[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0731490A - Method for production copolymer and microorganism production the same - Google Patents

Method for production copolymer and microorganism production the same

Info

Publication number
JPH0731490A
JPH0731490A JP5184142A JP18414293A JPH0731490A JP H0731490 A JPH0731490 A JP H0731490A JP 5184142 A JP5184142 A JP 5184142A JP 18414293 A JP18414293 A JP 18414293A JP H0731490 A JPH0731490 A JP H0731490A
Authority
JP
Japan
Prior art keywords
copolymer
mol
culture
pseudomonas
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5184142A
Other languages
Japanese (ja)
Inventor
Hiroshi Etani
浩 恵谷
Naoko Iwaki
尚子 岩城
Takeshi Fukushima
武 福島
Genzo Hirano
元三 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP5184142A priority Critical patent/JPH0731490A/en
Publication of JPH0731490A publication Critical patent/JPH0731490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE:To efficiently obtain a copolymer useful for medicines, foods, sanitary articles, etc., by culturing a microorganism belonging to the genus Pseudomonas and producing a copolymer having specific physicochemical properties, specified constituents, etc. CONSTITUTION:The production method of the objective copolymer comprises culturing a microorganism belonging to the genus Pseudomanas, such as Pseudomonas S.P. 31-1 strain (FERM P-13280) and producing a copolymer in an amount of 80-95X in the dried cells, the copolymer comprising (A) (i) 1-40% of 3-hydroxyhexanoate units, (ii) 10-95% of 3-hydroxyoctanoate units, (iii) 0-70% of 3-hydroxydecanoate units, and (iv) 0-40% of 3-hydroxydodecanoate units, and having physicochemical properties comprising (B) a number-average mol.wt. of 50000-1000000, (C) a melting point of 35-70 deg.C or no clear melting point, (D) a glass transition point of -20 to -50 deg.C. and (E) solubility: soluble in chloroform, dichloromethane, 1,2-dichloroethane, acetone; and in soluble in water.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医薬品、食品、衛生用
品、農園芸品、包装材料等広範な分野に応用可能な生分
解性の共重合体の製造方法及び該共重合体を生成する微
生物に関する。
The present invention relates to a method for producing a biodegradable copolymer applicable to a wide range of fields such as pharmaceuticals, foods, hygiene products, agricultural and horticultural products, and packaging materials, and a method for producing the copolymer. Regarding microorganisms.

【0002】[0002]

【従来の技術】微生物の多くは、各種の共重合体を生成
することが知られている。それらの共重合体は熱可塑性
を有する、いわゆるプラスチックから、粘弾性を有する
ゴム状のものまで、多岐にわたっており、しかも、これ
らはいずれも生分解性を有するものである。
2. Description of the Related Art It is known that many microorganisms produce various copolymers. These copolymers range from a thermoplastic so-called plastic to a viscoelastic rubber-like copolymer, and all of them are biodegradable.

【0003】例えば、近年、エネルギー貯蔵物質として
注目されているポリ−3−ヒドロキシブチレート〔P
(3HB)〕については特開昭56−117793号、
同57−74084号、同57−150393号に、3
−ヒドロキシブチレートと3−ヒドロキシバリレートの
共重合体〔P(3HB−co−3HV)〕については特
開昭57−150393号、同58−69224号、同
58−212792号、同59−220192号、同5
9−205992号、同61−293385号、同63
−269989号に、3−ヒドロキシブチレートと4−
ヒドロキシブチレート〔P−(3HB−co−4H
B)〕については特開平1−48821号、同1−15
6320号、同1−222788号、同1−30489
1号、同2−27992号、同2−234683号、同
3−216193号等にそれぞれ共重合体及びその製造
方法が開示されている。
[0003] For example, poly-3-hydroxybutyrate [P
(3HB)], JP-A-56-117793,
No. 57-74084, No. 57-150393, 3
Regarding the copolymer of hydroxybutyrate and 3-hydroxyvalerate [P (3HB-co-3HV)], JP-A Nos. 57-150393, 58-69224, 58-212792 and 59-220192 are disclosed. Issue 5
9-205992, 61-293385, 63
-2699989, 3-hydroxybutyrate and 4-
Hydroxybutyrate [P- (3HB-co-4H
B)], JP-A-1-48821 and 1-15.
6320, 1-222788, 1-30489.
No. 1, No. 2-279992, No. 2-234683, No. 3-216193, etc. disclose copolymers and methods for producing the same, respectively.

