[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07333201A - Ultrasonic flaw detection of piping - Google Patents

Ultrasonic flaw detection of piping

Info

Publication number
JPH07333201A
JPH07333201A JP6122125A JP12212594A JPH07333201A JP H07333201 A JPH07333201 A JP H07333201A JP 6122125 A JP6122125 A JP 6122125A JP 12212594 A JP12212594 A JP 12212594A JP H07333201 A JPH07333201 A JP H07333201A
Authority
JP
Japan
Prior art keywords
probe
pig
ultrasonic
flaw detection
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6122125A
Other languages
Japanese (ja)
Other versions
JP3033438B2 (en
Inventor
Tadashi Morimoto
匡 森本
Akira Hagiwara
明 萩原
Koji Ishihara
耕司 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6122125A priority Critical patent/JP3033438B2/en
Publication of JPH07333201A publication Critical patent/JPH07333201A/en
Application granted granted Critical
Publication of JP3033438B2 publication Critical patent/JP3033438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect the vertical seam welded part of piping and other flaw with high accuracy by transmitting ultrasonic waves in a direction of a specific angle with respect to the advance direction of a pig by an ultrasonic probe. CONSTITUTION:The transmission direction of ultrasonic waves is set to + or -45 deg. or + or -135 deg. with respect to the advance direction of a pig. The ultrasonic waves transmitted from probes 10a, 10b, 10c,... transmit through the pipe wall or surface of piping or helically propage therethrough and the flaw detection of the whole surfaces of a matrix, a vertical seam welded part and a circumferential welded part is substantially performed accompanied by the advance of the pig and the detected flaw is measured by a measuring device and the state and position of the flaw are stored in a memory device. During a change period from a state I to a state II, the flaw 36 of the matrix is detected by the probe 10b and, in the state II, the flaw 37 in the vertical seam welded part is detected by the probe 10a. The flaw 38 of the circumferential welded part is detected by the probe 10a by the further advance of the pig.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ピグを用いて配管の腐
食欠陥や溶接欠陥などを連続的に検出する超音波探傷方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method for continuously detecting corrosion defects, welding defects and the like of pipes using a pig.

【0002】[0002]

【従来の技術】従来の配管溶接部の欠陥を検出するピグ
の一例として実開昭62−91254号公報に開示され
た考案がある。この考案は、管内を走行する管内面検査
用ピグに、管の円周方向の溶接部位置を検知するための
超音波表面波探触子と、管内面の欠陥を検出するための
斜角探触子とを管軸方向に所定間隔をあけて配置し、溶
接部の検査を連続的にかつ適確に行なうようにしたもの
である。
2. Description of the Related Art As an example of a conventional pig for detecting a defect in a welded portion of a pipe, there is a device disclosed in Japanese Utility Model Laid-Open No. 62-91254. This invention uses an ultrasonic surface wave probe for detecting the position of a welded portion in the circumferential direction of a pipe, a bevel probe for detecting defects on the inner surface of the pipe, and a pig for inspecting the inner surface of the pipe. The tentacles are arranged at a predetermined interval in the tube axis direction so that the welded portion can be continuously and accurately inspected.

【0003】また、例えば、特開平5−119025号
公報に示すように、管の表面に溶接部を中心に対称的に
超音波探触子を配置し、管を移動させて溶接部の欠陥を
検出する2探触子法も実用化されている。
Further, for example, as shown in Japanese Patent Laid-Open No. 5-11925, ultrasonic probes are symmetrically arranged on the surface of the pipe with the weld being the center, and the pipe is moved to remove defects in the weld. The two-probe method for detecting is also in practical use.

【0004】[0004]

【発明が解決しようとする課題】実開昭62−9125
4号公報に記載されたピグは、円周溶接部に直交する方
向に超音波を送信しているので、円周溶接部の欠陥ある
いは母材部のピット状腐食欠陥を探傷する場合、欠陥検
出率は探傷のカバリングレーショに比例するため、ピグ
にできるだけ多くの探触子を装備する必要がある。
[Problems to be Solved by the Invention]
Since the pig described in Japanese Patent Publication No. 4 transmits ultrasonic waves in a direction orthogonal to the circumferential welded portion, when detecting a defect in the circumferential welded portion or a pit-like corrosion defect in the base metal portion, defect detection is performed. The rate is proportional to the coverage of the flaw, so the pig should be equipped with as many transducers as possible.

