JPH0733095Y2 - Accumulator oil return device - Google Patents
Accumulator oil return deviceInfo
- Publication number
- JPH0733095Y2 JPH0733095Y2 JP7168389U JP7168389U JPH0733095Y2 JP H0733095 Y2 JPH0733095 Y2 JP H0733095Y2 JP 7168389 U JP7168389 U JP 7168389U JP 7168389 U JP7168389 U JP 7168389U JP H0733095 Y2 JPH0733095 Y2 JP H0733095Y2
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- oil return
- temperature
- accumulator
- return pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Compressor (AREA)
Description
【考案の詳細な説明】 〔産業上の利用分野〕 本考案は空気調和機、冷凍機等の冷凍サイクルに適用さ
れる蒸発後の冷凍ガスから冷凍機油及び液冷媒を分離す
るためのアキュームレータの油戻し装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is applied to a refrigerating cycle such as an air conditioner and a refrigerator, and is an oil of an accumulator for separating refrigerating machine oil and liquid refrigerant from evaporated refrigerating gas. Regarding the return device.
従来の空気調和機の系統図を第4図に示す。 A system diagram of a conventional air conditioner is shown in FIG.
図において、圧縮機1から吐出された高温高圧ガスの冷
媒は四方弁2を経て凝縮器3に入り、ここで熱交換され
て凝縮し低温高圧の液冷媒となる。この液冷媒は膨脹弁
キャピラリーチューブ等の減圧機構4で減圧されて低温
低圧の気液二相流となり蒸発器5で熱交換されて蒸発し
た後、アキュームレータ6内に流入する。In the figure, the high-temperature high-pressure gas refrigerant discharged from the compressor 1 enters a condenser 3 via a four-way valve 2, where it is heat-exchanged and condensed to become a low-temperature high-pressure liquid refrigerant. The liquid refrigerant is decompressed by the decompression mechanism 4 such as an expansion valve capillary tube to become a low-temperature low-pressure gas-liquid two-phase flow that is heat-exchanged by the evaporator 5 and evaporated, and then flows into the accumulator 6.
その後アキュームレータ6内で液ガス分離された冷媒ガ
スは、冷媒ガス出口管9を通り圧縮機吸入管19、気液分
離器20を経て圧縮機1に吸入され再び圧縮される。After that, the refrigerant gas separated into the liquid gas in the accumulator 6 passes through the refrigerant gas outlet pipe 9, passes through the compressor suction pipe 19 and the gas-liquid separator 20, and is sucked into the compressor 1 and compressed again.
一方、蒸発器5で蒸発されなかった冷媒液及び冷凍機油
はアキュームレータ6内に貯溜された冷媒ガス出口管9
に穿設された油戻し穴7を通って徐々に圧縮機1に戻
る。これによって、圧縮機1内には適正量の冷凍機油が
保持され、また冷凍機油に随伴する液冷媒により前記圧
縮機1内に吸入される冷媒ガスが冷却される。On the other hand, the refrigerant liquid and the refrigerating machine oil not evaporated in the evaporator 5 are stored in the accumulator 6 in the refrigerant gas outlet pipe 9
It gradually returns to the compressor 1 through the oil return hole 7 drilled in. As a result, a proper amount of refrigerating machine oil is held in the compressor 1, and the refrigerant gas sucked into the compressor 1 is cooled by the liquid refrigerant accompanying the refrigerating machine oil.
上記従来の空気調和機等には解決すべき次の課題があっ
た。The above conventional air conditioners and the like have the following problems to be solved.
即ち、従来の空気調和機等ではアキュームレータの冷媒
ガス出口管に設けられた油戻し穴の径は、通常運転負荷
に合わせて適正量の液冷媒が圧縮機へ戻って圧縮機に吸
入される冷媒ガスを適正な温度に冷却するよう一定に選
定されているので、蒸発器での吸熱量が小さいとき、即
ち、運転負荷が低い場合には、蒸発器で蒸発されない液
冷媒がアキュームレータ内に多量に貯溜され、ひいては
この液冷媒が油戻し穴から多量に圧縮機へ戻って圧縮機
に吸入される冷媒ガスを過剰に冷却するため、圧縮機の
適正温度を維持できないという不具合が生ずる。That is, in a conventional air conditioner or the like, the diameter of the oil return hole provided in the refrigerant gas outlet pipe of the accumulator is such that a proper amount of liquid refrigerant returns to the compressor and is drawn into the compressor in accordance with the normal operating load. Since the gas is constantly selected to cool to an appropriate temperature, when the heat absorption amount in the evaporator is small, that is, when the operating load is low, a large amount of liquid refrigerant that is not evaporated in the evaporator is accumulated in the accumulator. A large amount of this liquid refrigerant returned to the compressor from the oil return hole and excessively cools the refrigerant gas sucked into the compressor, which causes a problem that the proper temperature of the compressor cannot be maintained.
