JPH0734504B2 - Method for manufacturing thick film ceramic multilayer substrate - Google Patents
Method for manufacturing thick film ceramic multilayer substrateInfo
- Publication number
- JPH0734504B2 JPH0734504B2 JP63153934A JP15393488A JPH0734504B2 JP H0734504 B2 JPH0734504 B2 JP H0734504B2 JP 63153934 A JP63153934 A JP 63153934A JP 15393488 A JP15393488 A JP 15393488A JP H0734504 B2 JPH0734504 B2 JP H0734504B2
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- glass
- temperature
- thick film
- paste
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、IC,LSI,チップ部品などを搭載し、かつそれ
らを相互配線した回路の高密度実装基板として用いるこ
とのできる厚膜セラミック多層基板の製造方法に関する
ものである。Description: TECHNICAL FIELD The present invention relates to a thick film ceramic multilayer substrate which can be used as a high-density mounting substrate for a circuit on which ICs, LSIs, chip components, etc. are mounted and which are interconnected with each other. The present invention relates to a manufacturing method.
従来の技術 近年、導体材料に銅を使用した厚膜多層基板は、厚膜ペ
ーストが手軽に入手できることや、工法が簡単なため比
較的容易に作製できることから、現在多方面で実用化検
討されている。多層基板の絶縁層に要求される特性とし
ては、配線層間の絶縁性が良好なことである。このため
一般には、絶縁層を緻密化するために、非晶質系のガラ
スあるいは焼成温度より高い結晶化温度を持つ結晶化ガ
ラスが使用される。2. Description of the Related Art In recent years, thick-film multi-layer boards using copper as the conductor material are currently being studied for practical use in many fields because thick-film paste is easily available and can be prepared relatively easily because of the simple construction method. There is. The property required for the insulating layer of the multilayer substrate is that the insulating property between the wiring layers is good. Therefore, in general, in order to densify the insulating layer, amorphous glass or crystallized glass having a crystallization temperature higher than the firing temperature is used.
一方、表面実装の点から見ると、多層基板の表面をすべ
てチップ部品で構成するよりも、可能な箇所には厚膜抵
抗を形成するほうが有利である。On the other hand, from the viewpoint of surface mounting, it is more advantageous to form a thick film resistor in a possible place than to form the entire surface of the multilayer substrate with chip components.
発明が解決しようとする課題 しかしながら非晶質ガラスもしくはガラス−セラミック
絶縁層上に厚膜抵抗を形成すると、絶縁層中のガラス成
分と抵抗体中のガラス成分とが相互に作用し、厚膜抵抗
の抵抗値はアルミナ基板上での値と比べて大幅に変化す
るので、絶縁層上に厚膜抵抗体を形成するのは困難であ
る。However, when a thick film resistor is formed on an amorphous glass or a glass-ceramic insulating layer, the glass component in the insulating layer and the glass component in the resistor interact with each other, resulting in a thick film resistor. It is difficult to form a thick film resistor on the insulating layer because the resistance value of 1 changes greatly compared with the value on the alumina substrate.
本発明は上記問題を解決するためになされたもので、絶
縁層上に厚膜抵抗体を形成することのできる厚膜セラミ
ック多層基板を提供するものである。The present invention has been made to solve the above problems, and provides a thick film ceramic multilayer substrate capable of forming a thick film resistor on an insulating layer.