【0005】例えば、600Aの鋼管の円周溶接部を探
傷する場合、探触子の探傷有効幅を20mmとすると、
全線探傷のためにはピグに約95個の探触子を装備する
必要があり、このため、ピグの大きさによっては、探触
子を2段、3段あるいは千鳥状に装備するなどの工夫を
こらさなければならず、現実には、カバリングレーショ
100%の要求を満すことは困難であった。なお、この
ようなピグによっては、縦シーム溶接部の探傷は、原理
的に不可能であった。
For example, when flaw detection is performed on the circumferential welded portion of a 600 A steel pipe, if the flaw detection effective width of the probe is 20 mm,
It is necessary to equip a pig with about 95 transducers for full-line flaw detection. Therefore, depending on the size of the pig, it may be necessary to equip the probe with two, three, or staggered patterns. In reality, it was difficult to meet the requirement of 100% coverage. In principle, it was impossible to detect flaws in the vertical seam welded portion by such a pig.

【0006】また、上記のようなピグにおいては、溶接
部の余盛りからのエコーがノイズとなって検出精度を低
下させるため、余盛りエコーに対するノイズ除去のため
の手段を特別に設ける必要があるという問題があった。
Further, in the above-mentioned pig, since echoes from the extra portion of the welded portion become noise and deteriorate the detection accuracy, it is necessary to specially provide means for removing noise from the extra echo. There was a problem.

【0007】さらに、特開平5−119025号公報に
係る2探触子法によれば、上記の問題は解決できるが、
管内を走行するピグには超音波探触子の配置が複雑にな
るため適用することができない。
Further, according to the two-probe method disclosed in Japanese Patent Laid-Open No. 5-119025, the above problem can be solved.
It cannot be applied to a pig running in a pipe because the ultrasonic probe is placed in a complicated arrangement.

【0008】本発明は、上記の課題を解決すべくなされ
たもので、少数の超音波探触子を装備したピグにより、
配管の縦シーム溶接部、円周溶接部の欠陥及び母材の欠
陥を高精度で検出することのできる超音波探傷方法を得
ることを目的としたものである。また、本発明の他の目
的は、溶接部余盛りからのエコーに影響されない超音波
探傷方法を得ることにある。
The present invention has been made to solve the above-mentioned problems, and a pig equipped with a small number of ultrasonic probes is provided.
An object of the present invention is to obtain an ultrasonic flaw detection method capable of detecting defects in a vertical seam welded portion, a circumferential welded portion of a pipe, and defects in a base material with high accuracy. Another object of the present invention is to obtain an ultrasonic flaw detection method that is not affected by echoes from the weld surplus.

【0009】[0009]

【課題を解決するための手段】本発明に係る配管の超音
波探傷方法は、タイヤ型超音波探触子よりピグの進行方
向に対して±35°〜55°又は±125°〜145°
の方向に超音波を送信し、欠陥からのエコーを検出する
ようにしたものである。
An ultrasonic flaw detection method for a pipe according to the present invention is a ± 35 ° to 55 ° or ± 125 ° to 145 ° with respect to a traveling direction of a pig from a tire type ultrasonic probe.
The ultrasonic wave is transmitted in the direction of and the echo from the defect is detected.

【0010】また、上記の配管の超音波探傷方法におい
て、超音波の送信方向をピグの進行方向に対して±45
°又は±135°としたものである。さらに、タイヤ型
超音波探触子として、屈折角の大きい横波及び表面波を
同時に送信できる探触子、斜角探触子、表面波探触子、
又は斜角探触子と表面波探触子の併用の何れかを使用し
たものである。
Further, in the above-described ultrasonic flaw detection method for piping, the ultrasonic wave transmission direction is ± 45 with respect to the traveling direction of the pig.
Or ± 135 °. Furthermore, as a tire type ultrasonic probe, a probe capable of simultaneously transmitting a transverse wave and a surface wave having a large refraction angle, a bevel probe, a surface wave probe,
Alternatively, a combination of a bevel probe and a surface wave probe is used.

【0011】[0011]

【作用】本発明によれば、タイヤ型超音波探触子から送
信された超音波は、基本的に配管の管壁内又は表面を伝
播し、あるいは管壁内又は表面をヘリカル状に伝播し、
ピグの進行に伴って実質的に母材の全面探傷、縦シーム
溶接部の全線探傷及び円周溶接部の全線探傷を行なうこ
とができる。極端な場合、即ち、探触子の出力が大で受
信感度が高く、探傷距離が十分長くとれ、これに対して
配管の径が相対的に小であれば、1個の探触子で全面及
び全線探傷を行なうことができる。
According to the present invention, the ultrasonic waves transmitted from the tire type ultrasonic probe basically propagate in the pipe wall or the surface of the pipe, or propagate in the pipe wall or the surface in a helical shape. ,
With the progress of the pig, it is possible to substantially perform full-face flaw detection on the base metal, full-line flaw detection on the vertical seam welded portion, and full-line flaw detection on the circumferential welded portion. In an extreme case, that is, when the output of the probe is high, the receiving sensitivity is high, the flaw detection distance is long enough, and the diameter of the pipe is relatively small, the entire surface can be measured with one probe. And it is possible to perform flaw detection on all lines.