本考案は上記課題の解決手段として、空気調和機、冷凍
機等の冷凍サイクルの蒸発器出口に設けられるアキュー
ムレータにおいて、上記アキュームレータの底部と圧縮
機の吸入管とを接続する油戻し管と、同油戻し管に設け
られ、圧縮機のドーム温度を検知して油戻し管からの冷
凍機油及び液冷媒の戻り量をドーム温度が低くなるに従
って減少させ、ドーム温度が高くなるに従って増加させ
る流量制御手段とを具備してなることを特徴とするアキ
ュームレータの油戻し装置を提供しようとするものであ
る。As a means for solving the above problems, the present invention relates to an accumulator provided at an evaporator outlet of a refrigeration cycle such as an air conditioner and a refrigerator, and an oil return pipe that connects a bottom portion of the accumulator and a suction pipe of a compressor, A flow rate control means that is provided in the oil return pipe, detects the dome temperature of the compressor, decreases the return amount of the refrigerating machine oil and the liquid refrigerant from the oil return pipe as the dome temperature becomes lower, and increases it as the dome temperature becomes higher. An oil return device for an accumulator, which comprises:
本考案は上記のように構成されるので次の作用を有す
る。Since the present invention is constructed as described above, it has the following effects.
即ち、アキュームレータに油戻し管を設けて圧縮機へ連
通させるとともに油戻し管に圧縮機のドーム温度と連動
させた流量制御手段を設けたことによりアキュームレー
タ内に貯溜された冷凍機油及び液冷媒の圧縮機へ戻る量
は、圧縮機ドームの温度が低くなるに従がって減少さ
せ、また圧縮機のドームの温度が高くなるに従がって増
加させることができる。That is, the oil return pipe is provided in the accumulator so as to communicate with the compressor, and the oil return pipe is provided with a flow rate control means linked to the dome temperature of the compressor, whereby the refrigeration oil and the liquid refrigerant stored in the accumulator are compressed. The amount returned to the machine can be decreased as the temperature of the compressor dome is decreased and can be increased as the temperature of the compressor dome is increased.
この結果、圧縮機の温度を冷凍サイクル運転負荷の変動
に影響されることなく適正範囲に維持させることができ
る。As a result, the temperature of the compressor can be maintained within an appropriate range without being affected by fluctuations in the refrigeration cycle operating load.
本考案の第1実施例を第1図により説明する。なお、従
来例と同様の構成部材には同符号を付し、必要な場合以
外は説明を省略する。以降、第2、第3実施例について
も同様のこととする。A first embodiment of the present invention will be described with reference to FIG. The same components as those of the conventional example are designated by the same reference numerals, and the description thereof will be omitted except when necessary. Hereinafter, the same applies to the second and third embodiments.
第1図において、アキュームレータ6の底部には油取出
口12が設けられ、この油取出口12と圧縮機吸入管19とを
接続する油戻し管13が施設されている。油戻し管13は油
取出口12の後流で分岐されており、分岐管の一方にはキ
ャピラリーチューブ等の冷媒制御器15が、他方には電磁
弁14a及びキャピラリーチューブ等の冷媒制御器15aが設
置され、双方は再び合流して上記の通り圧縮機吸入管19
に接続される。In FIG. 1, an oil outlet 12 is provided at the bottom of the accumulator 6, and an oil return pipe 13 that connects the oil outlet 12 and the compressor suction pipe 19 is installed. The oil return pipe 13 is branched in the wake of the oil outlet 12, and one of the branch pipes has a refrigerant controller 15 such as a capillary tube, and the other has a solenoid valve 14a and a refrigerant controller 15a such as a capillary tube. Once installed, the two will merge again and the compressor suction pipe 19
Connected to.
また、前記油戻し管13の分岐管の一方に設置された電磁
弁14aは圧縮機1のドームに感温部16を配設したサーモ
スタット16aと連動されており、圧縮機1のドームの温
度が所定の温度により高くなると電磁弁14aは開き逆に
低くなると電磁弁14aは閉じる。Further, the solenoid valve 14a installed on one side of the branch pipe of the oil return pipe 13 is interlocked with the thermostat 16a in which the temperature sensing portion 16 is arranged on the dome of the compressor 1, so that the temperature of the dome of the compressor 1 is controlled. When the temperature rises by a predetermined temperature, the solenoid valve 14a opens, and conversely when the temperature falls, the solenoid valve 14a closes.