【0004】更に、A.Steinbuchelらの、
Appl.Environ.Microbiol.Vo
l.56,No.11,p3360−3367(199
0)には、3−ヒドロキシヘキサノエートと3−ヒドロ
キシオクタノエートの共重合体〔P(3HHx−co−
3HO)〕等の3HB単位を持たない共重合体が微生物
によって生成されることが報告されている。すなわち、
炭素源としてオクタン酸を添加した栄養塩培地で、例え
ばシュードモナス・オーレオファシンス DSM500
82を培養すると乾燥菌体中18.0%の〔P(3HH
x−co−3HO)〕〔3HHx20.8モル%,3H
O89.2モル%〕を生成し、シュードモナス・シトロ
ネロリス DSM50332を培養すると乾燥菌体中7
5.3%の〔P(3HO−co−3HD)〕〔3HHx
93.8モル%,3HD6.2モル%〕を生成し、ま
た、シュードモナス・オレオボランス ATCC293
47を培養すると乾燥菌体中44.0%の〔P(3HH
x−co−3HO,3HD)〕〔3HHx5.4モル
%,3HO92.0モル%,3HD2.6モル%〕を生
成する。更に、炭素源としてグルコン酸を添加した栄養
塩培地で、例えばシュードモナス・メンドシナ DSM
50017を培養すると乾燥菌体中50.7%のP(3
HHx−co−3HO,3HD,3HDD)〔3HHx
4.3モル%,3HO29.8モル%,3HD61.9
モル%,3HDD4.2モル%〕を生成する。
Furthermore, A. Steinbuchel et al.
Appl. Environ. Microbiol. Vo
l. 56, No. 11, p3360-3367 (199
0) is a copolymer of 3-hydroxyhexanoate and 3-hydroxyoctanoate [P (3HHx-co-
It has been reported that a copolymer having no 3HB unit such as 3HO)] is produced by a microorganism. That is,
A nutrient medium supplemented with octanoic acid as a carbon source, such as Pseudomonas aureofascin DSM500
When 82 is cultivated, 18.0% [P (3HH
x-co-3HO)] [3HHx20.8 mol%, 3H
O89.2 mol%] was produced and Pseudomonas citronellolis DSM50332 was cultured to produce 7 out of 7 dry cells.
5.3% [P (3HO-co-3HD)] [3HHx
93.8 mol%, 3HD6.2 mol%], and Pseudomonas oleovorans ATCC293
When 47 was cultured, 44.0% [P (3HH
x-co-3HO, 3HD)] [3HHx 5.4 mol%, 3HO 92.0 mol%, 3HD 2.6 mol%]. Furthermore, in a nutrient medium supplemented with gluconic acid as a carbon source, for example, Pseudomonas mendocina DSM
When 50017 was cultured, 50.7% P (3
HHx-co-3HO, 3HD, 3HDD) [3HHx
4.3 mol%, 3HO29.8 mol%, 3HD61.9
Mol%, 3HDD 4.2 mol%].

【0005】これら生分解性の共重合体は加水分解性を
有し、土中や河川水中、海水中、生体内の微生物の作用
で二酸化炭素と水に分解され自然環境に戻るものであ
り、近年、地球環境保全に対する意識の高まりから注目
され、研究開発がなされ、実用化が検討されている。
These biodegradable copolymers are hydrolyzable, and are decomposed into carbon dioxide and water by the action of microorganisms in soil, river water, seawater, and living bodies to return to the natural environment. In recent years, attention has been paid to the increased awareness of global environment conservation, research and development have been made, and practical application is being considered.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、微生物
が生成する共重合体は、その理化学的性質が多岐にわた
っており、それぞれの使用目的に適合する共重合体の探
索が要求されている。
However, the copolymers produced by microorganisms have a wide variety of physicochemical properties, and it is necessary to search for a copolymer that is suitable for each purpose of use.

【0007】一方、共重合体の微生物による生産は、通
常の化学合成法による生産に比較して、培地成分が高価
である、微生物のポリマー生成速度が遅い、菌体中のポ
リマー含有率が低い等のため生産コストが高くなるとい
う欠点を有しており、この問題の解決が望まれていた。
On the other hand, in the production of the copolymer by the microorganism, the medium components are more expensive, the polymer production rate of the microorganism is slower, and the polymer content in the bacterial cell is lower than that produced by the ordinary chemical synthesis method. Therefore, there is a drawback that the production cost becomes high, and it has been desired to solve this problem.

【0008】[0008]

【課題を解決するための手段】本発明者らは、かかる実
情に鑑み鋭意検討した結果、千葉県佐倉市の土壌より分
離したシュードモナス属に属する細菌を培養すれば、3
HB単位を有しない共重合体が極めて高収率で得られる
ことを見出し、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies in view of such circumstances, the present inventors have found that if bacteria belonging to the genus Pseudomonas isolated from soil in Sakura City, Chiba Prefecture are cultivated, 3
It was found that a copolymer having no HB unit can be obtained in an extremely high yield, and the present invention has been completed.

【0009】すなわち、本発明は、シュードモナス属に
属し、乾燥菌体中に80〜95%下記理化学的性質、
(A)〜(E)を有する共重合体を産生する微生物を培
養し、該共重合体を採取することを特徴とする共重合体
の製造方法を提供するものである。
That is, the present invention belongs to the genus Pseudomonas and has 80 to 95% of the following physicochemical properties in dry cells.
The present invention provides a method for producing a copolymer, which comprises culturing a microorganism producing a copolymer having (A) to (E) and collecting the copolymer.

【0010】(A)構成成分及び組成 下記(a)、(b)、(c)及び(d); (a)下記式(1)及び/又は(2)及び/又は(3)で表わされる3−ヒド ロキシヘキサノエート単位(3HHx) 1〜40モル%、(A) Constituent Components and Compositions (a), (b), (c) and (d): (a) Represented by the following formulas (1) and / or (2) and / or (3). 3-hydroxyhexanoate unit (3HHx) 1-40 mol%,

【0011】[0011]

【化5】 [Chemical 5]

【0012】 (b)下記式(4)及び/又は(5)及び/又は(6)で表わされる3−ヒド ロキシオクタノエート単位(3HO) 10〜95モル%、(B) 3-hydroxyoctanoate unit (3HO) represented by the following formula (4) and / or (5) and / or (6): 10 to 95 mol%,

【0013】[0013]

【化6】 [Chemical 6]

【0014】 (c)下記式(7)及び/又は(8)及び/又は(9)で表わされる3−ヒド ロキシデカノエート単位(3HD) 0〜70モル%、(C) 0 to 70 mol% of 3-hydroxydecanoate unit (3HD) represented by the following formula (7) and / or (8) and / or (9):

【0015】[0015]