【0012】また、一般的に溶接線に対して平面上で超
音波が斜めに入射する場合、余盛りからの反射があった
としても、そのエコーは入射方向にはかえらない。した
がって、通常、超音波探傷につきものの余盛りエコーに
対するノイズ除去のための配慮が不要になり、ハード及
びソフト上の煩雑さをなくすことができる。
In general, when an ultrasonic wave is obliquely incident on a plane with respect to a welding line, the echo does not return in the incident direction even if there is reflection from the extra scale. Therefore, it is not necessary to consider noise removal for extra echoes usually associated with ultrasonic flaw detection, and the complexity of hardware and software can be eliminated.

【0013】なお、縦シーム溶接部と円周溶接部がT字
状に交差する交差部は、本発明に係る探傷方法において
は超音波の反射源となる可能性があるが、通常、配管の
縦シーム溶接部の管端部近傍の内外面余盛りは削除され
ているため、この点に対する配慮は不要となる。
The intersection where the vertical seam welded portion and the circumferential welded portion intersect in a T-shape may serve as a reflection source of ultrasonic waves in the flaw detection method according to the present invention. Since the inner and outer surface bulges near the pipe end of the vertical seam weld are deleted, consideration for this point is unnecessary.

【0014】[0014]

【実施例】図2は本発明に使用するピグの一例の側面
図、図3はそのA−A拡大断面図である。両図におい
て、1はピグで、1輌目と2輌目の計測器ピグ2,3に
は記憶装置7と超音波計測装置8が搭載されており、3
輌目のセンサピグ4には複数のタイヤ型超音波探触子1
0a〜10hが搭載されている。そして、これらは連結
器5a,5bで連結されている。6a,6bはセンサピ
グ4の後端部に設けられたメジャーリングローラであ
る。
FIG. 2 is a side view of an example of a pig used in the present invention, and FIG. 3 is an AA enlarged sectional view thereof. In both figures, 1 is a pig, and a storage device 7 and an ultrasonic measuring device 8 are mounted on the measuring instruments pigs 2 and 3 of the first and second vehicles, respectively.
A plurality of tire type ultrasonic probes 1 are provided on the sensor pig 4 of the vehicle eye.
0a to 10h are mounted. And these are connected by the couplers 5a and 5b. 6a and 6b are measuring rollers provided at the rear end of the sensor pig 4.

【0015】センサピグ4には板ばね9を介して等間隔
で複数(図には8個の場合が示してある)のタイヤ型超
音波探触子(以下探触子という)10a〜10h(以下
単に符号10で示すことがある)が装備されている。こ
の探触子10は、図4、図5にその一例を示すように、
軸11を中心として、内側の超音波信号伝播体としての
水が収容されている水室12と、外側のゴムタイヤ13
と、水室12内において軸11に取付けられた超音波セ
ンサ14とからなっている。なお、15はホルダ、Pは
配管である。
A plurality of tire-type ultrasonic probes (hereinafter referred to as probes) 10a to 10h (hereinafter referred to as probes) 10a to 10h (hereinafter referred to as "probe") are arranged on the sensor pig 4 via leaf springs 9 at equal intervals. (Sometimes simply indicated by reference numeral 10). This probe 10, as shown in one example in FIGS. 4 and 5,
A water chamber 12 containing water as an ultrasonic signal propagating body on the inner side of the shaft 11 and a rubber tire 13 on the outer side.
And an ultrasonic sensor 14 attached to the shaft 11 in the water chamber 12. In addition, 15 is a holder and P is piping.

【0016】ところで、発明者らは、管軸方向欠陥と円
周方向欠陥のエコー高さ、縦シーム溶接部余盛り及び円
周溶接部余盛りのエコー高さと、超音波の送受信方向
(角度)との関係について長期の研究と多くの実験を重
ねた結果、図6に示すような結論を得た。
By the way, the inventors have found that the echo heights of the tube axis direction defect and the circumferential direction defect, the echo heights of the longitudinal seam welded portion extraneous and the circumferential welded extraneous portion, and the ultrasonic transmission / reception direction (angle). As a result of repeated long-term research and many experiments on the relationship with, the conclusions shown in FIG. 6 were obtained.