このようにして蒸発器5よりアキュームレータ6内に貯
溜した冷凍機油及び液冷媒は、油戻し管13の冷媒制御器
15及び電磁弁14aと冷媒制御器15aを通って圧縮機吸入管
19に合流し圧縮機1へ戻る。この液冷媒によって圧縮機
1に吸入される冷媒ガスが冷却されるため圧縮機1内は
適正な温度に維持される。The refrigerating machine oil and the liquid refrigerant thus stored in the accumulator 6 from the evaporator 5 are stored in the refrigerant controller of the oil return pipe 13.
15 and solenoid valve 14a and refrigerant controller 15a, and compressor suction pipe
Merge onto 19 and return to compressor 1. Since the refrigerant gas sucked into the compressor 1 is cooled by this liquid refrigerant, the inside of the compressor 1 is maintained at an appropriate temperature.
一方、圧縮機1へ戻る液冷媒の量が多くなって圧縮機1
の温度が所定の温度よりも低下した場合には、圧縮機1
のドームに感温部16を配設したサーモスタット16aによ
って電磁弁14aが閉じ、液冷媒は冷媒制御器15aを流れな
いため、圧縮機1へ戻る液冷媒量が減少して圧縮機1内
の温度は上昇する。On the other hand, the amount of liquid refrigerant returning to the compressor 1 increases and the compressor 1
If the temperature of the compressor is lower than the predetermined temperature, the compressor 1
The solenoid valve 14a is closed by the thermostat 16a in which the temperature sensing portion 16 is arranged on the dome of the compressor, and the liquid refrigerant does not flow through the refrigerant controller 15a. Therefore, the amount of liquid refrigerant returning to the compressor 1 is reduced and the temperature inside the compressor 1 Rises.
他の構成及び作用は第4図に示す従来のものと同様であ
り、対応する部材には同じ符号が付けられている。Other configurations and operations are similar to those of the conventional one shown in FIG. 4, and corresponding members are designated by the same reference numerals.
上記の通り、本実施例によれば圧縮機1のドーム温度の
変化によって油戻し管13に設置された電磁弁14aが開閉
し、圧縮機1へ戻る液冷媒量が調整されるため、冷凍サ
イクル運転の負荷変動があっても圧縮機1内の温度を適
正範囲に維持することができる。As described above, according to this embodiment, the solenoid valve 14a installed in the oil return pipe 13 is opened / closed due to the change in the dome temperature of the compressor 1, and the amount of the liquid refrigerant returned to the compressor 1 is adjusted. The temperature inside the compressor 1 can be maintained within an appropriate range even if there is a load change during operation.
次に本考案の第2実施例について第2図により説明す
る。Next, a second embodiment of the present invention will be described with reference to FIG.
上記の通り第1実施例では、油戻し管13を分岐して冷媒
制御器15及び電磁弁14aと冷媒制御器15aを設置したが、
本第2実施例では第2図に示すように電磁弁及び冷媒制
御器を設置した並列回路を二以上設けて各々の電磁弁14
a,14b,14cを作動温度の段階的に異なるサーモスタット1
6a,16b,16cと連動させ、かつ冷媒制御器15b,15cを付加
して圧縮機1へ戻る液冷媒量を昇温に対して増加、降温
に対して減少するよう段階的に制御するようにしたもの
である。As described above, in the first embodiment, the oil return pipe 13 is branched to install the refrigerant controller 15, the solenoid valve 14a and the refrigerant controller 15a.
In the second embodiment, two or more parallel circuits each having an electromagnetic valve and a refrigerant controller are provided as shown in FIG.
Thermostats a, 14b, 14c with different operating temperatures 1
6a, 16b, 16c are interlocked with, and refrigerant controllers 15b, 15c are added so that the amount of liquid refrigerant returned to the compressor 1 is controlled stepwise so as to increase with increasing temperature and decrease with decreasing temperature. It was done.
本実施例によれば、圧縮機1の温度変動に対して、変動
幅を小さく制御できるという利点がある。According to this embodiment, there is an advantage that the fluctuation width can be controlled to be small with respect to the temperature fluctuation of the compressor 1.
次に本考案の第3実施例について第3図により説明す
る。Next, a third embodiment of the present invention will be described with reference to FIG.
第3図において、油取出口12と圧縮機吸入管19とを接続
する油戻し管13には流量調節弁17が配設されている。流
量調節弁17は圧縮機1のドームの感温部18及び制御機器
18aで自動制御されており、圧縮機1のドーム温度と所
定温度の間の変動差に応じて流量調節弁17の弁開度が変
わる構成となっている。In FIG. 3, a flow rate control valve 17 is provided in an oil return pipe 13 that connects the oil outlet 12 and the compressor suction pipe 19. The flow rate control valve 17 is a temperature sensing part 18 of the dome of the compressor 1 and a control device.