課題を解決するための手段 本発明は上記問題を解決するために、セラミック焼成基
板上に酸化銅を主成分とする酸化銅導体用ペーストと、
ガラスもしくはガラス−セラミックを主成分とする絶縁
ペーストとを交互に印刷し配線層および絶縁層からなる
多層配線を形成する工程と、前記基板を大気もしくは酸
化性雰囲気中でかつペーストに含まれる有機成分を分解
させるに充分な温度以上で加熱処理を行う工程と、しか
る後還元性雰囲気中で、前記絶縁層が焼結する温度以下
でかつ酸化銅が金属銅に還元される温度以上で加熱処理
を行う工程と、さらに銅に対して非酸化性となる雰囲気
中で前記絶縁層の焼結を行う工程とを有し、表面に露出
する最上部の前記絶縁層を形成するのに、800〜900℃の
温度範囲に結晶化温度を持ちかつ結晶化度の高い結晶化
ガラスもしくは結晶化ガラス−セラミックからなる絶縁
ペーストを使用し、他の前記絶縁層を形成するのに非晶
質系のガラスもしくは結晶化温度が900℃以上のガラス
からなる絶縁ペーストを使用するものである。Means for Solving the Problems The present invention, in order to solve the above problems, a copper oxide conductor paste containing copper oxide as a main component on a ceramic fired substrate,
A step of alternately printing glass or an insulating paste containing glass-ceramic as a main component to form a multilayer wiring consisting of a wiring layer and an insulating layer; and an organic component contained in the paste in the atmosphere or an oxidizing atmosphere of the substrate. And a heat treatment at a temperature higher than a temperature sufficient for decomposing, and then a heat treatment at a temperature below the temperature at which the insulating layer is sintered and at a temperature above which copper oxide is reduced to metallic copper in a reducing atmosphere. The step of performing, and further comprising the step of sintering the insulating layer in an atmosphere that is non-oxidizing to copper, 800-900 to form the uppermost insulating layer exposed on the surface. An insulating paste made of crystallized glass or crystallized glass-ceramic having a crystallization temperature in the temperature range of ° C and a high degree of crystallinity is used, and amorphous glass is also used to form the other insulating layers. Shishi Crystallization temperature is to use an insulating paste consisting of 900 ° C. or more glass.
作用 本発明は、上述した様に、表面に露出する最上部の絶縁
層に800〜900℃の温度範囲に結晶化温度を持ち、かつ結
晶化度の高い結晶化ガラスもしくは結晶化ガラス−セラ
ミックを使用することにより、絶縁層上に厚膜抵抗体を
形成しても厚膜抵抗体の下地の絶縁層はガラスの結晶化
でガラス成分が少なくなっているので、絶縁層中のガラ
ス成分と厚膜抵抗体中のガラス成分の相互作用が小さく
なり、絶縁層上に厚膜抵抗を形成しても、アルミナ基板
上での抵抗値とほとんど変わらない。また、他の絶縁層
には非晶質系のガラスもしくは結晶化温度が900℃以上
のガラス材料を使用することにより、焼成工程でガラス
成分が充分に軟化溶融し、緻密な絶縁層が得られるた
め、配線層間の絶縁性が良好に得られる。Action The present invention, as described above, has a crystallization temperature in the temperature range of 800 ~ 900 ℃ in the uppermost insulating layer exposed on the surface, and a high crystallinity crystallized glass or crystallized glass-ceramic By using it, even if a thick film resistor is formed on the insulating layer, the underlying insulating layer of the thick film resistor has less glass component due to crystallization of glass. The interaction of the glass components in the film resistor becomes small, and even if a thick film resistor is formed on the insulating layer, it is almost the same as the resistance value on the alumina substrate. Further, by using an amorphous glass or a glass material having a crystallization temperature of 900 ° C. or higher for the other insulating layer, the glass component is sufficiently softened and melted in the firing step, and a dense insulating layer is obtained. Therefore, good insulation between the wiring layers can be obtained.
実施例 以下本発明の実施例の厚膜セラミック多層基板の製造方
法について図面を参照しながら説明する。第1図は本発
明の一実施例における厚膜セラミック多層基板の製造工
程図、第2図は厚膜セラミック多層基板の一例の断面を
示すものである。Example A method for manufacturing a thick film ceramic multilayer substrate according to an example of the present invention will be described below with reference to the drawings. FIG. 1 is a manufacturing process diagram of a thick film ceramic multilayer substrate in one embodiment of the present invention, and FIG. 2 shows a cross section of an example of the thick film ceramic multilayer substrate.
まず、アルミナ焼成基板1上に酸化銅ペーストで配線層
2をスクリーン印刷し、乾燥する。この時に使用される
酸化銅(CuO)は平均粒径3μmのものを用いた。ペー
スト作製のためのビヒクルは、ターピネオール、ベンジ
ルアルコールそしてブチルカルビトールの混合液を溶剤
とし、有機バインダ(結合剤)のポリビニルブチラール
を溶解したものを用い、上記酸化銅粉末と混練してペー
ストとした。First, the wiring layer 2 is screen-printed on the alumina fired substrate 1 with a copper oxide paste and dried. The copper oxide (CuO) used at this time had an average particle size of 3 μm. The vehicle for making the paste was a mixture of terpineol, benzyl alcohol and butyl carbitol as a solvent, and polyvinyl butyral as an organic binder (binder) was dissolved in the vehicle, which was kneaded with the copper oxide powder to form a paste. .
