[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07294251A - Obstacle detector - Google Patents

Obstacle detector

Info

Publication number
JPH07294251A
JPH07294251A JP6084700A JP8470094A JPH07294251A JP H07294251 A JPH07294251 A JP H07294251A JP 6084700 A JP6084700 A JP 6084700A JP 8470094 A JP8470094 A JP 8470094A JP H07294251 A JPH07294251 A JP H07294251A
Authority
JP
Japan
Prior art keywords
obstacle
detection
dimensional object
vehicle
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6084700A
Other languages
Japanese (ja)
Other versions
JP3540005B2 (en
Inventor
Michiya Okuno
倫也 奥野
Takashi Naoi
孝 直井
Katsuyuki Imanishi
勝之 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP08470094A priority Critical patent/JP3540005B2/en
Publication of JPH07294251A publication Critical patent/JPH07294251A/en
Application granted granted Critical
Publication of JP3540005B2 publication Critical patent/JP3540005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

PURPOSE:To detect an obstacle efficiently with less computation complexity by recognizing a solid object, detected for the first time in a plurality of dangerous regions around a vehicle, as an obstacle and interrupting the detection of solid object and the processing of the whole image. CONSTITUTION:A solid object extracting means 116 discriminates an obstacle from information on a road and extracts only a solid object. An obstacle detecting means 117 comprises a detection region moving means 20 and a detection stop means 201. The means 200 sections the view field into a plurality of dangerous regions and moves through the detection regions of solid object starting from a maximum likelihood region. Upon detection of a first obstacle by the means 200, means 201 stops operation of the means 200 and presents the results on an alarm or a distance indicator 119. A solid object existing at a most dangerous position in the advancing direction is detected as an obstacle thus finding a danger on the traveling path of vehicle efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両の周囲に存在する
障害物への衝突防止を行う障害物警報装置に関し、特に
本発明は自車両の走行進路上の危険を発見をするための
画像認識の計算量を少なくする技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an obstacle warning device for preventing a collision with an obstacle existing around a vehicle, and more particularly, the present invention relates to an image for detecting a danger on a traveling course of a vehicle. The present invention relates to a technique for reducing the amount of recognition calculation.

【0002】[0002]

【従来の技術】上記障害物検出装置には自車両と障害物
との間の距離を計測する装置を用いるものがある。この
距離を計測する装置には立体視法が利用される。この立
体視法は、画像を利用して距離を計算する方法である。
立体視法では二つの異なる視点からの輝度情報を用い
て、二つの輝度情報群について距離を計測する対象物間
の位置ずれ(視差)を求め、予め計測しておいた二視点
間の距離、画角、画角中の輝度情報数、視点の角度より
距離を求めるものである。以下にこの詳細を説明する。
2. Description of the Related Art Some of the obstacle detecting devices described above use a device for measuring the distance between a vehicle and an obstacle. A stereoscopic method is used as a device for measuring this distance. This stereoscopic method is a method of calculating a distance using an image.
In the stereoscopic method, the luminance information from two different viewpoints is used to obtain the positional deviation (parallax) between the objects whose distances are measured for the two luminance information groups, and the distance between the two viewpoints measured in advance, The distance is obtained from the angle of view, the number of brightness information in the angle of view, and the angle of the viewpoint. The details will be described below.

【0003】図8は従来の一般的な立体視法に基づく距
離計測装置の構成を示す図である。本図(a)に示す物
体11は計測される対象物である。距離計測装置には二
つの視点を形成するために対象物11に対向して二つの
レンズ12及び13が設けられる。この二つのレンズ1
2及び13の後にそれらの光軸16、17がそれぞれ一
致する撮像素子14及び15が設けられる。撮像素子1
4及び15は、例えば、CCD(Charge Coupled Devic
e)で構成されている。ここに、図中の「d」はレンズ1
2及び13と対象物11との距離であり、「f」はレン
ズ12及び13の焦点距離であり、「a」、「b」はそ
れぞれ対象物11の同一点が、撮像素子14、15に投
影された位置の光軸からの距離であり、「m」は光軸間
の距離(基線長)である。本図(b)は本図(a)の右
側の撮像装置を基線長「m」だけ移動させ、左側の撮像
装置に重ねた状態にしたものである。本図(b)に示さ
れるように、三角形ABCと三角形ADEは互いに相似
である。そこで(a+b)とmとの比はfとdとの比と
同じになる。式にすると、 (a+b):m=f:d となり、これを変形すると下記式のようになる。
FIG. 8 is a diagram showing a configuration of a conventional distance measuring device based on a general stereoscopic method. The object 11 shown in this figure (a) is an object to be measured. The distance measuring device is provided with two lenses 12 and 13 facing the object 11 to form two viewpoints. These two lenses 1
After 2 and 13, image pickup devices 14 and 15 are provided whose optical axes 16 and 17 match, respectively. Image sensor 1
4 and 15 are, for example, CCD (Charge Coupled Devic)
e). Here, "d" in the figure is the lens 1
2 and 13 is the distance between the object 11 and “f” is the focal length of the lenses 12 and 13, and “a” and “b” are the same points of the object 11 on the image sensors 14 and 15, respectively. It is the distance from the optical axis of the projected position, and "m" is the distance (baseline length) between the optical axes. In this figure (b), the image pickup device on the right side of this figure (a) is moved by the base line length “m”, and is superimposed on the image pickup device on the left side. As shown in this figure (b), the triangle ABC and the triangle ADE are similar to each other. Therefore, the ratio of (a + b) and m becomes the same as the ratio of f and d. In the expression, (a + b): m = f: d, which is transformed into the following expression.