It is automatically controlled by 18a, and the valve opening degree of the flow rate control valve 17 changes according to the variation difference between the dome temperature of the compressor 1 and a predetermined temperature.
このようにして蒸発器5よりアキュームレータ6内に貯
溜した冷凍機油及び液冷媒は油戻し管13の流量調節弁17
を通って圧縮機吸入管19に合流し圧縮機1へ戻る。この
過程で、圧縮機1の温度が所定温度と一致しているとき
は流量調節弁17はある弁開度に維持され当該弁開度に応
じた液冷媒が流れる。一方圧縮機1の温度が所定温度よ
り高くなるに伴い、流量調節弁17の弁開度が大きくなっ
て圧縮機1へ戻る液冷媒量が増加し圧縮機1の温度を下
げる。逆に圧縮機1の温度が所定温度より低くなるに伴
い流量調節弁17の弁開度が小さくなって、圧縮機1へ戻
る液冷媒量が減少し圧縮機1の温度を上げる。このよう
にして圧縮機1を一定の温度範囲に維持する。The refrigerating machine oil and the liquid refrigerant thus stored in the accumulator 6 from the evaporator 5 are supplied to the oil return pipe 13 through the flow control valve 17
Through and joins the compressor suction pipe 19 and returns to the compressor 1. In this process, when the temperature of the compressor 1 is equal to the predetermined temperature, the flow rate control valve 17 is maintained at a certain valve opening and the liquid refrigerant flows according to the valve opening. On the other hand, as the temperature of the compressor 1 becomes higher than a predetermined temperature, the valve opening degree of the flow rate control valve 17 increases, the amount of liquid refrigerant returning to the compressor 1 increases, and the temperature of the compressor 1 decreases. On the contrary, as the temperature of the compressor 1 becomes lower than the predetermined temperature, the valve opening of the flow rate control valve 17 becomes smaller, the amount of liquid refrigerant returning to the compressor 1 decreases, and the temperature of the compressor 1 rises. In this way, the compressor 1 is maintained in a constant temperature range.
他の構成及び作用は第4図に示す従来のものと同様であ
り対応する部材には同じ符号がつけられている。本実施
例によれば少ない部品数で効果が得られるという利点が
ある。Other configurations and operations are similar to those of the conventional one shown in FIG. 4, and corresponding members are designated by the same reference numerals. According to this embodiment, there is an advantage that the effect can be obtained with a small number of parts.
以上の通り第1〜第3実施例によれば、圧縮機1のドー
ム温度の変化に応じてアキュームレータ6内に貯溜され
る液冷媒を圧縮機1へ流量制御しながら戻すことができ
るので、空気調和機等の負荷変動が生じても常に圧縮機
1内の温度を所定温度に維持できるという利点がある。As described above, according to the first to third embodiments, the liquid refrigerant stored in the accumulator 6 can be returned to the compressor 1 while controlling the flow rate according to the change in the dome temperature of the compressor 1. There is an advantage that the temperature in the compressor 1 can always be maintained at a predetermined temperature even if the load of the harmony machine or the like changes.
〔考案の効果〕 本考案は上記のように構成されるので次の効果を有す
る。[Advantages of the Invention] Since the present invention is configured as described above, it has the following effects.
即ち、アキュームレータに油戻し管を設けるとともに、
油戻し管に圧縮機ドーム温度と連動させた流量制御手段
を設けたことにより冷凍サイクルの運転の負荷変動に影
響されることなく、圧縮機の温度を適正範囲に維持する
ことができる。That is, while providing the oil return pipe in the accumulator,
By providing the oil return pipe with the flow rate control means linked with the temperature of the compressor dome, the temperature of the compressor can be maintained within an appropriate range without being affected by the load fluctuation of the operation of the refrigeration cycle.
第1図は本考案の第1実施例に係る油戻し装置の系統
図、第2図は本考案の第2実施例に係る油戻し装置の系
統図(主要部のみ示す)、第3図は本考案の第3実施例
に係る油戻し装置の系統図、第4図は従来の空気調和機
の冷凍系統図である。 1…圧縮機、5…蒸発器、6…アキュームレータ、12…
油取出口、13…油戻し管、14a,14b,14c…電磁弁、15,15
a,15b,15c…冷媒制御器、16,18…感温部、16a,16b,16c
…サーモスタット、17…流量調節弁、18a…制御機器、1
9…圧縮機吸入管。FIG. 1 is a system diagram of an oil returning device according to a first embodiment of the present invention, FIG. 2 is a system diagram of an oil returning device according to a second embodiment of the present invention (only the main part is shown), and FIG. FIG. 4 is a system diagram of an oil return device according to a third embodiment of the present invention, and FIG. 4 is a refrigeration system diagram of a conventional air conditioner. 1 ... Compressor, 5 ... Evaporator, 6 ... Accumulator, 12 ...