次に、結晶化温度が900℃以上である結晶化ガラス(ホ
ウケイ酸鉛系)粉末とアルミナ粉末を重量比で50対50に
配合した無機組成物(平均粒径2μm)と、ポリビニル
ブチラールを酪酸エステル系溶剤で溶解したビヒクルを
混練して作製した第1の絶縁ペーストで酸化銅配線上お
よびアルミナ焼成基板1上の所望領域にスクリーン印刷
を施し、乾燥して未焼成の第1の絶縁層3を形成した。
引き続き、結晶化温度が800〜900℃の温度範囲にある結
晶化ガラス(ホウケイ酸鉛系)粉末とアルミナ粉末を重
量比で50対50に配合した無機組成物(平均粒径2μm)
と、ポリビニルブチラールを酪酸エステル系溶剤で溶解
したビヒクルを混練して作製した第2の絶縁ペーストを
前記第1の絶縁層3上に重ねてスクリーン印刷を施し、
乾燥して未焼成の第2の絶縁層4を形成した。なお、前
記酸化銅ペーストと絶縁ペーストの作製にターピネオー
ル、ベンジルアルコール、ブチルカルビトール、酪酸エ
ステル、ポリビニルブチラールを用いたが、有機バイン
ダとしてエチルセルロース、アクリル系樹脂を用いても
良く、さらにソルビタンアルキルエステル、ポリオキシ
エチレンアルキエーテル等の界面活性剤を用いることも
有効な手段である。さらに、前記酸化銅ペーストにより
最上部配線層を形成した。印刷を完了した基板を空気
中、300〜700℃に加熱しペースト中の有機成分を完全に
除去し、脱バインダを行った。続いて、水素ガスを5〜
40%含有する窒素ガス雰囲気中、300〜500℃で酸化銅を
金属銅に還元した後、窒素ガス雰囲気中900℃で金属銅
と未焼成の第1と第2の絶縁層3,4を同時に焼成した。Next, an inorganic composition (average particle diameter 2 μm) in which a crystallization temperature of 900 ° C. or higher and a crystallized glass (lead borosilicate type) powder and an alumina powder were mixed in a weight ratio of 50:50, and polyvinyl butyral was used as butyric acid. A first insulating paste prepared by kneading a vehicle dissolved in an ester solvent is screen-printed on a desired area on the copper oxide wiring and the alumina fired substrate 1, and is dried and not fired on the first insulating layer 3 Was formed.
Subsequently, an inorganic composition (average particle size 2 μm) in which a crystallized glass (lead borosilicate type) powder and an alumina powder having a crystallization temperature in a temperature range of 800 to 900 ° C. were mixed in a weight ratio of 50:50
And a second insulating paste prepared by kneading a vehicle in which polyvinyl butyral is dissolved in a butyric acid ester-based solvent is overlaid on the first insulating layer 3 and screen printed.
The second insulating layer 4 which was dried and not fired was formed. Although terpineol, benzyl alcohol, butyl carbitol, butyric acid ester, and polyvinyl butyral were used to prepare the copper oxide paste and the insulating paste, ethyl cellulose as an organic binder, an acrylic resin may be used, or sorbitan alkyl ester, Using a surfactant such as polyoxyethylene alkether is also an effective means. Further, the uppermost wiring layer was formed from the copper oxide paste. The printed substrate was heated in air to 300 to 700 ° C. to completely remove the organic components in the paste and remove the binder. Then, add 5 to 5 hydrogen gas.
In a nitrogen gas atmosphere containing 40%, after reducing copper oxide to metallic copper at 300 to 500 ° C, the metallic copper and unfired first and second insulating layers 3 and 4 are simultaneously formed at 900 ° C in a nitrogen gas atmosphere. Baked.
なお、実施例で得られた基板の最上部の第2の絶縁層4
に厚膜抵抗体5を形成したところ、アルミナ焼成基板1
上に抵抗体を形成した場合の抵抗値とほとんど変わらな
かった。その結果を、最上部絶縁層に結晶化温度が900
℃以上の結晶化ガラス−アルミナを用いた場合の結果と
合わせて下表に示す。The uppermost second insulating layer 4 of the substrate obtained in the example was used.