【0017】図6から明らかなように、探触子による超
音波の送受信方向、したがって送受信角度αが、ピグの
進行方向に対して45°を中心とする35°〜55°
(又は125°〜145°)の範囲においては、管軸方
向欠陥及び円周方向欠陥は何れもそのエコー高さが欠陥
検出レベルを超えているため、1種類の探触子で全方向
の欠陥を検出することができる。このため探触子の数を
低減することができる。また、上記の範囲では、縦シー
ム溶接部余盛り及び円周溶接部余盛りからのエコー高さ
は、いずれもノイズレベルより低いので、欠陥の検出に
際してノイズの影響を受けることはない。
As is apparent from FIG. 6, the ultrasonic wave transmission / reception direction by the probe, that is, the transmission / reception angle α is 35 ° to 55 ° centering 45 ° with respect to the traveling direction of the pig.
In the range (or 125 ° to 145 °), the echo height of both the tube axis direction defect and the circumferential direction defect exceeds the defect detection level, so that one type of probe causes defects in all directions. Can be detected. Therefore, the number of probes can be reduced. Further, in the above range, the echo heights from the vertical seam welded portion extraneous and the circumferential welded portion extraneous are both lower than the noise level, so that there is no influence of noise upon detection of defects.

【0018】一方、α<35°の範囲Aでは管軸方向欠
陥のエコーは欠陥検出レベルより低く、また、α>55
°の範囲Bでは円周方向欠陥のエコーは欠陥検出レベル
より低いため、これらの範囲では、1種類の探触子では
全方向の欠陥の検出は不可能であり、全方向の欠陥を検
出するためには2種類以上の探触子が必要なため、探触
子の数を減らすことはできない。また、上記のα<35
°及びα>55°の範囲では、円周溶接部余盛り及び縦
シーム溶接部余盛りからのエコーの高さが高いため、ノ
イズの影響を受け易く、正確な探傷ができないことがあ
る。
On the other hand, in the range A of α <35 °, the echo of the tube axis direction defect is lower than the defect detection level, and α> 55.
In the range B of °, the echo of the circumferential defect is lower than the defect detection level. Therefore, in these ranges, it is impossible to detect defects in all directions with one type of probe, and defects in all directions are detected. Therefore, the number of probes cannot be reduced because two or more types of probes are required. Also, the above α <35
In the range of 0 ° and α> 55 °, the height of the echo from the circumferential welded portion surplus and the vertical seam welded portion surplus is high, so that it is easily affected by noise and accurate flaw detection may not be possible.

【0019】本発明に係るピグ1に装備した各探触子1
0は、上記の研究、実験の結果に基いて、図7に示すよ
うに、超音波センサ14からピグ1の進行方向aに対し
て±35°〜55°又は±125°〜145°の方向、
好ましくは、±45°又は±135°の方向に超音波を
送信するように構成されている。
Each probe 1 mounted on the pig 1 according to the present invention
Based on the results of the above research and experiment, 0 is a direction of ± 35 ° to 55 ° or ± 125 ° to 145 ° with respect to the traveling direction a of the pig 1 from the ultrasonic sensor 14 as shown in FIG. 7. ,
Preferably, it is configured to transmit ultrasonic waves in the directions of ± 45 ° or ± 135 °.

【0020】図8は計測装置の一例のブロック図であ
る。パルサー22は遅延回路21からの信号により探触
子10a〜10hに順次送信パルスを送信する。探触子
10a〜10hからの受信信号は、プリアンプ23及び
欠陥検出用メインアンプ24aで増幅される。欠陥検出
用メインアンプ24aは、自動感度調整用アンプ24b
及び基準エコー検出回路25bによって自動的に感度が
調整される。
FIG. 8 is a block diagram of an example of the measuring device. The pulser 22 sequentially transmits the transmission pulses to the probes 10a to 10h by the signal from the delay circuit 21. Received signals from the probes 10a to 10h are amplified by the preamplifier 23 and the defect detecting main amplifier 24a. The defect detecting main amplifier 24a is an automatic sensitivity adjusting amplifier 24b.
The sensitivity is automatically adjusted by the reference echo detection circuit 25b.

【0021】欠陥からのエコーは欠陥エコー検出回路2
5aで検出され、エコー高さはエコー高さ計測回路27
で計測される。また、超音波の送信から欠陥によるエコ
ーの受信までの時間は、時間計測回路26で計測する。
そして、欠陥エコーの高さ及び時間計測データは、メジ
ャーリングローラ6及び走行距離計30からの信号によ
って、一定距離ごとにデータ集約回路28で集約し、集
約したデータは記憶装置29に記憶される。計測装置8
は制御信号回路20によって制御される。
The echo from the defect is a defect echo detection circuit 2
5a, the echo height is detected by the echo height measuring circuit 27.
Is measured at. The time from the transmission of ultrasonic waves to the reception of echoes due to defects is measured by the time measuring circuit 26.
Then, the height and time measurement data of the defect echo are aggregated by the data aggregating circuit 28 at a constant distance according to the signals from the measuring roller 6 and the odometer 30, and the aggregated data is stored in the storage device 29. . Measuring device 8
Are controlled by the control signal circuit 20.