【化7】 [Chemical 7]

【0016】 (d)下記式(10)及び/又は(11)及び/又は(12)で表わされる3 −ヒドロキシドデカノエート単位(3HDD) 0〜40モル%、(D) 3-hydroxydodecanoate unit (3HDD) represented by the following formula (10) and / or (11) and / or (12) 0 to 40 mol%,

【0017】[0017]

【化8】 [Chemical 8]

【0018】からなる共重合体。 (B)数平均分子量 50,000〜1,000,000。 (C)融点 35〜70℃又は明確な融点を示さない。 (D)ガラス転移点 −20〜−50℃。 (E)溶解性 クロロホルム、ジクロロメタン、1,2−ジクロロエタ
ン及びアセトンに可溶、水に不溶。
A copolymer consisting of: (B) Number average molecular weight of 50,000 to 1,000,000. (C) Melting point 35-70 ° C or no clear melting point. (D) Glass transition point -20 to -50 ° C. (E) Solubility Soluble in chloroform, dichloromethane, 1,2-dichloroethane and acetone, insoluble in water.

【0019】本発明は、更に上記共重合体を生成するシ
ュードモナス エスピー(Pseudomonas s
p.) 31−1株(微工研菌寄第13280号)を提
供するものである。
The present invention further provides Pseudomonas s which produces the above copolymer.
p. ) 31-1 strain (Ministry of Microbiological Research No. 13280) is provided.

【0020】上記共重合体を生成する微生物の菌学的性
質は以下のとおりである。
The mycological properties of the microorganism producing the above copolymer are as follows.

【0021】(1)形態学的性質 寒天培地、30℃、一夜培養で0.6〜0.8μm ×
1.7〜2.3μm の直状桿菌である。液体培地、30
℃、一夜培養で0.8〜1.1μm ×2.5〜5.7μ
m の直状桿菌である。べん毛染色で極毛が観察され、運
動性が認められる。多形性、胞子、グラム染色性及び抗
酸性は認められない。
(1) Morphological properties 0.6 to 0.8 μm x after overnight culture on agar medium at 30 ° C.
It is a straight bacillus of 1.7 to 2.3 μm. Liquid medium, 30
0.8-1.1μm x 2.5-5.7μ in overnight culture at ℃
It is a straight rod of m. Polar hair is observed by flagella staining, and motility is recognized. Polymorphism, spores, Gram stain and acid resistance are not observed.

【0022】(2)各種培地における生育状態 (イ)肉汁寒天平板培養 コロニーは平滑で周縁はやや粗造である。特徴的コロニ
ー色素、拡散性色素の産生は認められない。 (ロ)肉汁寒天斜面培地 菌苔は平滑で周縁はやや粗造である。特徴的コロニー色
素、拡散性色素の産生は認められない。 (ハ)肉汁液体培地 培地全体に生育が認められるが、表面皮膜は認められな
い。 (ニ)肉汁ゼラチン穿刺培養 培地の上部に生育が認められるが、液化は認められな
い。 (ホ)リトマスミルク アルカリの産生は認められるが、凝固は認められない。
(2) Growth state in various media (a) Meat broth agar plate culture The colonies are smooth and the margins are slightly rough. No characteristic colony dye or diffusible dye is produced. (B) Meat broth agar slope medium The moss is smooth and the periphery is rather rough. No characteristic colony dye or diffusible dye is produced. (C) Meat juice liquid medium Growth is observed throughout the medium, but no surface film is observed. (D) Meat broth gelatin stab culture Growth is observed at the top of the medium, but no liquefaction is observed. (E) Litmus milk Alkali is produced but coagulation is not observed.

【0023】(3)生理的性質 (イ)硝酸塩の還元 :陰性 (ロ)脱窒反応 :陰性 (ハ)MRテスト :陰性 (ニ)VPテスト :陰性 (ホ)インドールの生成 :陰性 (ヘ)硫化水素の生成 TSI寒天 :陰性 酢酸鉛寒天 :陰性 (ト)デンプンの加水分解 :陰性 (チ)クエン酸塩の利用 Koserの培地 :陽性 Christensenの培地:陽性 (リ)無機窒素源の利用 硝酸塩 :陽性 アンモニウム塩 :陽性 (ヌ)色素の生成 コロニー :陰性 水溶性 :陰性 (ル)ウレアーゼ :陰性 (ヲ)オキシダーゼ :陽性 (ワ)カタラーゼ :陽性 (カ)生育の範囲 pH :5.5〜9.0 温度 :−3〜36℃ (ヨ)酸素に対する態度 :好気性 (タ)O−Fテスト(Hugh Leifson法):
O (レ)糖類からの酸及びガスの生成 :表1に記載
(3) Physiological properties (a) Reduction of nitrate: Negative (b) Denitrification reaction: Negative (c) MR test: Negative (d) VP test: Negative (e) Indole formation: Negative (f) Production of hydrogen sulfide TSI agar: Negative Lead acetate agar: Negative (G) Starch hydrolysis: Negative (H) Use of citrate Koser's medium: Positive Christensen's medium: Positive (R) Use of inorganic nitrogen source Nitrate: Positive Ammonium salt: Positive (nu) Pigment formation Colony: Negative Water solubility: Negative (L) Urease: Negative (wo) Oxidase: Positive (wa) Catalase: Positive (mosquito) Growth range pH: 5.5-9. 0 Temperature: −3 to 36 ° C. (Yo) Attitude toward oxygen: Aerobic (ta) OF test (Hugh Leifson method):
Generation of Acid and Gas from O (R) Sugars: Described in Table 1

【0024】[0024]

【表1】 [Table 1]

【0025】以上の菌学的性質から、この微生物はシュ
ードモナス属に属する菌であり、更に公知の菌株と比較
しても同じものが存しないため新規の菌株と判断し、シ
ュードモナス エスピー(Pseudomonas s
p.) 31−1と命名して、工業技術院微生物工業技
術研究所に微工研菌寄第13280号(FERM P−
13280)として寄託した。
From the above-mentioned mycological properties, this microorganism belongs to the genus Pseudomonas, and the same strain does not exist as compared with known strains. Therefore, it is judged as a new strain, and Pseudomonas sp.
p. ) 31-1 and named to the Institute of Microbial Technology, National Institute of Advanced Industrial Science and Technology, as a micromachine researcher No. 13280 (FERM P-
13280).

