[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07329190A - Manufacture of 3-dimensional object and manufacturing equipment - Google Patents

Manufacture of 3-dimensional object and manufacturing equipment

Info

Publication number
JPH07329190A
JPH07329190A JP6132070A JP13207094A JPH07329190A JP H07329190 A JPH07329190 A JP H07329190A JP 6132070 A JP6132070 A JP 6132070A JP 13207094 A JP13207094 A JP 13207094A JP H07329190 A JPH07329190 A JP H07329190A
Authority
JP
Japan
Prior art keywords
light
thin film
photocurable resin
dimensional data
liquid photocurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6132070A
Other languages
Japanese (ja)
Inventor
Shikichi Watanabe
巳吉 渡辺
Kazuhiro Mori
千寛 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6132070A priority Critical patent/JPH07329190A/en
Publication of JPH07329190A publication Critical patent/JPH07329190A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49013Deposit layers, cured by scanning laser, stereo lithography SLA, prototyping

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To shorten required time by recognizing a maximum length direction in which a distance between two optional points in the contour line of two-dimensional data is maximum, and scanning light in parallel with said maximum length direction. CONSTITUTION:This method for manufacturing a three-dimensional object comprises repeating the step of forming a thin film by emitting light to the surface of a liquid photocurable resin and applying the liquid photocurable resin thinly to the upper surface of the thin film. The manufacturing equipment is equipped with a bath 2 for storing the liquid photocurable resin R which cures by light irradiation and a molding frame 3 which an ascend/descend in the bath 2. In addition, the light L is selectively emitted by focusing it to the surface Ro of the liquid photocurable resin R. Further, the manufacturing equipment is equipped with a doctor blade 4 as a smoothing member sliding horizontally in such a manner that it strokes the surface Ro of the liquid photocurable resin R. The scanning direction of the light L runs parallel with a maximum length direction in which a distance between two optional points in the contour line of three-dimensional data is maximum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、三次元CADで設計
された立体モデルの三次元形状データや三次元形状測定
器等で計測された三次元形状データを水平面で多層に分
割して生成される複数の二次元データを順に選択し、そ
の順に選択される各二次元データに基づいて液状光硬化
性樹脂の表面に選択的に光を照射して樹脂薄膜を次々と
積層形成することにより三次元物体を製造する方法及び
装置に関し、特に、前記光の走査方向を適宜選択するこ
とにより、三次元物体の製造時間の短縮化が図られるよ
うにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is generated by dividing three-dimensional shape data of a three-dimensional model designed by three-dimensional CAD or three-dimensional shape data measured by a three-dimensional shape measuring instrument into multiple layers on a horizontal plane. A plurality of two-dimensional data are selected in order, and the surface of the liquid photo-curable resin is selectively irradiated with light based on each of the two-dimensional data selected in that order to form a resin thin film one after another. The present invention relates to a method and apparatus for manufacturing an original object, and in particular, it is intended to shorten the manufacturing time of a three-dimensional object by appropriately selecting the scanning direction of the light.

【0002】[0002]

【従来の技術】液状光硬化性樹脂の表面に選択的に光を
照射して形成される薄膜を次々と積層形成することによ
り所望形状の三次元物体を製造する技術自体は公知であ
り、例えば、特開昭61−114818号公報、特開平
4−169221号公報、特開平4−169222号公
報、特開平5−8307号公報、特開平5−38763
号公報等に開示されている。
2. Description of the Related Art A technique itself for producing a three-dimensional object having a desired shape by successively laminating thin films formed by selectively irradiating light on the surface of a liquid photocurable resin is well known. JP-A-61-1114818, JP-A-4-169221, JP-A-4-169222, JP-A-5-8307, and JP-A-5-38763.
It is disclosed in Japanese Patent Publication No.

【0003】[0003]

【発明が解決しようとする課題】確かに、上記公報等に
開示される従来の技術であっても、所望形状の三次元物
体を製造することは可能であるが、各薄膜はその厚みが
通常0.1mm〜0.5mmという比較的薄い膜であったため、
ある程度の大きさの物体を製造するためには多数の薄膜
を積層しなければならず、その製造時間が長くなってし
まうという問題点を有していた。
Although it is possible to manufacture a three-dimensional object having a desired shape even with the conventional technique disclosed in the above publications, the thickness of each thin film is usually equal to that of the conventional technique. Since it was a relatively thin film of 0.1 mm to 0.5 mm,
In order to manufacture an object of a certain size, a large number of thin films have to be laminated, which causes a problem that the manufacturing time becomes long.

【0004】従って、種々の工夫を凝らして製造時間の
短縮化が図れており、例えば上記特開昭61−1148
18号公報に開示された技術では、液状光硬化性樹脂の
表面に選択的に光を照射して生成される薄膜の上面を新
たに覆う液状光硬化性樹脂を平滑にするのに必要な時間
を短縮することを目的として開発されていて、簡単に説
明すれば、液状光硬化性樹脂を収容する浴槽上にその浴
槽の幅に対応する長さの平滑板を配置し、樹脂供給口よ
り浴槽内に供給される液状光硬化性樹脂を撫でるように
その平滑板を水平に移動させる構造となっている。この
ような構造であれば、粘度の高い(通常、5〜200ポ
イズ程度の)液状光硬化性樹脂であっても、その表面を
比較的短時間の内に平滑にすることができるから、三次
元物体の製造のための全体の所要時間の短縮化を図るこ
とができたのである。
Therefore, various efforts have been made to reduce the manufacturing time, for example, the above-mentioned Japanese Patent Laid-Open No. 61-1148.
In the technique disclosed in Japanese Patent No. 18, the time required to smooth the liquid photo-curable resin that newly covers the upper surface of the thin film generated by selectively irradiating the surface of the liquid photo-curable resin with light. It has been developed for the purpose of shortening the length of the liquid photocurable resin, and a brief explanation is that a smooth plate having a length corresponding to the width of the bath is placed on the bath containing the liquid photocurable resin, and the bath is inserted from the resin supply port. It has a structure in which the smooth plate is horizontally moved so as to stroke the liquid photocurable resin supplied therein. With such a structure, even if the liquid photocurable resin has a high viscosity (usually about 5 to 200 poise), its surface can be smoothed within a relatively short time. It was possible to reduce the total time required to manufacture the original object.