【0022】次に、図1により上述のようなピグ1を使
用して配管の欠陥を検出する超音波探傷方法の一例を説
明する。図1はパイプラインにおいて、本発明に係る超
音波探傷方法により配管の欠陥を検出する実施例を示す
模式図で、Pは被検査配管を平面状に展開した状態を示
す。図において、10a,10b,10c,…は図2、
図3に示したピグ1に間隔Lで装備された探触子で、ピ
グ1は配管P内を矢印a方向に進行する。そして、この
各探触子10a,10b,10c,…は、図7で説明し
たように、屈折角の大きい横波及び表面波を同時にピグ
1の進行方向aに対して+35°〜55°方向(本実施
例では+45°方向)に送信し、伝播させている。
Next, referring to FIG. 1, an example of an ultrasonic flaw detection method for detecting a defect in a pipe by using the above-described pig 1 will be described. FIG. 1 is a schematic view showing an embodiment in which a defect of a pipe is detected in a pipeline by the ultrasonic flaw detection method according to the present invention, and P indicates a state in which the pipe to be inspected is developed in a plane shape. In the figure, 10a, 10b, 10c, ...
With the probe mounted at the interval L on the pig 1 shown in FIG. 3, the pig 1 advances in the pipe P in the direction of arrow a. As described with reference to FIG. 7, each of the probes 10a, 10b, 10c, ... Simultaneously transmits a transverse wave and a surface wave having a large refraction angle in the + 35 ° to 55 ° direction with respect to the traveling direction a of the pig 1. In this embodiment, it is transmitted in + 45 ° direction and propagated.

【0023】34は縦シーム溶接部の余盛り、35は円
周溶接部の余盛りで、36は配管Pの母材欠陥、37は
縦シーム溶接部の欠陥、38は円周溶接部の欠陥であ
る。
Reference numeral 34 is a surplus of the vertical seam welded portion, 35 is a surplus of the circumferential welded portion, 36 is a base material defect of the pipe P, 37 is a defect of the vertical seam welded portion, 38 is a defect of the circumferential welded portion. Is.

【0024】上記のような構成において、ピグ1と配管
Pの内面との相対位置、即ち、探触子10a,10b,
10cと配管Pの内面との位置関係が状態Iにあるとき
は、各探触子10a,10b,10cから送信された超
音波31a,31b,31cは、欠陥36,37,38
と遭遇していない。また、縦シーム溶接部の余盛り34
は、場合によっては超音波を反射するが、その余盛りエ
コー32aは探触子10aには戻らない。したがって、
ノイズ源とはならない。
In the above structure, the relative position between the pig 1 and the inner surface of the pipe P, that is, the probes 10a, 10b,
When the positional relationship between 10c and the inner surface of the pipe P is in the state I, the ultrasonic waves 31a, 31b, 31c transmitted from the respective probes 10a, 10b, 10c have defects 36, 37, 38.
I have not encountered. In addition, the extra seam of the vertical seam weld 34
In some cases, the ultrasonic wave is reflected, but the extra echo 32a does not return to the probe 10a. Therefore,
It does not become a noise source.

【0025】ピグ1の進行に伴って探触子10a,10
b,10cは状態IIからIII へと変化するが、状態Iか
らIIに変化する間に、探触子10bで母材欠陥36を検
知し、状態IIにおいて、縦シーム溶接部内の欠陥37
を、探触子10aが検知する。状態III においては、探
触子10aからの超音波31aが、縦シーム溶接部の余
盛り34と円周溶接部の余盛り35との交差部39を通
り抜け、円周溶接部の探傷を行なっている。この交差部
39は、通常は超音波の反射源になる可能性があるが、
配管管端部の縦シーム溶接部の余盛り34は、内外面と
も母材と同一面になるように削除されているので、反射
源、したがって、この場合はノイズ源とならない。
As the pig 1 advances, the probes 10a, 10
b and 10c change from state II to III, the base material defect 36 is detected by the probe 10b during the change from state I to II, and in state II, the defect 37 in the vertical seam weld is detected.
Is detected by the probe 10a. In the state III, the ultrasonic wave 31a from the probe 10a passes through the intersection 39 between the extra seam welded portion 34 and the circumferential welded portion 35 to detect flaws in the circumferential welded portion. There is. This intersection 39 may be a reflection source of ultrasonic waves,
Since the bulge 34 of the vertical seam welded portion at the end of the pipe is removed so that both the inner and outer surfaces are flush with the base material, it does not become a reflection source, and thus a noise source in this case.