When the thick film resistor 5 is formed on the alumina fired substrate 1
It was almost the same as the resistance value when the resistor was formed on it. The result shows that the crystallization temperature is 900 at the top insulating layer.
The results are shown in the table below together with the results when crystallized glass-alumina having a temperature of ℃ or higher is used.
発明の効果 本発明によれば、次のような効果が得られる。 Effects of the Invention According to the present invention, the following effects can be obtained.
(1)最上部絶縁層に、結晶化温度の範囲が800〜900℃で
かつ結晶化度の高い結晶化ガラスもしくは結晶化ガラス
−セラミックを使用するので、絶縁層中のガラス成分と
抵抗体中のガラス成分の相互作用が小さくなり、絶縁層
上に抵抗体を形成してもアルミナ基板上での抵抗値とほ
とんど変わらない。(1) Since crystallized glass or crystallized glass-ceramic having a high crystallization temperature in the range of 800 to 900 ° C. is used for the uppermost insulating layer, the glass component in the insulating layer and the Since the interaction of the glass component becomes small, even if a resistor is formed on the insulating layer, it is almost the same as the resistance value on the alumina substrate.
(2)最上部絶縁層に結晶化温度の範囲が800〜900℃で、
かつ結晶化度の高い結晶化ガラスもしくは結晶化ガラス
−セラミックを使用する一方、その他の絶縁層には非晶
質系のガラスもしくは結晶化温度が900℃以上のガラス
を使用するので、焼成工程で最上部以外の絶縁層中のガ
ラス成分が充分に軟化溶融し、緻密な絶縁層が得られる
ため、各配線層間の絶縁性は良好に得られる。(2) The crystallization temperature range is 800 ~ 900 ℃ in the uppermost insulating layer,
And while using a crystallized glass or crystallized glass-ceramic with a high degree of crystallinity, since amorphous glass or glass with a crystallization temperature of 900 ° C or higher is used for the other insulating layers, it is possible to use Since the glass components in the insulating layers other than the uppermost portion are softened and melted sufficiently to obtain a dense insulating layer, good insulation between the wiring layers can be obtained.
第1図は本発明の一実施例における厚膜セラミック多層
基板の製造工程図、第2図は厚膜セラミック多層基板の
断面図である。 1……アルミナ焼成基板、2……配線層、3……第1の
絶縁層、4……第2の絶縁層。FIG. 1 is a manufacturing process diagram of a thick film ceramic multilayer substrate in one embodiment of the present invention, and FIG. 2 is a sectional view of the thick film ceramic multilayer substrate. 1 ... Alumina firing substrate, 2 ... Wiring layer, 3 ... First insulating layer, 4 ... Second insulating layer.
フロントページの続き (56)参考文献 特開 昭62−145896(JP,A) 特開 昭62−252901(JP,A) 特開 昭56−131993(JP,A)Continuation of front page (56) Reference JP 62-145896 (JP, A) JP 62-252901 (JP, A) JP 56-131993 (JP, A)
Claims (1)
する酸化銅導体用ペーストと、ガラスもしくはガラス−
セラミックを主成分とする絶縁ペーストとを交互に印刷
し配線層および絶縁層からなる多層配線を形成する工程
と、前記基板を大気もしくは酸化性雰囲気中でかつペー
ストに含まれる有機成分を分解させるに充分な温度以上
で加熱処理を行う工程と、しかる後還元性雰囲気中で前
記絶縁層が焼結する温度以下でかつ酸化銅が金属銅に還
元される温度以上で加熱処理を行う工程と、さらに銅に
対して非酸化性となる雰囲気中で前記絶縁層の焼結を行
う工程とを有し、表面に露出する最上部の前記絶縁層を
形成するのに、800〜900℃の温度範囲に結晶化温度を持
ちかつ結晶化度の高い結晶化ガラスもしくは結晶化ガラ
ス−セラミックからなる絶縁ペーストを使用し、他の前
記絶縁層を形成するのに非晶質系のガラスもしくは結晶
化温度が900℃以上のガラスからなる絶縁ペーストを使
用することを特徴とする厚膜セラミック多層基板の製造
方法。1. A copper oxide conductor paste containing copper oxide as a main component and glass or glass on a ceramic fired substrate.