【0005】しかしながら、その所要時間の短縮効果も
十分に満足できるレベルには達しておらず、所要時間を
さらに短縮できる技術の開発が望まれていたのである。
本発明は、このような点に着目してなされたものであっ
て、所要時間のさらなる短縮化が図られる三次元物体の
製造方法及び製造装置を提供することを目的としてい
る。
However, the effect of shortening the required time has not reached a level that can be fully satisfied, and there has been a demand for the development of a technique capable of further reducing the required time.
The present invention has been made in view of such a point, and an object of the present invention is to provide a manufacturing method and a manufacturing apparatus of a three-dimensional object capable of further shortening the required time.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明は、二次元データに基づいて液
状光硬化性樹脂の表面に選択的に光を照射して薄膜を形
成する薄膜形成工程と、前記薄膜の上面を前記液状光硬
化性樹脂で薄く覆う薄膜被覆工程と、を繰り返し行うこ
とにより所望形状の三次元物体を製造する方法におい
て、前記二次元データの輪郭線上の任意の2点間の距離
が最大となる最大長さ方向を認識し、その最大長さ方向
と平行に前記光を走査することとした。
In order to achieve the above object, the invention according to claim 1 forms a thin film by selectively irradiating the surface of a liquid photocurable resin with light based on two-dimensional data. In the method of manufacturing a three-dimensional object having a desired shape by repeatedly performing a thin film forming step of, and a thin film coating step of thinly covering the upper surface of the thin film with the liquid photocurable resin, on the contour line of the two-dimensional data. The maximum length direction in which the distance between any two points becomes maximum is recognized, and the light is scanned in parallel with the maximum length direction.

【0007】一方、上記目的を達成するために、請求項
2に係る発明は、二次元データに基づいて液状光硬化性
樹脂の表面に選択的に光を照射して薄膜を形成する光照
射手段と、前記薄膜の上面を前記液状光硬化性樹脂で薄
く覆う薄膜被覆手段と、を備えた三次元物体の製造装置
において、前記二次元データの輪郭線上の任意の2点間
の距離が最大となる最大長さ方向と、前記光の走査方向
とを一致させた。
On the other hand, in order to achieve the above object, the invention according to claim 2 is a light irradiating means for selectively irradiating the surface of a liquid photocurable resin with light based on two-dimensional data to form a thin film. And a thin film coating means for thinly coating the upper surface of the thin film with the liquid photo-curable resin, the distance between any two points on the contour line of the two-dimensional data is maximum. The maximum length direction and the scanning direction of the light were matched.

【0008】[0008]

【作用】請求項1及び請求項2に係る発明にあっては、
照射される光の走査方向が、二次元データの輪郭線上の
任意の2点間の距離が最大となる最大長さ方向と平行で
あるため、最大長さ方向に平行でない走査方向を選択し
た場合に比べて、ひとつの走査線の長さは長くなるとと
もに、走査線の本数は少なくなる。
In the invention according to claim 1 and claim 2,
When the scanning direction of the irradiated light is parallel to the maximum length direction in which the distance between any two points on the contour line of the two-dimensional data is the maximum, a scanning direction that is not parallel to the maximum length direction is selected. Compared with, the length of one scanning line becomes longer and the number of scanning lines becomes smaller.

【0009】そして、走査線の本数が少なくなると、ひ
とつの走査線から次の走査線に移行する回数が少なくな
り、光を走査する機構の停止,移動及び駆動の繰り返し
回数が少なくなるから、光走査機構の運動特性による停
止,移動及び駆動に要する時間が短縮される。
When the number of scanning lines is reduced, the number of transitions from one scanning line to the next scanning line is reduced, and the number of times of stopping, moving and driving the mechanism for scanning light is reduced. The time required for stopping, moving and driving due to the motion characteristics of the scanning mechanism is shortened.

【0010】[0010]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。図1は、本発明の第1実施例における三次元物
体製造装置1の構成を示す図であり、この三次元物体製
造装置1は、光を照射されることにより硬化する液状光
硬化性樹脂Rを収容した浴槽2と、この浴槽2内にて昇
降可能な成型架台3と、浴槽2の上方に配置されて液状
光硬化性樹脂Rの表面R0 に焦点を合わせて光Lを所定
の走査方向に沿って照射可能な光照射手段としての光照
射装置と、液状光硬化性樹脂Rの表面R0 を撫でるよう
に水平方向に移動可能なドクターブレード4と、を備え
て構成されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of a three-dimensional object manufacturing apparatus 1 according to the first embodiment of the present invention. This three-dimensional object manufacturing apparatus 1 is a liquid photocurable resin R that is cured by being irradiated with light. A bath 2 accommodating the same, a molding stand 3 that can be moved up and down in the bath 2, and a predetermined scanning with the light L by focusing on the surface R 0 of the liquid photocurable resin R which is arranged above the bath 2. It comprises a light irradiation device as a light irradiation means capable of irradiating along the direction, and a doctor blade 4 movable horizontally so as to stroke the surface R 0 of the liquid photocurable resin R.