【0004】 d=f・m/(a+b) …(1) mとfとを予め計測しておき、(a+b)の距離を計測
できれば距離dは式(1)から導ける。これを立体視法
という。図8での(a+b)を求める方法は、左右の画
像中の対象物の輝度値を少しずつずらしながら比較し、
最も一致するずらし量を求める。このずらし量が(a+
b)に相当し、このずらし量(a+b)を視差pとい
う。
D = fm · (a + b) (1) If m and f are measured in advance and the distance of (a + b) can be measured, the distance d can be derived from the equation (1). This is called stereoscopy. The method of obtaining (a + b) in FIG. 8 is to compare the brightness values of the objects in the left and right images while shifting them little by little,
Find the best matching shift amount. This shift amount is (a +
This is equivalent to b), and this shift amount (a + b) is called parallax p.

【0005】前記の最も一致するずらし量を求める方法
として、一致度を調べる方法に相関計算を使う。以下に
相関計算の方法について、画像認識の書籍などにも紹介
されている標準的な方法を説明する。その他の方法とし
てこの標準的な方法を拡張したものがある。説明を簡素
にするために、まず一次元の輝度値列で説明する。図9
は図8の撮像素子14及び15に形成される画像の例を
示す図である。本図(a)は撮像素子14による左画像
(「左目画像」という)、撮像素子15による右画像
(「右目画像」という)を示す。
Correlation calculation is used as a method for checking the degree of coincidence as a method for obtaining the above-mentioned most coincident shift amount. Regarding the correlation calculation method, the standard method introduced in books such as image recognition will be described below. Another method is an extension of this standard method. To simplify the description, a one-dimensional brightness value sequence will be described first. Figure 9
FIG. 9 is a diagram showing an example of an image formed on the image pickup devices 14 and 15 of FIG. 8. This figure (a) shows the left image by the image sensor 14 (referred to as a "left eye image") and the right image by the image sensor 15 (referred to as a "right eye image").

【0006】図10は図9のそれぞれ参照符号22及び
23の1行の輝度値を取り出した例を示すグラフであ
る。本図に示す参照符号24及び25はそれぞれ左目画
像、右目画像の輝度値のグラフである。この左目画像の
グラフを右目画像のグラフに重なるまでずらしたずらし
量が視差である。図11は図10から図9の対象物21
の部分を取り出した例を示すグラフである。本図の参照
符号41の左目画像の輝度値の並びを数列として扱いb
n とし、参照符号42の右目画像の輝度値も同様にan
とし、下記式の相関関数を計算する。
FIG. 10 is a graph showing an example in which the luminance values of one row indicated by reference numerals 22 and 23 in FIG. 9 are taken out. Reference numerals 24 and 25 shown in the figure are graphs of luminance values of the left-eye image and the right-eye image, respectively. The parallax is the shift amount by which the graph of the left-eye image is shifted to the graph of the right-eye image. FIG. 11 shows the object 21 of FIGS. 10 to 9.
It is a graph which shows the example which took out the part of. The arrangement of the brightness values of the left-eye image indicated by reference numeral 41 in this figure is treated as a sequence b
and the brightness value of the right-eye image with reference numeral 42 is also an
Then, the correlation function of the following formula is calculated.

【0007】 ここに、nは画像の画素番号、iは画素番号のずらし量
であり、0からSまで整数でずらし量を1ずつ増加させ
て、上記V(i)が計算される。Sは、計測装置に予め
検出範囲として設定される最も近い距離に関する視差に
依存する。wは相関計算を行う幅で、目的によって値が
設定される。例えば、図11に示されるように、参照符
号42において対象物21は画素番号1から12に対応
しているので、wを10とすると最も良い視差が得られ
る。しかし、実際にこの方法を応用する場合には、画像
上の対象物の位置と大きさが未知であることが多い。そ
こで、一般的にはwの値には経験的に最も良いとされる
値が採用される。
[0007] Here, n is the pixel number of the image, i is the shift amount of the pixel number, and the shift amount is an integer from 0 to S, and the shift amount is increased by 1 to calculate V (i). S depends on the parallax regarding the shortest distance set in advance as a detection range in the measuring device. w is a width for performing the correlation calculation, and a value is set depending on the purpose. For example, as shown in FIG. 11, since the object 21 corresponds to the pixel numbers 1 to 12 in the reference numeral 42, when w is 10, the best parallax is obtained. However, when this method is actually applied, the position and size of the object on the image are often unknown. Therefore, in general, the value of w that is empirically considered to be the best is adopted.