A step of alternately printing an insulating paste containing ceramic as a main component to form a multilayer wiring consisting of a wiring layer and an insulating layer; and a step of decomposing an organic component contained in the paste in the atmosphere or an oxidizing atmosphere of the substrate. A step of performing a heat treatment at a sufficient temperature or higher, and a step of performing a heat treatment at a temperature lower than a temperature at which the insulating layer is subsequently sintered in a reducing atmosphere and at a temperature higher than that at which copper oxide is reduced to metallic copper; And a step of sintering the insulating layer in an atmosphere that is non-oxidizing to copper, to form the uppermost insulating layer exposed on the surface, in the temperature range of 800 ~ 900 ℃. An insulating paste having a crystallization temperature and a high crystallinity of crystallized glass or crystallized glass-ceramic is used, and an amorphous glass or a crystallization temperature of 900 is used to form the other insulating layer. Above ℃ Method for producing a thick film ceramic multilayer substrate, characterized by using an insulating paste consisting of lath.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63153934A JPH0734504B2 (en) | 1988-06-22 | 1988-06-22 | Method for manufacturing thick film ceramic multilayer substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63153934A JPH0734504B2 (en) | 1988-06-22 | 1988-06-22 | Method for manufacturing thick film ceramic multilayer substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01321691A JPH01321691A (en) | 1989-12-27 |
JPH0734504B2 true JPH0734504B2 (en) | 1995-04-12 |
Family
ID=15573273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63153934A Expired - Lifetime JPH0734504B2 (en) | 1988-06-22 | 1988-06-22 | Method for manufacturing thick film ceramic multilayer substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0734504B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2657008B2 (en) * | 1991-06-26 | 1997-09-24 | 日本特殊陶業株式会社 | Metallized composition for ceramics |
KR20030050396A (en) * | 2001-12-18 | 2003-06-25 | 오리온전기 주식회사 | Method of Manufacturing LTCC Module |
JP5864213B2 (en) * | 2011-01-06 | 2016-02-17 | イビデン株式会社 | Exhaust gas treatment equipment |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56131993A (en) * | 1980-03-19 | 1981-10-15 | Tokyo Shibaura Electric Co | Glazed board |
JPS62252901A (en) * | 1985-11-30 | 1987-11-04 | 株式会社住友金属セラミックス | Electronic circuit board with resistance unit |
JPH0680897B2 (en) * | 1985-12-20 | 1994-10-12 | 松下電器産業株式会社 | Method for manufacturing ceramic copper multilayer wiring board |
-
1988
- 1988-06-22 JP JP63153934A patent/JPH0734504B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01321691A (en) | 1989-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62265795A (en) | Ceramic board with built-in capacitor | |
JPH06345530A (en) | Multilayreed glass-ceramic substrate and production thereof | |
JPH0734504B2 (en) | Method for manufacturing thick film ceramic multilayer substrate | |
JP3229021B2 (en) | Circuit board | |
JP3064047B2 (en) | Multilayer ceramic circuit board | |
JPS6030196A (en) | Method of producing multilayer circuit board | |
JPH01166599A (en) | Manufacture of laminated ceramic substrate | |
JP3190111B2 (en) | Multilayer wiring board and dielectric layer material | |
JPH02277279A (en) | Simultaneously baked ceramic circuit board | |
JP2004186427A (en) | Thick film circuit board and method for manufacturing the same | |
JP3222296B2 (en) | Conductive ink | |
JPH02156596A (en) | Manufacture of thick multilayered substrate | |
JPS62145896A (en) | Manufacture of ceramic copper multilayer wiring board | |
JPH0258396A (en) | Manufacture of thick film multilayer substrate | |
JP2002198626A (en) | Manufacturing method of low temperature baking ceramic circuit board | |
JP2000049431A (en) | Ceramic circuit board | |
JP2002231049A (en) | Conductive paste | |
JP2652229B2 (en) | Multilayer circuit ceramic substrate | |
JP2967013B2 (en) | Insulation material | |
JPS61292392A (en) | Manufacture of ceramic wiring board | |
JP2589570B2 (en) | Conductive paste for multilayer circuit board and method for manufacturing multilayer circuit board | |
JP2004356306A (en) | Resistor paste, ceramic wiring board with resistor and manufacturing method therefor | |
JPH0321109B2 (en) | ||
JPH04334803A (en) | Conductor paste composite and ceramic substrate | |
JPS63213302A (en) | Electric resistor and manufacture of the same |