【0011】これらのうち、光照射装置には、例えばH
e−Cdレーザ,コリメーションレンズ,シリンドリカ
ルレンズ,ポリゴンミラー,トロイダルレンズ,収束用
レンズ等から構成される公知の光走査装置が適用され
る。そして、光照射装置から照射される光Lの走査方向
(X軸方向)に対して水平面内で直交する方向(Y軸方
向)にも、例えば光照射装置全体を若しくは浴槽2全体
をそのY軸方向に移動させることにより、光Lの照射範
囲を拡げられるようになっている。つまり、光照射装置
から照射される光Lの走査線はX軸方向に平行であり、
その走査線がY軸方向に順次並ぶようになっていて、走
査の際に二次元データに対応して光Lの照射をオン・オ
フすることにより、二次元データに対応した平面領域に
のみ選択的に光を照射できるようになっている。
Of these, the light irradiator is, for example, H
A known optical scanning device composed of an e-Cd laser, a collimation lens, a cylindrical lens, a polygon mirror, a toroidal lens, a converging lens and the like is applied. In the direction (Y-axis direction) orthogonal to the scanning direction (X-axis direction) of the light L emitted from the light irradiating device, for example, the entire light irradiating device or the entire bath 2 is provided with its Y-axis. By moving in the direction, the irradiation range of the light L can be expanded. That is, the scanning line of the light L emitted from the light emitting device is parallel to the X-axis direction,
The scanning lines are sequentially arranged in the Y-axis direction, and by turning on / off the light L corresponding to the two-dimensional data during scanning, only the plane area corresponding to the two-dimensional data is selected. It can illuminate light.

【0012】また、成型架台3は、液状光硬化性樹脂R
の表面R0 と平行な上面3aを有していて、図示しない
昇降装置によって、浴槽2内の上下方向の任意の位置に
変位することができるようになっている。そして、ドク
ターブレード4は、浴槽2の一方(図1に直交する方
向)の幅より若干短い幅の平板状部材であり、鋭角に形
成された先端4aが液状光硬化性樹脂Rの表面R0 に僅
かに接触するように垂直につり下げられていて、図示し
ない駆動装置によって、表面R0 に沿って図1左右方向
(ドクターブレード4の厚さ方向)に浴槽2の幅方向の
略全域に渡って移動可能となっている。
The molding frame 3 is made of a liquid photocurable resin R.
It has an upper surface 3a parallel to the surface R 0 of the above, and can be displaced to any position in the vertical direction in the bathtub 2 by an elevating device (not shown). The doctor blade 4 is a flat plate-shaped member having a width slightly shorter than the width of one side (the direction orthogonal to FIG. 1) of the bathtub 2, and the tip 4a formed at an acute angle has a surface R 0 of the liquid photocurable resin R. It is hung vertically so as to slightly contact with, and is driven by a driving device (not shown) along the surface R 0 in the lateral direction of FIG. 1 (thickness direction of the doctor blade 4) to substantially the entire widthwise direction of the bathtub 2. It is possible to move across.

【0013】この三次元物体製造装置1によって所望形
状の三次元物体を製造する際の基本的な動作を、図2
(a)〜(d)を伴って説明する。即ち、図2(a)に
示すように、成型架台3を、その上面3a上に液状光硬
化性樹脂Rの薄い層(0.1mm〜0.5mm程度)が形成され
る初期位置に移動させ、その状態を維持したまま光照射
装置から選択的に光Lを照射して液状光硬化性樹脂Rを
硬化させ、上面3a上に薄膜5aを形成する(薄膜形成
工程)。なお、光照射装置から照射される光Lの走査
は、所望形状の三次元形状データを水平面で多層に分割
して生成される複数の二次元データを最下層側から順に
選択し、その選択されたひとつの二次元データに基づい
て行われる。三次元形状データは、三次元CADによる
デザイン或いは三次元形状測定器等で実際の物体を計測
することにより生成される。
The basic operation for manufacturing a three-dimensional object having a desired shape by the three-dimensional object manufacturing apparatus 1 will be described with reference to FIG.
A description will be given together with (a) to (d). That is, as shown in FIG. 2A, the molding frame 3 is moved to an initial position where a thin layer (about 0.1 mm to 0.5 mm) of the liquid photocurable resin R is formed on the upper surface 3a thereof. While maintaining this state, the liquid photo-curable resin R is cured by selectively irradiating the light L from the light irradiation device to form the thin film 5a on the upper surface 3a (thin film forming step). In the scanning of the light L emitted from the light irradiation device, a plurality of two-dimensional data generated by dividing the three-dimensional shape data of the desired shape into multiple layers on the horizontal plane are sequentially selected from the lowermost layer side, and the selected one is selected. It is performed based on only one two-dimensional data. The three-dimensional shape data is generated by designing by three-dimensional CAD or measuring an actual object with a three-dimensional shape measuring instrument or the like.

【0014】最下層の薄膜5aが形成されたら、図2
(b)に示すように、成型架台3を所定距離下降させ
る。この成型架台3の下降距離は、次々と形成される薄
膜の厚さ分(0.1mm〜0.5mm程度)に相当する。成型架
台3を下降させた直後は、液状光硬化性樹脂の表面張力
が大きく、しかも成型架台3の下降距離が極く僅かであ
るため、図2(b)に示されるように、薄膜5aの表面
上には周囲の液状光硬化性樹脂は入り込んではこない。
When the lowermost thin film 5a is formed, as shown in FIG.
As shown in (b), the molding frame 3 is lowered by a predetermined distance. The descending distance of the molding pedestal 3 corresponds to the thickness of the thin films formed one after another (about 0.1 mm to 0.5 mm). Immediately after the molding pedestal 3 is lowered, the surface tension of the liquid photo-curable resin is large and the descending distance of the molding pedestal 3 is very small. Therefore, as shown in FIG. The surrounding liquid photocurable resin does not enter the surface.

【0015】そこで、本実施例では、成型架台3を所定
距離下降させた後に、ドクターブレード4を表面R0
撫でるように所定速度で移動させる(薄膜被覆工程)。
すると、図2(c)に示すように、ドクターブレード4
の先端4aに引きずられるように液状光硬化性樹脂Rが
移動するから、薄膜5a上にも液状光硬化性樹脂Rが入
り込むようになり、薄膜5a上は薄い液状光硬化性樹脂
Rの層で覆われるし、表面R0 の細かい凹凸もドクター
ブレード4によって均され、そのドクターブレード4の
移動が完了した時点で表面R0 は略平滑化される。つま
り、成型架台3を下降させた直後にドクターブレード4
を移動させることにより、液状光硬化性樹脂Rの表面R
0 が平滑化されるまでの時間が大幅に短縮される。
Therefore, in this embodiment, after the molding frame 3 is lowered by a predetermined distance, the doctor blade 4 is moved at a predetermined speed so as to stroke the surface R 0 (thin film coating step).
Then, as shown in FIG. 2C, the doctor blade 4
Since the liquid photo-curable resin R moves so as to be dragged to the tip 4a of the liquid photo-curable resin R, the liquid photo-curable resin R also enters the thin film 5a, and a thin layer of the liquid photo-curable resin R is formed on the thin film 5a. The doctor blade 4 evens out fine irregularities on the surface R 0 , and the surface R 0 is substantially smoothed when the movement of the doctor blade 4 is completed. In other words, immediately after lowering the molding frame 3, the doctor blade 4
By moving the surface R of the liquid photocurable resin R
The time until 0 is smoothed is greatly reduced.