【0026】また、円周溶接部の余盛り35における超
音波の反射及び透過は、縦シーム溶接部で述べた場合と
同様である。要するに、健全な溶接部からの余盛りエコ
ーは無視することができる。なお、円周溶接部の欠陥3
8は、ピグ1がさらに進行することにより、探触子10
aにより検出される。
The reflection and transmission of ultrasonic waves in the extra weld 35 of the circumferential welded portion are the same as those described for the vertical seam welded portion. In short, the extra echo from a healthy weld can be ignored. In addition, defect 3 of the circumferential weld
8 is the probe 10 as the pig 1 further advances.
detected by a.

【0027】このようにして、探触子10a,10b,
10c,…から送信された超音波は、配管の管壁内又は
表面を伝播し、あるいは管壁内又は表面をヘリカル状に
伝播し、ピグ1の進行に伴って実質的に母材、縦シーム
溶接部及び円周溶接部の全面探傷を行ない、検出された
欠陥は、図8で説明した計測装置8で計測され、その欠
陥状態及び位置が記憶装置7に記憶される。
In this way, the probes 10a, 10b,
The ultrasonic waves transmitted from 10c, ... Propagate in the pipe wall or the surface of the pipe, or in the pipe wall or the surface in a helical manner, and substantially progress with the progress of the pig 1 as the base material and the vertical seam. Defects detected by performing flaw detection on the entire surface of the welded portion and the circumferential welded portion are measured by the measuring device 8 described with reference to FIG. 8, and the defect state and position thereof are stored in the storage device 7.

【0028】また、若し、縦シーム溶接部及び円周溶接
部の余盛り37,38からの反射があっても、その余盛
りエコーは超音波の入射方向、したがって探触子にはか
えらないので、余盛りエコー、したがってノイズの影響
を受けることがない。
Further, even if there is reflection from the extra seams 37 and 38 of the vertical seam welded portion and the circumferential welded portion, the extraneous echoes are not returned to the incident direction of the ultrasonic wave, that is, the probe. Therefore, it is not affected by extra echo, and thus noise.

【0029】このように、本発明は、ピグ1の進行方向
に対して超音波を斜めに、即ち、本実施例においては4
5°の方向に伝播させることにより、少数かつ1種類の
探触子で配管母材の全面探傷及び縦シーム溶接部、円周
溶接部の全線探傷を行うことが可能になり、これらの欠
陥36,37,38を容易かつ高精度で検出することが
できる。
As described above, according to the present invention, the ultrasonic waves are oblique to the traveling direction of the pig 1, that is, in the present embodiment, 4
By propagating in the direction of 5 °, it becomes possible to carry out full-face flaw detection of the pipe base material and full-line flaw detection of the vertical seam welded portion and the circumferential welded portion with a small number and one kind of probe, and these defects 36 , 37, 38 can be detected easily and with high accuracy.

【0030】上記の説明では、屈折角の大きい横波及び
表面波を同時に送信できる探触子により、ピグの進行方
向に対して超音波を45°の方向に送信させる場合を示
したが、本発明はこれに限定するものではなく、斜角探
触子又は表面波探触子あるいはその両者を用いてもよ
い。また、超音波の送信方向も、ピグの進行方向に対し
て±35°〜55°方向あるいは±125°〜145°
方向であってもよい。
In the above description, the case where the ultrasonic wave is transmitted in the direction of 45 ° with respect to the traveling direction of the pig by the probe capable of simultaneously transmitting the transverse wave and the surface wave having a large refraction angle has been described. Is not limited to this, and a bevel probe, a surface wave probe, or both may be used. Also, the transmission direction of ultrasonic waves is ± 35 ° to 55 ° or ± 125 ° to 145 ° with respect to the traveling direction of the pig.
It may be a direction.

【0031】さらに、本発明に使用するピグは図2〜図
5に示した構成及び図8に示した計測装置に限定するも
のではなく、他の構成及び計測装置に係るピグでも使用
することができる。
Further, the pig used in the present invention is not limited to the configuration shown in FIGS. 2 to 5 and the measuring device shown in FIG. 8, and may be used in pigs having other configurations and measuring devices. it can.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
はタイヤ型超音波探触子によりピグの進行方向に対して
±35°〜55°又は±125°〜145°の方向に超
音波を送信して配管の欠陥を検出するようにしたので、
次のような顕著な効果を得ることができる。
As is apparent from the above description, according to the present invention, the ultrasonic ultrasonic probe is used in the direction of ± 35 ° to 55 ° or ± 125 ° to 145 ° with respect to the traveling direction of the pig. To detect defects in the piping,
The following remarkable effects can be obtained.