【0026】本発明の微生物は自然又は紫外線、X線、
化学薬剤等により変異を起す。従って、本発明の共重合
体の製造方法は、これら変異株を用いることもできる。
The microorganisms of the present invention are natural or ultraviolet, X-ray,
Mutation is caused by chemical agents. Therefore, these mutants can also be used in the method for producing the copolymer of the present invention.

【0027】本発明の菌株を用いて、本発明の共重合体
を製造する方法は、培地に該菌株を接種し、培養し、こ
の培養物より乾燥菌体中80〜95%を占める共重合体
を採取する方法である。この培地中には、資化し得る炭
素源、窒素源及びその他の栄養源を適当量含有せしめて
おく。これらは特に制限はないが、具体的には、炭素源
としてはオクタン酸ナトリウム、グルコン酸ナトリウ
ム、吉草酸、ブイヨン、シュクロース、デンプン、糖
蜜、アラビノース、ソルビトール、メタノール、二酸化
炭素等が挙げられ、窒素源としては塩化アンモニウム、
硫酸アンモニウム、硝酸ナトリウムなどの無機窒素源の
他、酵母エキス、肉エキス、ペプトン、大豆粉、油粕な
どの有機窒素源も挙げることができ、その他の添加物と
しては、必要に応じてマグネシウム、ナトリウム、カリ
ウム、カルシウム、マンガン、銅、モリブデン、亜鉛、
鉄等の金属塩、リン酸塩、硝酸塩、塩化物、炭酸塩等、
クエン酸ナトリウム等の有機酸塩が挙げられる。
The method for producing the copolymer of the present invention using the strain of the present invention is as follows. It is a method of collecting coalescence. An appropriate amount of assimilable carbon source, nitrogen source and other nutrient sources are contained in this medium. These are not particularly limited, but specific examples of the carbon source include sodium octanoate, sodium gluconate, valeric acid, broth, sucrose, starch, molasses, arabinose, sorbitol, methanol, carbon dioxide, and the like. Ammonium chloride as a nitrogen source,
Ammonium sulfate, other inorganic nitrogen sources such as sodium nitrate, yeast extract, meat extract, peptone, soybean flour, organic nitrogen sources such as oil cake can also be mentioned, as other additives, magnesium, sodium, if necessary, Potassium, calcium, manganese, copper, molybdenum, zinc,
Metal salts such as iron, phosphates, nitrates, chlorides, carbonates, etc.
Organic acid salts such as sodium citrate may be mentioned.

【0028】培養は好気的条件下で行うのが好ましく、
静置、振とう、通気攪拌培養のいずれも可能であるが、
振とうあるいは通気攪拌培養が有利である。培養温度は
約10〜36℃が好ましく、特に約20〜32℃が好適
である。また、培地のpHは約5.5〜9.0が適当であ
るが、特に6.5〜8.0が最適である。
The culture is preferably carried out under aerobic conditions,
Any of stationary culture, shaking, and aeration and agitation culture are possible,
Shaking or aeration-agitation culture is advantageous. The culture temperature is preferably about 10 to 36 ° C, particularly about 20 to 32 ° C. Further, the pH of the medium is suitably about 5.5 to 9.0, and particularly 6.5 to 8.0 is most suitable.

【0029】培養期間は培地の組成、温度等の培養条件
によって異なるが、通常約0.5〜6日程度、好ましく
は1〜3日程度である。
The culture period varies depending on the culture conditions such as medium composition and temperature, but is usually about 0.5 to 6 days, preferably about 1 to 3 days.

【0030】また、このとき主として菌体を増殖させる
前段の培養と、窒素及び/又はリンを制限して菌体内に
共重合体を生成、蓄積させる後段の培養との二段階によ
り培養したほうが、通常、共重合体の生成量が多くなる
ため好ましい。すなわち、上記の培養条件で前段の培養
を行い、得られた培養液から菌体を濾過あるいは遠心分
離のような手段で分離回収し、その菌体を後段の窒素及
び/又はリンを制限した培地での培養に移行させるか、
又は、前段の培養において窒素及び/又はリンを枯渇さ
せ、菌体を分離回収することなく、その培養液を後段の
培養に移行させてもよい。この後段の培養は培養液中に
窒素及び/又はリンを実質的に含有させない点でのみ前
段の培養と異なる。
Further, at this time, it is preferable that the culture is carried out in two stages, that is, a pre-stage culture in which the cells are mainly grown and a post-stage culture in which the copolymer is produced and accumulated in the cells by limiting nitrogen and / or phosphorus. Usually, it is preferable because the amount of the copolymer produced increases. That is, the first-stage culture is carried out under the above-mentioned culture conditions, and the cells are separated and recovered from the obtained culture solution by means such as filtration or centrifugation, and the cells are restricted to the latter-stage nitrogen and / or phosphorus-containing medium. To culture in
Alternatively, nitrogen and / or phosphorus may be depleted in the first-stage culture, and the culture solution may be transferred to the second-stage culture without separating and recovering the bacterial cells. The latter-stage culture differs from the former-stage culture only in that the culture medium does not substantially contain nitrogen and / or phosphorus.