【0016】表面R0 が平滑化されたら、図2(d)に
示すように、再び光照射装置から選択的に光Lを照射し
て液状光硬化性樹脂Rを硬化させ、薄膜5a上に次段の
薄膜5bを形成する(薄膜形成工程)。この時、光照射
装置から照射される光Lの走査は、最下層の薄膜5aを
形成する際に選択されたひとつの二次元データの上側の
二次元データに基づいて行われる。
When the surface R 0 is smoothed, as shown in FIG. 2D, the liquid photo-curable resin R is cured by selectively irradiating the light L from the light irradiator again to cure the liquid photo-curable resin R on the thin film 5a. The thin film 5b in the next stage is formed (thin film forming step). At this time, the scanning of the light L emitted from the light irradiation device is performed based on the upper two-dimensional data of one two-dimensional data selected when the thin film 5a of the lowermost layer is formed.

【0017】薄膜5bが形成されたら、図2(b)と同
様に再び成型架台3を所定距離下降させ、次いで図2
(c)と同様にドクターブレード4を移動させ、図2
(d)と同様に光Lを選択的に照射し、さらに再び図2
(b)と同様に成型架台3を所定距離下降させ…、とい
う具合に、図2(b)〜(d)に示す動作を繰り返し実
行する。
After the thin film 5b is formed, the molding frame 3 is lowered again by a predetermined distance as in FIG.
Move the doctor blade 4 in the same manner as in (c), and
Similarly to (d), the light L is selectively emitted, and then again shown in FIG.
Similar to (b), the molding pedestal 3 is lowered by a predetermined distance, and so on, and the operations shown in FIGS. 2B to 2D are repeatedly executed.

【0018】すると、成型架台3の上面3a上には、次
々の薄膜5a,5b…が積層されていくから、上述した
三次元形状データを水平面で多層に分割して生成された
二次元データの全てについて上記繰り返し動作を行った
時点で、所望形状の三次元物体の成型が完了する。次
に、薄膜5a,5b…を形成する際における具体的な光
Lの走査について説明する。
Then, since the thin films 5a, 5b, ... Are successively laminated on the upper surface 3a of the molding frame 3, the above-mentioned three-dimensional shape data is divided into multiple layers on a horizontal plane to generate two-dimensional data. The molding of the three-dimensional object having the desired shape is completed when the above-described repeated operation is performed for all of them. Next, a specific scanning of the light L when forming the thin films 5a, 5b ... Will be described.

【0019】即ち、光照射装置が光Lを照射する際に参
照する二次元データの輪郭線Cと、X軸(光照射装置の
走査方向)及びY軸(X軸に直交する方向)との関係
が、図3に示すようなものであったとする。ちなみに、
従来の装置であれば、輪郭線Cの形状に関係なく、図3
に複数の平行な実線で表すようにX軸と平行に光Lを走
査していたが、これでは上述したように走査線の本数が
多くなり、製造時間が長くなる。
That is, the contour line C of the two-dimensional data referred to when the light irradiation device irradiates the light L, and the X axis (scanning direction of the light irradiation device) and the Y axis (direction orthogonal to the X axis). It is assumed that the relationship is as shown in FIG. By the way,
In the case of the conventional device, regardless of the shape of the contour line C, FIG.
The light L was scanned in parallel with the X-axis as indicated by a plurality of parallel solid lines, but this increases the number of scanning lines as described above, which increases the manufacturing time.

【0020】これに対し、本実施例では、輪郭線C上の
任意の2点間の距離が最大となる最大長さ方向を認識
し、その最大長さ方向がX軸と平行になるように二次元
データの座標変換を行うことにより、最大長さ方向と走
査方向とを一致させて、走査線の本数を少なくなるよう
にしている。最大長さ方向を認識する方法としては、種
々の方法が考えられるが、最も簡単な方法は、図4に示
すように、輪郭線Cで囲まれた領域の重心G(xG ,y
G )を求め、その重心Gから輪郭線C上の各点(xn
n )までの距離Ln (={(xG −xN 2 +(yG
−yn 2 1/2 )を演算し、それら各距離Ln の最大
値Lmax を検索する。そして、重心Gと、その最大値L
max を採る点(xmax,ymax )とを結ぶ直線Mの方向
を、最大長さ方向とする。添字nは、各点に適宜付され
た番号であって、n=0,1,2,…,Nである。
On the other hand, in the present embodiment, the maximum length direction in which the distance between any two points on the contour line C becomes maximum is recognized, and the maximum length direction is made parallel to the X axis. By performing coordinate conversion of the two-dimensional data, the maximum length direction and the scanning direction are made to coincide with each other, and the number of scanning lines is reduced. Although various methods are conceivable for recognizing the maximum length direction, the simplest method is, as shown in FIG. 4, the center of gravity G (x G , y of the region surrounded by the contour line C.
G ), and each point (x n ,
distance to n n ) L n (= {(x G −x N ) 2 + (y G
-Y n ) 2 } 1/2 ) is calculated, and the maximum value L max of each distance L n is searched. The center of gravity G and its maximum value L
The direction of the straight line M connecting the point (x max , y max ) that takes max is the maximum length direction. The subscript n is a number appropriately assigned to each point, and n = 0, 1, 2, ..., N.