【0033】(1)少数の探触子で探傷のカバリングレ
ーショを上げることができるため、検出率及び検出精度
を向上させることができる。 (2)溶接部の余盛りからの余盛りエコーの影響を受け
ないので、余盛りエコーに対するノイズ除去のための配
慮が不要になり、ハード、ソフト共に簡素化することが
できる。
(1) Since coverage of flaw detection can be increased with a small number of probes, the detection rate and detection accuracy can be improved. (2) Since it is not affected by the extra echo from the extra portion of the welded portion, consideration for removing noise from the extra echo is unnecessary, and both hardware and software can be simplified.

【0034】(3)探触子の数を大幅に低減できピグも
少輌編成でよいので、設備費及びランニングコストを節
減することができる。 (4)ピグが少輌編成でよいため走行安定性が向上し、
スタックの危険性が減少する。
(3) Since the number of the probes can be greatly reduced and the pigs can be formed by a small number of vehicles, the equipment cost and running cost can be reduced. (4) Running stability is improved because the number of pigs is small.
The risk of stacking is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る探傷方法を説明するための模式図
である。
FIG. 1 is a schematic diagram for explaining a flaw detection method according to the present invention.

【図2】本発明に使用するピグの一例を示す側面図であ
る。
FIG. 2 is a side view showing an example of a pig used in the present invention.

【図3】図2のA−A断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】図2の探触子の断面図である。4 is a cross-sectional view of the probe shown in FIG.

【図5】図4のB−B断面図である。5 is a sectional view taken along line BB of FIG.

【図6】超音波の送受信方向とエコー高さとの関係を示
す線図である。
FIG. 6 is a diagram showing a relationship between ultrasonic wave transmission / reception directions and echo heights.

【図7】図2の探触子の超音波の伝播方向を示す模式図
である。
FIG. 7 is a schematic diagram showing a propagation direction of ultrasonic waves of the probe of FIG.

【図8】ピグによる欠陥の計測装置の一例を示すブロッ
ク図である。
FIG. 8 is a block diagram showing an example of a defect measuring device using a pig.

【符号の説明】[Explanation of symbols]

1 ピグ 7 記憶装置 8 計測装置 10a〜10h 探触子 P 配管 1 Pig 7 Storage Device 8 Measuring Device 10a to 10h Probe P Piping

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 タイヤ型超音波探触子を装備して配管内
を走行するピグにより前記配管の母材や溶接部の欠陥を
検出する超音波探傷方法において、 前記タイヤ型超音波探触子より前記ピグの進行方向に対
して±35°〜55°又は±125°〜145°の方向
に超音波を送信し、前記欠陥からのエコーを検出するこ
とを特徴とする配管の超音波探傷方法。
1. An ultrasonic flaw detection method for detecting a defect in a base material or a welded portion of a pipe by a pig equipped with a tire type ultrasonic probe and traveling in the pipe, wherein the tire type ultrasonic probe is used. An ultrasonic flaw detection method for a pipe, characterized in that ultrasonic waves are transmitted in a direction of ± 35 ° to 55 ° or ± 125 ° to 145 ° with respect to the traveling direction of the pig, and an echo from the defect is detected. .
【請求項2】 超音波の送信方向がピグの進行方向に対
して±45°又は±135°である請求項1記載の配管
の超音波探傷方法。
2. The ultrasonic flaw detection method for a pipe according to claim 1, wherein the ultrasonic wave transmission direction is ± 45 ° or ± 135 ° with respect to the traveling direction of the pig.
【請求項3】 タイヤ型超音波探触子が、屈折角の大き
い横波及び表面波を同時に送信できる探触子、斜角探触
子、表面波探触子又は斜角探触子と表面波探触子の併用
の何れかである請求項1記載の配管の超音波探傷方法。
3. A tire type ultrasonic probe capable of simultaneously transmitting a transverse wave and a surface wave having a large refraction angle, a probe, a bevel probe, a surface wave probe or a bevel probe and a surface wave. The ultrasonic flaw detection method for a pipe according to claim 1, wherein the ultrasonic flaw detection is used in combination with a probe.
JP6122125A 1994-06-03 1994-06-03 Ultrasonic flaw detection method for piping Expired - Lifetime JP3033438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6122125A JP3033438B2 (en) 1994-06-03 1994-06-03 Ultrasonic flaw detection method for piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6122125A JP3033438B2 (en) 1994-06-03 1994-06-03 Ultrasonic flaw detection method for piping