【0031】以上の培養における培地のオクタン酸ナト
リウム等の炭素源の量は、共重合体を生成させることが
でき、かつ、微生物の生育を阻害しない量であればよい
が、共重合体を構成するモノマーユニットの種類あるい
はモノマーユニット数の割合により変化させることが好
ましい。通常は培養液1lあたり1〜100g程度、好
ましくは5〜30g程度である。
The amount of the carbon source such as sodium octoate in the medium in the above culture may be any amount as long as it can produce the copolymer and does not inhibit the growth of microorganisms. It is preferable to change it depending on the kind of the monomer unit or the ratio of the number of monomer units. Usually, it is about 1 to 100 g, preferably about 5 to 30 g per liter of the culture solution.

【0032】上記により培養された培養物中から、濾過
あるいは遠心分離などの通常の手段によって菌体を分離
回収し、この菌体を洗浄、乾燥して乾燥菌体を得る。菌
体の収量は1〜10g/l程度である。この菌体から目
的の共重合体を採取するには、常法により、例えばクロ
ロホルムのような有機溶剤で生成した共重合体を抽出
し、例えば共重合体を溶解しにくいメタノール、ヘキサ
ンなど貧溶媒を加えて上記共重合体を沈澱させる。
From the culture cultivated as described above, cells are separated and recovered by a usual means such as filtration or centrifugation, and the cells are washed and dried to obtain dried cells. The yield of bacterial cells is about 1 to 10 g / l. In order to collect the desired copolymer from this microbial cell, the copolymer produced by an organic solvent such as chloroform is extracted by a conventional method, and the poor copolymer such as methanol or hexane is difficult to dissolve the copolymer. Is added to precipitate the copolymer.

【0033】かくして得られた共重合体は3HHx及び
3HO、更に場合により3HD及び3HDDのモノマー
ユニットがエステル結合した前記理化学的性質を有する
共重合体である。各モノマーユニットの割合及び分子量
は、オクタン酸ナトリウム、グルコン酸ナトリウムなど
の炭素源の種類や濃度を変えることによって、制御する
ことができる。
The copolymer thus obtained is a copolymer having the above-mentioned physicochemical properties in which monomer units of 3HHx and 3HO, and optionally 3HD and 3HDD are ester-bonded. The ratio and molecular weight of each monomer unit can be controlled by changing the type and concentration of carbon sources such as sodium octanoate and sodium gluconate.

【0034】[0034]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0035】実施例1保存菌株の復元と予備培養 凍結保存したシュードモナス エスピー 31−1株
(微工研菌寄第13280号)を室温で解凍し、1%グ
ルコース添加ブイヨン培地に植菌して、30℃、24時
間培養し復元した。この復元菌株を1%グルコース添加
ブイヨン液体培地5mlに植菌し、30℃、24時間往復
振とう培養した。前段培養 下記に示す組成の培地を2lジャーファメンターに入
れ、予備培養した前記シュードモナス エスピー 31
−1株を30℃で20時間好気培養した。
Example 1 Restoration and Preculture of Preserved Strain Pseudomonas sp 31-1 strain (Microtechnology Research Institute, No. 13280) thawed and frozen was thawed at room temperature and inoculated into a broth medium containing 1% glucose. It was restored by culturing at 30 ° C. for 24 hours. This reconstituted strain was inoculated into 5 ml of a broth liquid medium containing 1% glucose and cultured at 30 ° C. for 24 hours with reciprocal shaking. Pre- stage culture The above-mentioned Pseudomonas sp.
The strain -1 was aerobically cultured at 30 ° C for 20 hours.

【0036】[0036]

【表2】 (培地組成) NH4Cl 0.4g KH2PO4 2.7g NaH2PO4 3.2g MgSO4 0.2g ミネラル溶液* 1.0ml 蒸留水 1,000ml pH 7.0[Table 2] (Media composition) NH 4 Cl 0.4 g KH 2 PO 4 2.7 g NaH 2 PO 4 3.2 g MgSO 4 0.2 g Mineral solution * 1.0 ml Distilled water 1,000 ml pH 7.0

【0037】[0037]

【表3】 *:次の成分を含む CoCl 119.0mg CaCl2 7.8mg CrCl2 62.2mg FeCl3・6H2O 9.7mg NiCl3 118.0mg CuSO4 156.0mg 0.1N-HCl水溶液 1.0l[Table 3] *: CoCl 119.0 mg CaCl 2 7.8 mg CrCl 2 62.2 mg FeCl 3 .6H 2 O 9.7 mg NiCl 3 118.0 mg CuSO 4 156.0 mg 0.1N-HCl aqueous solution 1 .01