【0021】なお、輪郭線Cで囲まれた領域の重心G
(xG ,yG )を求める方法としては、例えば輪郭線C
上の各点(xn ,yn )に基づいて、
The center of gravity G of the area surrounded by the contour line C
As a method of obtaining (x G , y G ), for example, the contour line C
Based on each point (x n , y n ) above,

【0022】[0022]

【数1】 [Equation 1]

【0023】という演算式を用いて求める方法が考えら
れる。また、重心G(xG ,yG )を求めるその他の方
法としては、例えば輪郭線Cで囲まれた領域を三角形に
分割し、各三角形の面積をA1 〜AN とし、さらにそれ
ら各三角形の3頂点のX−Y座標系における座標
(x1 ,y1 :x2 ,y2 :x3 ,y3 )を求める。そ
して、それら各座標点に基づいて、
A method of obtaining the value using the arithmetic expression As another method of obtaining the center of gravity G (x G , y G ), for example, the area surrounded by the contour line C is divided into triangles, and the areas of the respective triangles are set to A 1 to A N, and the triangles are further divided. coordinates in the three vertices of the X-Y coordinate system (x 1, y 1: x 2, y 2: x 3, y 3) Request. And based on each of these coordinate points,

【0024】[0024]

【数2】 [Equation 2]

【0025】として重心Gを求める方法も考えられる。
最大長さ方向に伸びる直線Mが求められたら、その直線
Mと平行のX' 軸と、そのX' 軸に直交するY' 軸を想
定し、そのX' 軸とX軸とが一致し、Y' 軸とY軸とが
一致するような座標変換を二次元データについて行う。
なお、かかる座標変換は、X' 軸とX軸とのなす角度に
応じた回転と、その回転の後のX−Y座標の原点とX'
−Y' 座標の原点との間のオフセット量に応じた平行移
動とで成り立つ。ただし、二次元データに対する座標変
換は、三次元形状データを水平面で多層に分割して生成
される複数の二次元データの全てに対して、同じ内容で
あることが必要である。最大長さ方向が各二次元データ
毎に異なる場合については後述する。
A method of obtaining the center of gravity G can be considered as
When a straight line M extending in the maximum length direction is obtained, an X ′ axis parallel to the straight line M and a Y ′ axis orthogonal to the X ′ axis are assumed, and the X ′ axis and the X axis coincide with each other. Coordinate conversion is performed on the two-dimensional data so that the Y ′ axis and the Y axis coincide with each other.
It should be noted that such coordinate conversion is performed by rotating the X ′ axis according to the angle between the X axis and the origin of the XY coordinates after the rotation and the X ′ axis.
-Y 'is a parallel movement according to the offset amount from the origin. However, the coordinate conversion for the two-dimensional data needs to have the same content for all of the plurality of two-dimensional data generated by dividing the three-dimensional shape data into multiple layers on the horizontal plane. The case where the maximum length direction is different for each two-dimensional data will be described later.

【0026】このような座標変換を行うと、二次元デー
タは、形状はそのままであるが、X−Y座標内における
傾き及び位置が変換され、図5に示すように最大長さ方
向がX軸と平行になる。そして、その変換された後の二
次元データに基づいて光Lを照射すると、その走査方向
が最大長さ方向に一致することから、図5に複数の平行
な実線で表すように、各走査線の長さは図3の場合に比
べて長くなるが、走査線の本数は図3の場合に比べて少
なくなる。
When such coordinate conversion is performed, the shape of the two-dimensional data remains unchanged, but the inclination and position in the XY coordinates are converted, and the maximum length direction is the X axis as shown in FIG. Will be parallel to. Then, when the light L is irradiated based on the converted two-dimensional data, the scanning direction thereof coincides with the maximum length direction. Therefore, as shown by a plurality of parallel solid lines in FIG. Is longer than that in the case of FIG. 3, but the number of scanning lines is smaller than that in the case of FIG.

【0027】従って、走査に要するトータルの時間自体
は特に短縮される訳ではないが、走査線の本数が少なく
なれば、Y軸方向に光Lの照射範囲を切り換える動作が
少なくなるから、例えば光照射装置或いは浴槽2の停
止,移動及び駆動の繰り返し回数が少なくなり、その運
動特性による停止,移動及び駆動に要する時間が短縮さ
れ、三次元物体の製造時間を大幅に短縮でき、生産効率
を向上することができるのである。
Therefore, the total time required for scanning is not particularly shortened, but if the number of scanning lines is reduced, the operation of switching the irradiation range of the light L in the Y-axis direction is reduced, so that, for example, light The number of times of stopping, moving and driving the irradiation device or the bath 2 is reduced, the time required for stopping, moving and driving due to its motion characteristics is shortened, the manufacturing time of the three-dimensional object can be greatly shortened, and the production efficiency is improved. You can do it.

【0028】なお、三次元物体の形状によっては、各層
の二次元データ毎に最大長さ方向が異なる場合がある
が、そのような場合には、例えば輪郭線内の面積が最も
大きい二次元データの最大長さ方向を走査方向とする
か、或いは各層毎の二次元データ毎に最大長さ方向を求
めそれらの平均を最大長さ方向とすることなどが考えら
れるが、いずれにしても、三次元物体を完成するのに必
要な走査線の本数は従来の場合に比べて少なくなるか
ら、三次元物体の製造時間を短縮できるという利点は十
分に得られる。
Depending on the shape of the three-dimensional object, the maximum length direction may differ for each two-dimensional data of each layer. In such a case, for example, the two-dimensional data having the largest area within the contour line. It is conceivable that the maximum length direction of is the scanning direction, or the maximum length direction is obtained for each two-dimensional data for each layer and the average thereof is used as the maximum length direction. Since the number of scanning lines required to complete the original object is smaller than that in the conventional case, the advantage that the manufacturing time of the three-dimensional object can be shortened is sufficiently obtained.

