (en) Mischmetal alloy for storage of hydrogen
JP4403499B2 (en) Hydrogen storage material
JPS6141978B2 (en)
CA1077457A (en) Alloy for hydrogen storage
JPH0734171A (en) High capacity hydrogen occluding alloy
JPS626739B2 (en)
JPS61199045A (en) Hydrogen occluding alloy
JPS5947022B2 (en) Alloy for hydrogen storage
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JPS6187840A (en) Calcium-nickel-misch metal-aluminum type quaternary hydrogen storage alloy
JPS5848481B2 (en) Hydrogen storage materials
KR102482076B1 (en) Ti-Fe-Zr-Mn BASED HYDROGEN STORAGE ALLOY HAVING THE CONTROLLED ABSORPTION/DESORPTION PRESSURE OF HYDROGEN AND HYDROGEN FUEL SYSTEM USING THE SAME
JPS597772B2 (en) Titanium multi-component hydrogen storage alloy
US4350673A (en) Method of storing hydrogen
JPS60103143A (en) Material for storing hydrogen
KR102443563B1 (en) Complex structure hydrogen storage alloy with the excellent activate property
JPS58217655A (en) Hydrogen occluding multi-component alloy
JPS59185755A (en) Four-element material composed of calcium-nickel- mischmetal-aluminum for hydrogen occlusion
JPS58157943A (en) Alloy for storing hydrogen
JPH0465136B2 (en)
JPS5950742B2 (en) Titanium quaternary hydrogen storage alloy