【0038】後段培養 次に、前段培養を行った培地組成と同じ培地に炭素源と
してオクタン酸ナトリウム5g/l培地を加えた培地
で、30℃で30時間好気培養した。pHは無調整で7.
0〜7.5であった。菌体の分離 得られた培養物から遠心分離(10,000rpm )によ
って、菌体を分離した。次に、得られた菌体を凍結乾燥
し乾燥菌体8.0g/lを得た。共重合体の分離・精製 得られた乾燥菌体にクロロホルム(ウォーターバス90
℃)を加え共重合体を抽出して濃縮し、これにメタノー
ルを加えて共重合体を沈澱させた後、上澄のメタノール
を取り除き、真空乾燥機で乾燥し、乾燥菌体中88%の
共重合体(1)を得た。共重合体(1)の理化学的性質 以上のようにして得られた共重合体(1)の組成、数平
均分子量、融点、ガラス転移点及び溶解性を下記により
測定した。
Second- stage culturing Next, aerobically culturing was carried out at 30 ° C. for 30 hours in a medium in which 5 g / l of sodium octanoate as a carbon source was added to the same medium composition as that of the first-stage culturing. pH is unadjusted 7.
It was 0 to 7.5. Separation of bacterial cells The bacterial cells were separated from the obtained culture by centrifugation (10,000 rpm). Next, the obtained cells were freeze-dried to obtain 8.0 g / l of dried cells. Separation and Purification of Copolymer Coated with chloroform (water bath 90
℃) was added to extract and concentrate the copolymer, methanol was added to this to precipitate the copolymer, the supernatant methanol was removed, and the residue was dried in a vacuum dryer to obtain 88% of the dried cells. A copolymer (1) was obtained. Physicochemical Properties of Copolymer (1) The composition, number average molecular weight, melting point, glass transition point and solubility of copolymer (1) obtained as described above were measured by the following.

【0039】[0039]

【表4】 組 成:1H−NMRスペクトル,13C−NMRスペク
トル 分子量:ゲルパーミエーションクロマトグラフィ(GP
C)測定(日立製作所製L−6200,データ処理装置
D−2520) 融 点:示差走査熱量計(DSC)測定(10℃/min
)(島津製作所製DSC−50) ガラス転移点:示差走査熱量計(DSC)測定(20℃
/min ) 溶解性:各種溶剤に対する溶解性
Table 4 Composition: 1 H-NMR spectrum, 13 C-NMR spectrum Molecular weight: Gel permeation chromatography (GP
C) Measurement (Hitachi L-6200, Data processing device D-2520) Melting point: Differential scanning calorimeter (DSC) measurement (10 ° C / min)
) (Shimadzu DSC-50) Glass transition point: Differential scanning calorimeter (DSC) measurement (20 ° C)
/ Min) Solubility: Solubility in various solvents

【0040】測定結果を併せて表5に示す。乾燥菌体中
の共重合体(1)は88%の高含有率であった。共重合
体(1)の溶解性はクロロホルム、ジクロロメタン、
1,2−ジクロロエタン、アセトンに可溶で、水に不溶
であった。共重合体(1)はゴム状であった。また、1
00MHz 13C−NMRスペクトルを図1に、500
MHz 1H−NMRスペクトルを図2に、GPC測定チ
ャートを図3に、DSC測定チャートを図4に示す。
The measurement results are also shown in Table 5. The copolymer (1) in the dried cells had a high content rate of 88%. The solubility of the copolymer (1) is chloroform, dichloromethane,
It was soluble in 1,2-dichloroethane and acetone and insoluble in water. The copolymer (1) was rubbery. Also, 1
The 00 MHz 13 C-NMR spectrum is shown in FIG.
The MHz 1 H-NMR spectrum is shown in FIG. 2, the GPC measurement chart is shown in FIG. 3, and the DSC measurement chart is shown in FIG.

【0041】実施例2 後段の培養にて、炭素源としてオクタン酸ナトリウム1
2g/l培地とした以外は実施例1と同様に行った。
Example 2 Sodium octanoate 1 was used as a carbon source in the latter culture.
The same procedure as in Example 1 was repeated except that the medium was 2 g / l.

【0042】測定結果を併せて表5に示す。乾燥菌体中
の共重合体(2)は93%の高含有率であった。また、
共重合体(2)の溶解性はクロロホルム、ジクロロメタ
ン、1,2−ジクロロエタン、アセトンに可溶で、水に
不溶であった。共重合体(2)はゴム状であった。
The measurement results are also shown in Table 5. The copolymer (2) in the dried cells had a high content of 93%. Also,
The solubility of the copolymer (2) was soluble in chloroform, dichloromethane, 1,2-dichloroethane and acetone, but insoluble in water. The copolymer (2) was rubbery.

【0043】実施例3 培養を前段、後段の二段階に分けることなく、実施例1
の前段培養のときに、炭素源としてオクタン酸ナトリウ
ム5g/l培地を加え72時間培養し、後段培養を行わ
なかった以外は、実施例1と同様に行った。
Example 3 Example 1 was carried out without dividing the culture into two stages, a first stage and a second stage.
The same procedure as in Example 1 was performed except that 5 g / l of sodium octanoate as a carbon source was added to the pre-stage culture and the culture was performed for 72 hours, and the post-stage culture was not performed.

【0044】測定結果を併せて表5に示す。乾燥菌体中
の共重合体(3)は83%の高含有率であった。共重合
体(3)の溶解性はクロロホルム、ジクロロメタン、
1,2−ジクロロエタン、アセトンに可溶で、水に不溶
であった。共重合体(3)はゴム状であった。
The measurement results are also shown in Table 5. The copolymer (3) in the dried cells had a high content rate of 83%. The solubility of the copolymer (3) is chloroform, dichloromethane,
It was soluble in 1,2-dichloroethane and acetone and insoluble in water. The copolymer (3) was rubbery.

【0045】実施例4 前段培養及び後段培養の培地の組成中NH4Clを0.5g
/l培地とし、後段培養の培地に炭素源としてオクタン
酸ナトリウムに変えて、グルコン酸ナトリウム15g/
l培地を加えた以外は実施例1と同様に行った。
Example 4 0.5 g of NH 4 Cl in the composition of the medium for the pre-stage culture and the post-stage culture
/ L medium, and sodium gluconate 15 g /
The same procedure as in Example 1 was carried out except that 1 medium was added.