【0029】また、上記実施例では、二次元データを適
宜座標変換することにより最大長さ方向と走査方向とを
一致させるようにしているため、光Lを走査させる構造
を特に複雑にする必要がないという利点がある。つま
り、簡易な演算処理を二次元データに施すだけで済むか
ら、大幅なコストアップ等を招くことがない。図6は本
発明の第2実施例における三次元物体製造装置1の構成
を示す図である。なお、上記第1実施例と同等の部材及
び部位には、同じ符号を付し、その重複する説明は省略
する。
Further, in the above-mentioned embodiment, since the maximum length direction and the scanning direction are made to coincide with each other by appropriately converting the coordinates of the two-dimensional data, it is necessary to make the structure for scanning the light L particularly complicated. There is an advantage that it does not. In other words, since it is only necessary to apply simple arithmetic processing to the two-dimensional data, there is no significant increase in cost. FIG. 6 is a diagram showing the configuration of the three-dimensional object manufacturing apparatus 1 according to the second embodiment of the present invention. The same members and parts as those in the first embodiment are designated by the same reference numerals, and their duplicated description will be omitted.

【0030】即ち、本実施例は、新たな液状光硬化性樹
脂Rを補充する構成を設けた点が上記第1実施例とは異
なる特徴部分であり、具体的には、ドクターブレード4
の進退方向の前後両側に下端側が開口可能な容器10
A,10Bを取り付けるとともに、その容器10A,1
0Bに液状光硬化性樹脂Rを供給可能なノズル11を浴
槽2上に臨ませ、さらに、浴槽2の上端部周囲にその浴
槽2からオーバーフローした液状光硬化性樹脂Rを回収
するトレイ12を設けている。
That is, this embodiment is different from the first embodiment in that a new liquid photocurable resin R is replenished, and specifically, the doctor blade 4 is used.
Container 10 whose lower end can be opened on both front and rear sides in the forward and backward direction
A and 10B are attached and the container 10A, 1
A nozzle 11 capable of supplying the liquid photo-curable resin R to 0B is exposed to the bathtub 2, and a tray 12 for collecting the liquid photocurable resin R overflowing from the bathtub 2 is provided around the upper end of the bathtub 2. ing.

【0031】この三次元物体製造装置1の使用方法は、
基本的には上記第1実施例と同様であるが、浴槽2内の
縁部分まで液状光硬化性樹脂Rで満たす、つまり液状光
硬化性樹脂Rの表面R0 の高さを浴槽2の上端部に一致
させた状態で三次元物体の製造を行うようになってい
る。そして、ドクターブレード4を移動させる際には、
そのドクターブレード4に先行して水平に移動する容器
10A又は10B(つまり、ドクターブレード4が図4
右方から左方に移動する場合には容器10A、逆に移動
する場合には容器10B)の下端側を図7に破線で示す
ように開口させ、ノズル11から容器10A,10B内
に供給されていた液状光硬化性樹脂Rを、容器10A又
は10Bの下端側開口部から浴槽2に徐々に補充するよ
うになっている。
The method of using the three-dimensional object manufacturing apparatus 1 is as follows.
Basically the same as in the first embodiment, except that the edge of the bath 2 is filled with the liquid photo-curable resin R, that is, the height of the surface R 0 of the liquid photo-curable resin R is the upper end of the bath 2. The three-dimensional object is manufactured in a state in which the parts match each other. And when moving the doctor blade 4,
The container 10A or 10B that moves horizontally in advance of the doctor blade 4 (that is, the doctor blade 4 is shown in FIG.
When moving from the right to the left, the lower end side of the container 10A, and when moving in the opposite direction, the lower end side of the container 10A is opened as shown by the broken line in FIG. 7, and is supplied from the nozzle 11 into the containers 10A and 10B. The liquid photocurable resin R that has been used is gradually replenished into the bath 2 from the lower end side opening of the container 10A or 10B.

【0032】このような構成であると、ドクターブレー
ド4が浴槽2内の液状光硬化性樹脂Rの表面R0 に沿っ
て移動する際に、それに先行して移動する移動中の容器
10A又は10Bから浴槽2内に徐々に新たな液状光硬
化性樹脂Rが補充され、その補充された液状光硬化性樹
脂Rが直ぐ後に続いて移動するドクターブレード4によ
って均され、余剰の液状光硬化性樹脂Rは浴槽2からオ
ーバーフローしてトレイ12に回収されるから、表面R
0 を確実に平滑にすることができる。なお、トレイ12
に回収された液状光硬化性樹脂Rは再利用されるから、
無駄になることもない。
With such a structure, when the doctor blade 4 moves along the surface R 0 of the liquid photocurable resin R in the bath 2, the moving container 10A or 10B moves ahead of it. A new liquid photo-curable resin R is gradually replenished into the bath 2 from the above, and the replenished liquid photo-curable resin R is leveled by the doctor blade 4 which is moved immediately after the surplus liquid photo-curable resin R. Since R overflows from the bathtub 2 and is collected in the tray 12, the surface R
0 can be surely smoothed. The tray 12
Since the liquid photocurable resin R collected in step 1 is reused,
There is no waste.

【0033】仮に、浴槽2内を液状光硬化性樹脂Rで満
たすことなく、しかもノズル11等から浴槽2内の特定
位置に集中的に液状光硬化性樹脂Rを補充するような構
成とすると、移動開始時のドクターブレード4の長手方
向端部から横方向に漏れた液状光硬化性樹脂Rが浴槽2
の縁部分に溜まって液状光硬化性樹脂Rの厚い層を形成
し、ドクターブレード4が通過した後にその厚い層が浴
槽2内側に崩れてきてしまうから、その後に形成される
薄膜の周縁部分が肉厚になってしまう可能性が高いが、
本実施例の構成であればそのようなことは生じないか
ら、表面R0 を高い精度で平滑にすることができるので
ある。
If the liquid photocurable resin R is not filled in the bathtub 2 and the liquid photocurable resin R is intensively replenished to a specific position in the bathtub 2 from the nozzle 11 or the like, The liquid photocurable resin R leaked laterally from the longitudinal end of the doctor blade 4 at the start of movement is the bath 2
To form a thick layer of the liquid photo-curable resin R, and the thick layer collapses inside the bath 2 after the doctor blade 4 has passed. It is likely that it will be thick,
With the configuration of the present embodiment, such a situation does not occur, so that the surface R 0 can be smoothed with high accuracy.