Publications (2)

Publication Number Publication Date
JPH07333201A true JPH07333201A (en) 1995-12-22
JP3033438B2 JP3033438B2 (en) 2000-04-17

Family

ID=14828243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6122125A Expired - Lifetime JP3033438B2 (en) 1994-06-03 1994-06-03 Ultrasonic flaw detection method for piping

Country Status (1)

Country Link
JP (1) JP3033438B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017299A (en) * 2005-07-07 2007-01-25 Toshiba Corp Laser beam irradiation device
KR100971073B1 (en) * 2009-12-02 2010-07-20 한국가스공사 Detection apparatus of coating defects connected pig
WO2017158578A1 (en) 2016-03-18 2017-09-21 Invert Robotics Limited Surface wave detection of surface defects
CN110220972A (en) * 2019-05-25 2019-09-10 中海油能源发展股份有限公司 A kind of long distance pipeline piezoelectric supersonic wave inspection internal detector
EP3430388A4 (en) * 2016-03-18 2019-12-04 Invert Robotics Limited Surface wave detection of surface defects
CN111220701A (en) * 2019-10-17 2020-06-02 中国人民解放军陆军炮兵防空兵学院 Ultrasonic guided wave diagnosis method for damage state of barrel
CN118148197A (en) * 2024-05-13 2024-06-07 四川省水利科学研究院 Bridge foundation pile detection device and method based on ultrasonic technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228907B2 (en) * 2003-12-19 2009-02-25 Jfeエンジニアリング株式会社 In-pipe inspection method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017299A (en) * 2005-07-07 2007-01-25 Toshiba Corp Laser beam irradiation device
JP4643379B2 (en) * 2005-07-07 2011-03-02 株式会社東芝 Laser irradiation device
KR100971073B1 (en) * 2009-12-02 2010-07-20 한국가스공사 Detection apparatus of coating defects connected pig
WO2017158578A1 (en) 2016-03-18 2017-09-21 Invert Robotics Limited Surface wave detection of surface defects
EP3430388A4 (en) * 2016-03-18 2019-12-04 Invert Robotics Limited Surface wave detection of surface defects
US11420692B2 (en) 2016-03-18 2022-08-23 Invert Robotics Limited Surface wave detection of surface defects
CN110220972A (en) * 2019-05-25 2019-09-10 中海油能源发展股份有限公司 A kind of long distance pipeline piezoelectric supersonic wave inspection internal detector
CN111220701A (en) * 2019-10-17 2020-06-02 中国人民解放军陆军炮兵防空兵学院 Ultrasonic guided wave diagnosis method for damage state of barrel
CN118148197A (en) * 2024-05-13 2024-06-07 四川省水利科学研究院 Bridge foundation pile detection device and method based on ultrasonic technology

Also Published As

Publication number Publication date
JP3033438B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
EP2006675B1 (en) Ultrasonic flaw detection method for a tubular metal body
US4619143A (en) Apparatus and method for the non-destructive inspection of solid bodies
CN102183229B (en) Ultrasonic detection method of scale thickness in pipeline
JP4116483B2 (en) Tubular ultrasonic inspection method and apparatus
US5661241A (en) Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface
CN108562647A (en) The polyethylene pipe hot melt banjo fixing butt jointing supersonic detection device and method that PA-TOFD is combined
US4890496A (en) Method and means for detection of hydrogen attack by ultrasonic wave velocity measurements
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
EP0139317A2 (en) Apparatus and method for the non-destructive inspection of solid bodies
US20020194916A1 (en) Method for inspecting clad pipe
GB1559469A (en) Method and apparatus for automatic ultrasonic flaw detection
JP3033438B2 (en) Ultrasonic flaw detection method for piping
GB1413755A (en) Ultrasonic non-destructive testing of tubes and rods
CN103512953A (en) Ultrasonic testing method adopting multiple probes
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP3729686B2 (en) Defect detection method for piping
RU2621216C1 (en) Intra tube method of ultrasonic testing of welds
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
JPH0584464B2 (en)
JPS61133857A (en) Method and apparatus for diagnosing corrosion of underground pipeline
JP2001153850A (en) Image display method and device for ultrasonic flaw detection
Loveday et al. Feasibility of detecting cracks in rail track at long range using guided wave ultrasound
JPH0727551A (en) Tube inner shape inspecting device
JPH10332653A (en) Ultrasonic flaw detection method and device