【0046】測定結果を併せて表5に示す。乾燥菌体中
の共重合体(4)は80%の高含有率であった。共重合
体(4)の溶解性はクロロホルム、ジクロロメタン、
1,2−ジクロロエタン、アセトンに可溶で、水に不溶
であった。共重合体(4)はドロドロした油状であっ
た。また、100MHz 13C−NMRスペクトルを図
5に、500MHz 1H−NMRスペクトルを図6に、
GPC測定チャートを図7に、DSC測定チャートを図
8に示す。
The measurement results are also shown in Table 5. The copolymer (4) in the dried cells had a high content rate of 80%. The solubility of the copolymer (4) is chloroform, dichloromethane,
It was soluble in 1,2-dichloroethane and acetone and insoluble in water. The copolymer (4) was a muddy oil. The 100 MHz 13 C-NMR spectrum is shown in FIG. 5, the 500 MHz 1 H-NMR spectrum is shown in FIG.
A GPC measurement chart is shown in FIG. 7, and a DSC measurement chart is shown in FIG.

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【発明の効果】本発明の製造方法により、乾燥菌体中8
0〜95%を占める高含有率のモノマーユニット3HH
x、3HO、3HD及び3HDDからなる共重合体を得
ることができる。これにより、従来の製造方法に比し、
生産コストを著しく低減せしめることが可能であり、工
業的メリットは大である。更に、本発明により得られる
共重合体は医薬品、食品、衛生用品、農園芸品、包装材
料等、広範な分野での応用が期待される。
EFFECT OF THE INVENTION By the production method of the present invention, 8
High content monomer unit 3HH occupying 0 to 95%
A copolymer of x, 3HO, 3HD and 3HDD can be obtained. As a result, compared with the conventional manufacturing method,
It is possible to significantly reduce the production cost, and the industrial merit is great. Furthermore, the copolymer obtained by the present invention is expected to be applied in a wide range of fields such as pharmaceuticals, foods, hygiene products, agricultural and horticultural products, and packaging materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られた共重合体の100MHzで
13C−NMRスペクトルを示す図面である。
1 is a drawing showing a 13 C-NMR spectrum at 100 MHz of the copolymer obtained in Example 1. FIG.

【図2】実施例1で得られた共重合体の500MHzで
1H−NMRスペクトルを示す図面である。
FIG. 2 is a drawing showing the 1 H-NMR spectrum of the copolymer obtained in Example 1 at 500 MHz.

【図3】実施例1で得られた共重合体のGPC測定チャ
ートを示す図面である。
3 is a drawing showing a GPC measurement chart of the copolymer obtained in Example 1. FIG.

【図4】実施例1で得られた共重合体のDSC測定チャ
ートを示す図面である。
4 is a drawing showing a DSC measurement chart of the copolymer obtained in Example 1. FIG.

【図5】実施例4で得られた共重合体の100MHzで
13C−NMRスペクトルを示す図面である。
FIG. 5 is a drawing showing a 13 C-NMR spectrum at 100 MHz of the copolymer obtained in Example 4.

【図6】実施例4で得られた共重合体の400MHzで
1H−NMRスペクトルを示す図面である。
FIG. 6 is a drawing showing the 1 H-NMR spectrum of the copolymer obtained in Example 4 at 400 MHz.

【図7】実施例4で得られた共重合体のGPC測定チャ
ートを示す図面である。
7 is a drawing showing a GPC measurement chart of the copolymer obtained in Example 4. FIG.

【図8】実施例4で得られた共重合体のDSC測定チャ
ートを示す図面である。
8 is a drawing showing a DSC measurement chart of the copolymer obtained in Example 4. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/20 C12R 1:38) (72)発明者 平野 元三 千葉県四街道市鷹の台1丁目3番 株式会 社日本製鋼所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technology display location (C12N 1/20 C12R 1:38) (72) Inventor Genzo Hirano 1-chome Takanodai, Yotsukaido, Chiba No. 3 Stock Company, Japan Steel Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シュードモナス属に属し、乾燥菌体中に
80〜95%下記理化学的性質(A)〜(E)を有する
共重合体を産生する微生物を培養し、該共重合体を採取
することを特徴とする共重合体の製造方法。 (A)構成成分及び組成 下記(a)、(b)、(c)及び(d); (a)下記式(1)及び/又は(2)及び/又は(3)で表わされる3−ヒド ロキシヘキサノエート単位 1〜40モル%、 【化1】 (b)下記式(4)及び/又は(5)及び/又は(6)で表わされる3−ヒド ロキシオクタノエート単位 10〜95モル%、 【化2】 (c)下記式(7)及び/又は(8)及び/又は(9)で表わされる3−ヒド ロキシデカノエート単位 0〜70モル%、 【化3】 (d)下記式(10)及び/又は(11)及び/又は(12)で表わされる3 −ヒドロキシドデカノエート単位 0〜40モル%、 【化4】 からなる共重合体。 (B)数平均分子量 50,000〜1,000,000。 (C)融点 35〜70℃又は明確な融点を示さない。 (D)ガラス転移点 −20〜−50℃。 (E)溶解性 クロロホルム、ジクロロメタン、1,2−ジクロロエタ
ン及びアセトンに可溶、水に不溶。
1. A microorganism belonging to the genus Pseudomonas and producing a copolymer having 80 to 95% of the following physicochemical properties (A) to (E) in a dry cell is cultured, and the copolymer is collected. A method for producing a copolymer, comprising: (A) Constituent Components and Compositions (a), (b), (c) and (d) below: (a) 3-Hydride represented by the following formula (1) and / or (2) and / or (3) Roxyhexanoate unit 1-40 mol%, (B) 3-hydroxyoctanoate unit represented by the following formula (4) and / or (5) and / or (6): 10 to 95 mol%; (C) 3-hydroxydecanoate unit represented by the following formula (7) and / or (8) and / or (9): 0 to 70 mol%; (D) 3-hydroxydodecanoate unit represented by the following formula (10) and / or (11) and / or (12): 0 to 40 mol%, A copolymer consisting of. (B) Number average molecular weight of 50,000 to 1,000,000. (C) Melting point 35-70 ° C or no clear melting point. (D) Glass transition point -20 to -50 ° C. (E) Solubility Soluble in chloroform, dichloromethane, 1,2-dichloroethane and acetone, insoluble in water.
【請求項2】 請求項1記載の共重合体を生成するシュ
ードモナス エスピー(Pseudomonas s
p.) 31−1株(微工研菌寄第13280号)。
2. Pseudomonas s which produces the copolymer of claim 1.
p. ) 31-1 strain (Ministry of Microbiological Research, No. 13280).
JP5184142A 1993-07-26 1993-07-26 Method for production copolymer and microorganism production the same Pending JPH0731490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5184142A JPH0731490A (en) 1993-07-26 1993-07-26 Method for production copolymer and microorganism production the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5184142A JPH0731490A (en) 1993-07-26 1993-07-26 Method for production copolymer and microorganism production the same