【0034】また、表面R0 の高さが常に浴槽2上端に
一致するようになるから、薄膜を形成する際に光照射装
置から照射される光の焦点補正を行う必要もない。しか
も、ドクターブレード4の両側に容器10A,10Bを
設けているから、ドクターブレード4の移動方向に関わ
りなく、そのドクターブレード4の前側に液状光硬化性
樹脂Rを補充することができる。従って、ドクターブレ
ード4を所定位置に戻すだけという無駄な動作を行う必
要がない。
Further, since the height of the surface R 0 always coincides with the upper end of the bath 2, it is not necessary to correct the focus of the light emitted from the light irradiation device when forming the thin film. Moreover, since the containers 10A and 10B are provided on both sides of the doctor blade 4, the liquid photocurable resin R can be replenished to the front side of the doctor blade 4 regardless of the moving direction of the doctor blade 4. Therefore, there is no need to perform a wasteful operation of merely returning the doctor blade 4 to the predetermined position.

【0035】そして、本実施例にあっても、光照射装置
による光Lの走査方向を、上記第1実施例と同様の方法
により二次元データの最大長さ方向に一致させている。
従って、その他の作用効果は、上記第1実施例と同様で
ある。なお、上記第1実施例では成型架台3を下降させ
ながら薄膜5a,5b…を次々と積層し、上記第2実施
例では成型架台3を下降させつつ液状光硬化性樹脂Rを
補充して薄膜を次々と積層しているが、本発明を適用可
能な三次元物体製造装置1の形式は、これらに限定され
るものではなく、例えば特開昭61−114818号公
報に開示される形式、つまり昇降可能な成型架台3を設
けることなく、浴槽2の底面に最下層の薄膜を形成し、
次いで所定量の液状光硬化性樹脂Rを補充し、その表面
0 に沿ってドクターブレード4を移動させて平滑化を
図り、そして光を照射して次段の薄膜を形成し、再び所
定量の液状光硬化性樹脂Rを補充し…、という具合にし
て浴槽2の底面上に次々と薄膜を積層して三次元物体を
製造する形式の装置であってもよい。
Also in this embodiment, the scanning direction of the light L by the light irradiation device is made to coincide with the maximum length direction of the two-dimensional data by the same method as in the first embodiment.
Therefore, other operational effects are similar to those of the first embodiment. In the first embodiment described above, the thin films 5a, 5b, ... Are stacked one after another while the molding frame 3 is lowered, and in the second embodiment, the liquid photocurable resin R is replenished while the molding frame 3 is lowered. However, the type of the three-dimensional object manufacturing apparatus 1 to which the present invention is applicable is not limited to these, and for example, the type disclosed in Japanese Patent Laid-Open No. 61-114818, that is, Forming the bottom thin film on the bottom surface of the bath 2 without providing a vertically movable molding base 3,
Then, a predetermined amount of the liquid photo-curable resin R is replenished, the doctor blade 4 is moved along the surface R 0 thereof for smoothing, and light is irradiated to form a thin film of the next stage, and again a predetermined amount is formed. The liquid photo-curable resin R may be replenished, and so on, to form a three-dimensional object by laminating thin films one after another on the bottom surface of the bathtub 2.

【0036】[0036]

【発明の効果】以上説明したように、請求項1又は請求
項2に係る発明によれば、二次元データの最大長さ方向
と平行に光を走査するようにしたため、走査線の本数が
少なくなるから、三次元物体の製造時間を大幅に短縮で
き、生産効率を向上することができるという効果が得ら
れる。
As described above, according to the invention of claim 1 or 2, since the light is scanned in parallel with the maximum length direction of the two-dimensional data, the number of scanning lines is small. Therefore, the manufacturing time of the three-dimensional object can be significantly shortened, and the production efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成を示す断面図であ
る。
FIG. 1 is a sectional view showing a configuration of a first embodiment of the present invention.

【図2】第1実施例の動作を説明する説明図である。FIG. 2 is an explanatory diagram illustrating an operation of the first embodiment.

【図3】座標変換前の二次元データの説明図である。FIG. 3 is an explanatory diagram of two-dimensional data before coordinate conversion.

【図4】二次元データの座標変換の方法を説明する説明
図である。
FIG. 4 is an explanatory diagram illustrating a method of coordinate conversion of two-dimensional data.

【図5】座標変換後の二次元データの説明図である。FIG. 5 is an explanatory diagram of two-dimensional data after coordinate conversion.

【図6】本発明の第2実施例の構成を示す断面図であ
る。
FIG. 6 is a sectional view showing a configuration of a second exemplary embodiment of the present invention.

【図7】第2実施例の要部を拡大した図である。FIG. 7 is an enlarged view of a main part of the second embodiment.

【符号の説明】[Explanation of symbols]