Oil outlet, 13 ... Oil return pipe, 14a, 14b, 14c ... Solenoid valve, 15, 15
a, 15b, 15c ... Refrigerant controller, 16,18 ... Temperature sensing part, 16a, 16b, 16c
… Thermostat, 17… Flow control valve, 18a… Control equipment, 1
9 ... Compressor suction pipe.
Claims (1)
発器出口に設けられるアキュームレータにおいて、上記
アキュームレータの底部と圧縮機の吸入管とを接続する
油戻し管と、同油戻し管に設けられ、圧縮機のドーム温
度を検知して油戻し管からの冷凍機油及び液冷媒の戻り
量をドーム温度が低くなるに従って減少させ、ドーム温
度が高くなるに従って増加させる流量制御手段とを具備
してなることを特徴とするアキュームレータの油戻し装
置。1. An accumulator provided at an evaporator outlet of a refrigeration cycle such as an air conditioner or a refrigerator, and an oil return pipe connecting a bottom portion of the accumulator and a suction pipe of a compressor, and the oil return pipe. Flow rate control means for detecting the dome temperature of the compressor to decrease the amount of refrigerating machine oil and liquid refrigerant returned from the oil return pipe as the dome temperature becomes lower, and increase as the dome temperature becomes higher. The oil return device of the accumulator characterized by becoming.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7168389U JPH0733095Y2 (en) | 1989-06-21 | 1989-06-21 | Accumulator oil return device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7168389U JPH0733095Y2 (en) | 1989-06-21 | 1989-06-21 | Accumulator oil return device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0313075U JPH0313075U (en) | 1991-02-08 |
JPH0733095Y2 true JPH0733095Y2 (en) | 1995-07-31 |
Family
ID=31608932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7168389U Expired - Lifetime JPH0733095Y2 (en) | 1989-06-21 | 1989-06-21 | Accumulator oil return device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0733095Y2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04127036U (en) * | 1991-05-10 | 1992-11-19 | 河西工業株式会社 | Automobile rear parcel bearing structure |
JP4660904B2 (en) * | 2000-09-29 | 2011-03-30 | アイシン精機株式会社 | Drip-proof structure of warm water flush toilet seat |
JP2014145554A (en) * | 2013-01-30 | 2014-08-14 | Panasonic Corp | Air conditioner and accumulator |
WO2015140870A1 (en) * | 2014-03-17 | 2015-09-24 | 三菱電機株式会社 | Refrigeration cycle apparatus |
-
1989
- 1989-06-21 JP JP7168389U patent/JPH0733095Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0313075U (en) | 1991-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU634111B2 (en) | Air-conditioning system | |
CN114322106B (en) | Air conditioning system | |
JPH0237253A (en) | Sealed refrigeration circuit | |
KR102229436B1 (en) | Refrigeration cycle device | |
JP3643162B2 (en) | Air conditioner | |
JP3334222B2 (en) | Air conditioner | |
JPH0733095Y2 (en) | Accumulator oil return device | |
JP3729552B2 (en) | Air conditioner | |
JP3188989B2 (en) | Air conditioner | |
JP3626517B2 (en) | Air conditioner | |
JPH02223757A (en) | Air conditioner | |
JP2508842B2 (en) | Air conditioner | |
JP3189492B2 (en) | Operation control device for air conditioner | |
JPS63290368A (en) | Heat pump type air conditioner | |
JPH0285647A (en) | Air conditioner | |
JP2001280729A (en) | Refrigerating device | |
JPS6185218A (en) | Automotive air conditioner | |
KR19980083062A (en) | Integrated refrigeration unit of air conditioner and refrigerator | |
JPH05302765A (en) | Multi-chamber type air conditioner | |
JPS63251760A (en) | Refrigerator | |
JPS6136659A (en) | Heat pump type air conditioner | |
JPH0665940B2 (en) | Refrigerant control method for heat pump type air conditioner | |
JPS63286664A (en) | Heat pump type air conditioner | |
CN117167860A (en) | Air conditioning system and control method thereof | |
JP2533585B2 (en) | Multi-room air conditioner |