Publications (1)

Publication Number Publication Date
JPH0731490A true JPH0731490A (en) 1995-02-03

Family

ID=16148109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5184142A Pending JPH0731490A (en) 1993-07-26 1993-07-26 Method for production copolymer and microorganism production the same

Country Status (1)

Country Link
JP (1) JPH0731490A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048969A (en) * 2001-05-31 2003-02-21 Canon Inc Novel polyhydroxyalkanoate including unit having the structure of [(substituted phenyl) methyl] as side chains and method of producing the same
JP2004315782A (en) * 2002-10-24 2004-11-11 Canon Inc New polyhydroxyalkanoate and its manufacturing method; resin composition comprising the same, manufacturing method of molded article using the same; charge-controlling agent comprising new polyhydroxyalkanoate, toner obtained by using the charge-controlling agent; binder resin comprising the resin composition; image-forming method and image-forming device using the toner
JP2009171883A (en) * 2008-01-23 2009-08-06 Agri Bioindustry:Kk Polyhydroxyalkanoate and method for producing polyhydroxyalkanoate
JP2022514244A (en) * 2018-12-20 2022-02-10 ロレアル Cosmetic composition containing polyhydroxyalkanoate in an oily medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048969A (en) * 2001-05-31 2003-02-21 Canon Inc Novel polyhydroxyalkanoate including unit having the structure of [(substituted phenyl) methyl] as side chains and method of producing the same
JP2004315782A (en) * 2002-10-24 2004-11-11 Canon Inc New polyhydroxyalkanoate and its manufacturing method; resin composition comprising the same, manufacturing method of molded article using the same; charge-controlling agent comprising new polyhydroxyalkanoate, toner obtained by using the charge-controlling agent; binder resin comprising the resin composition; image-forming method and image-forming device using the toner
JP2009171883A (en) * 2008-01-23 2009-08-06 Agri Bioindustry:Kk Polyhydroxyalkanoate and method for producing polyhydroxyalkanoate
JP2022514244A (en) * 2018-12-20 2022-02-10 ロレアル Cosmetic composition containing polyhydroxyalkanoate in an oily medium

Similar Documents

Publication Publication Date Title
USRE30872E (en) Process for producing 2-keto-L-gulonic acid
CA2269771C (en) Novel bacterial strains and use thereof in fermentation processes for 2-keto-l-gulonic acid production
JPH067157A (en) Oxidative bacterium in pseudogluconobacter
JPH0412110B2 (en)
CA1168999A (en) Method for preparing 2,5-diketo-d-gluconic acid
JP2001178487A (en) Method for producing polyester with microorganism
JPH0347082A (en) Preparation of copolymer
JPH0889264A (en) Production of polyester copolymer
CA1313158C (en) Hyperproduction of poly-.beta.-hydroxybutyrate during exponential growthby mutant strains of azotobacter vinelandii
WO1992021708A1 (en) Biodegradable polymer, production thereof, and use thereof
JPH0731490A (en) Method for production copolymer and microorganism production the same
US5346817A (en) Method for producing a microbial polyester
JP2799818B2 (en) Microorganism producing copolymer and method for producing the copolymer
NZ233296A (en) Process of producing polymers microbially; microbially produced polymers; and bacterial strains
JP4104932B2 (en) Biodegradable polymer and novel microorganism producing the same, method for producing biodegradable polymer, biodegradable random copolymer and method for isolating the same
JPH0795957B2 (en) Method for producing 2-keto-L-gulonic acid
WO1991018994A1 (en) Hyperproduction of poly-hydroxyalkanoates during exponential growth by mutant strains of azotobacter vinelandii
JP2674852B2 (en) Levan manufacturing method
JPH01174397A (en) Production of polyglutamic acid
JP2000166586A (en) Biological production of polyhydroxyalkanoate containing aromatic compound as substrate
JP2936663B2 (en) Method for producing FR901228 substance
JPH06181784A (en) Production of copolyester
JP4304244B2 (en) Oil-water separation agent and oil-water separation method
JPH104991A (en) Novel 3-hydroxybutyric acid oligomer and its production
JPH03216193A (en) Preparation of copolyester