1 三次元物体製造装置 2 浴槽 3 成型架台 4 ドクターブレード 5a,5b 薄膜 10A,10B 容器 R 液状光硬化性樹脂 R0 液状光硬化性樹脂表面 L 光1 3D Object Manufacturing Device 2 Bathtub 3 Molding Stand 4 Doctor Blade 5a, 5b Thin Film 10A, 10B Container R Liquid Photocurable Resin R 0 Liquid Photocurable Resin Surface L Light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 二次元データに基づいて液状光硬化性樹
脂の表面に選択的に光を照射して薄膜を形成する薄膜形
成工程と、前記薄膜の上面を前記液状光硬化性樹脂で薄
く覆う薄膜被覆工程と、を繰り返し行うことにより所望
形状の三次元物体を製造する方法において、前記二次元
データの輪郭線上の任意の2点間の距離が最大となる最
大長さ方向を認識し、その最大長さ方向と平行に前記光
を走査することを特徴とする三次元物体の製造方法。
1. A thin film forming step of selectively irradiating the surface of a liquid photocurable resin with light based on two-dimensional data to form a thin film, and a thin film covering the upper surface of the thin film with the liquid photocurable resin. In the method of manufacturing a three-dimensional object having a desired shape by repeatedly performing the thin film coating step, the maximum length direction in which the distance between any two points on the contour line of the two-dimensional data becomes maximum is recognized, and A method for manufacturing a three-dimensional object, comprising scanning the light parallel to a maximum length direction.
【請求項2】 二次元データに基づいて液状光硬化性樹
脂の表面に選択的に光を照射して薄膜を形成する光照射
手段と、前記薄膜の上面を前記液状光硬化性樹脂で薄く
覆う薄膜被覆手段と、を備えた三次元物体の製造装置に
おいて、前記二次元データの輪郭線上の任意の2点間の
距離が最大となる最大長さ方向と、前記光の走査方向と
を一致させたことを特徴とする三次元物体の製造装置。
2. Light irradiation means for selectively irradiating the surface of the liquid photo-curable resin with light based on two-dimensional data to form a thin film, and the upper surface of the thin film is thinly covered with the liquid photo-curable resin. In the apparatus for manufacturing a three-dimensional object including a thin film coating means, a maximum length direction in which a distance between any two points on the contour line of the two-dimensional data is maximum is made to coincide with the scanning direction of the light. An apparatus for manufacturing a three-dimensional object characterized by the above.
JP6132070A 1994-06-14 1994-06-14 Manufacture of 3-dimensional object and manufacturing equipment Withdrawn JPH07329190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6132070A JPH07329190A (en) 1994-06-14 1994-06-14 Manufacture of 3-dimensional object and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6132070A JPH07329190A (en) 1994-06-14 1994-06-14 Manufacture of 3-dimensional object and manufacturing equipment

Publications (1)

Publication Number Publication Date
JPH07329190A true JPH07329190A (en) 1995-12-19

Family

ID=15072816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6132070A Withdrawn JPH07329190A (en) 1994-06-14 1994-06-14 Manufacture of 3-dimensional object and manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH07329190A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103144305A (en) * 2013-02-27 2013-06-12 深圳诚一信科技有限公司 Rapid Three-dimensional (3D) laser prototyping system and rapid 3D laser prototyping method
CN104325643A (en) * 2014-10-18 2015-02-04 东莞市瑞迪三维电子科技有限公司 Method and device for manufacturing 3D (three-dimensional) product
CN104589648A (en) * 2015-01-07 2015-05-06 林云帆 Three-dimensional object scanning and printing method and device
JP2016097657A (en) * 2014-11-26 2016-05-30 キヤノン株式会社 Image information processing apparatus, image information processing method and program, and imaging device
EP3119587B1 (en) 2014-03-18 2018-03-14 Renishaw plc Selective solidification apparatus and methods
JP2020522414A (en) * 2017-07-27 2020-07-30 チューハイ セイルナー スリーディー テクノロジー カンパニー リミテッドZhuhai Sailner 3D Technology Co., Ltd. 3D printing method and device
WO2021004101A1 (en) * 2019-07-11 2021-01-14 珠海赛纳三维科技有限公司 Three-dimensional printing method and system, and storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103144305A (en) * 2013-02-27 2013-06-12 深圳诚一信科技有限公司 Rapid Three-dimensional (3D) laser prototyping system and rapid 3D laser prototyping method
EP3119587B1 (en) 2014-03-18 2018-03-14 Renishaw plc Selective solidification apparatus and methods
EP3323533B1 (en) 2014-03-18 2021-05-12 Renishaw PLC Selective solidification apparatus and methods
CN104325643A (en) * 2014-10-18 2015-02-04 东莞市瑞迪三维电子科技有限公司 Method and device for manufacturing 3D (three-dimensional) product
CN104325643B (en) * 2014-10-18 2018-03-27 东莞市瑞迪三维电子科技有限公司 A kind of method and its device for making 3D products
JP2016097657A (en) * 2014-11-26 2016-05-30 キヤノン株式会社 Image information processing apparatus, image information processing method and program, and imaging device
CN104589648A (en) * 2015-01-07 2015-05-06 林云帆 Three-dimensional object scanning and printing method and device
JP2020522414A (en) * 2017-07-27 2020-07-30 チューハイ セイルナー スリーディー テクノロジー カンパニー リミテッドZhuhai Sailner 3D Technology Co., Ltd. 3D printing method and device
US11931965B2 (en) 2017-07-27 2024-03-19 Zhuhai Sailner 3D Technology Co., Ltd. 3D printing method and device
WO2021004101A1 (en) * 2019-07-11 2021-01-14 珠海赛纳三维科技有限公司 Three-dimensional printing method and system, and storage medium

Similar Documents

Publication Publication Date Title
JP6174842B2 (en) Method for layered construction of shaped bodies made of highly viscous photopolymerizable materials
JP3803735B2 (en) Light solidification modeling device that performs optical scanning simultaneously with recoating
CN104956672B (en) Three dimensional object is constructed
JPS61114818A (en) Apparatus for forming solid configuration
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
JP2001009921A (en) Stereo lithography device
JPH07329190A (en) Manufacture of 3-dimensional object and manufacturing equipment
JPH11221864A (en) Formation of three-dimentional shape
CN110394980A (en) Three-dimensional printing system
JPH10119136A (en) Photo-shaping method using selected light sources and stereoscopially shaped article to be obtained by the method
JP3782049B2 (en) Stereolithography method and apparatus therefor
JPH0994883A (en) Method and apparatus for optically shaping three-dimensional shaped article
JP5993224B2 (en) 3D modeling equipment
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
CN208789091U (en) A kind of 3D formation system moving spliced upper projection pattern
JP3641276B2 (en) 3D image forming method
JP2000202915A (en) Sqeegee device for stereo lithographing apparatus, and method therefor
JP4049654B2 (en) 3D modeling apparatus and 3D modeling method
JPH07329189A (en) Manufacture of 3-dimensional object and manufacturing device
JPS63145016A (en) Device for forming solid shape
JPH0669724B2 (en) 3D shape forming method
JP2000094528A (en) Squeezee device of photofabrication apparatus
JPH08238678A (en) Optically molding machine
CN206085672U (en) 3D synthesizes material control system on printing device
JP2000218707A (en) Recoater for stereo-lithographic device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904