【0008】図12はV(i)の結果の例を示す図であ
る。本図に示すように、参照符号51は相関値が最も小
さくなり、この時のiが視差である。また、精度をより
必要とする場合には、参照符号52のように補間計算に
よって算出した点を視差とすることも多い(補間方法は
多々ある)。以上の説明は一次元撮像装置を用いた場合
若しくは1行毎に相関計算を行う場合であったが、二次
元撮像装置を用いた場合には、一般的には1行毎に行う
のではなく、複数行をまとめた領域で相関計算を行う方
法がある。
FIG. 12 is a diagram showing an example of the result of V (i). As shown in the figure, the reference numeral 51 has the smallest correlation value, and i at this time is the parallax. Further, when higher accuracy is required, a point calculated by interpolation calculation like reference numeral 52 is often used as the parallax (there are many interpolation methods). The above description is for the case of using the one-dimensional imaging device or the case of performing the correlation calculation for each row, but in the case of using the two-dimensional imaging device, it is generally not performed for each row. , There is a method of performing the correlation calculation in the area where a plurality of lines are collected.

【0009】図13は二次元撮像装置の相関計算方法を
説明する図である。本図(a)に示すように、その方法
の第1に、縦の1列毎に和を求め(射影)、1行相当の
情報にし、前述の計算を行う方法(射影方式)がある。
本図(b)に示すように、第2に、上記式(2)をその
まま二次元で行う方法(エリア方式)がある。射影方式
については、先に説明した一次元の計算をそのままでよ
いが、エリア方式については、横方向の1行についてそ
れぞれV(i)が計算され、同じiの所の和が求められ
評価される。また、射影方式は横方向の情報を圧縮する
ため、左右画面の縦方向のずれに強く、計算時間も短
い。
FIG. 13 is a diagram for explaining the correlation calculation method of the two-dimensional image pickup device. As shown in this figure (a), the first of the methods is a method (projection method) in which the sum is calculated for each vertical column (projection), and the information corresponding to one row is obtained and the above calculation is performed.
Secondly, as shown in this figure (b), there is a method (area method) in which the above equation (2) is directly performed in two dimensions. For the projection method, the one-dimensional calculation described above may be used as it is, but for the area method, V (i) is calculated for each row in the horizontal direction, and the sum at the same i is obtained and evaluated. It Further, since the projection method compresses information in the horizontal direction, it is resistant to vertical displacement of the left and right screens, and the calculation time is short.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記障害物
検出装置では一組の二次元撮像素子により取得した画像
を用いて障害物の検出を行う場合、これまでは画像全体
について処理が行われていた。しかしながら、これでは
計算量が多いため、緊急の場合には処理が間に合わなく
なり支障をきたすことがあるという問題がある。
By the way, in the above obstacle detecting device, when the obstacle is detected using the images acquired by the pair of two-dimensional image pickup devices, the entire image has been processed so far. It was However, since this requires a large amount of calculation, there is a problem that in an emergency, the processing may not be completed in time and may cause trouble.

【0011】したがって、本発明は、上記問題点に鑑
み、効率的に障害物を検出することができる障害物検出
装置を提供することを目的とする。
Therefore, in view of the above problems, it is an object of the present invention to provide an obstacle detecting device capable of efficiently detecting an obstacle.

【0012】[0012]

【課題を解決するための手段】本発明は、前記問題点を
解決するために、次の構成を有する障害物検出装置を提
供する。自車両の前方視界を撮像素子により取得し、そ
の前方視界の画像から立体物を抽出し障害物を検出する
障害物検出装置には、前記自車両の位置を中心にかつ自
車両の進行方向に向かって、前記前方視界を複数の危険
領域に区切り、前記自車両の位置を中心として外側に向
かって前記複数の危険領域を移動してこの移動領域で立
体物を検出する検出領域移動手段が設けられる。検出停
止手段は前記複数の危険領域で最初に立体物が検出され
た場合にはこの立体物を障害物として認め前記検出領域
移動手段による立体物の検出を停止させる。
In order to solve the above problems, the present invention provides an obstacle detecting device having the following construction. An obstacle detection device that obtains a forward field of view of the host vehicle by an image sensor and detects an obstacle by extracting a three-dimensional object from an image of the front field of view includes a center of the position of the host vehicle and a traveling direction of the host vehicle. Toward the front, the detection field moving means that divides the forward field of view into a plurality of danger areas, moves the plurality of danger areas outward with the position of the own vehicle as a center, and detects a three-dimensional object in the movement area is provided. To be When the three-dimensional object is first detected in the plurality of dangerous areas, the detection stopping means recognizes the three-dimensional object as an obstacle and stops the detection area moving means from detecting the three-dimensional object.

【0013】[0013]

【作用】本発明の障害物検出装置によれば、前記自車両
の位置を中心にかつ自車両の進行方向に向かって、前記
前方視界が複数の危険領域に区切られ、前記自車両の位
置を中心として外側に向かって前記複数の危険領域が移
動してこの移動領域で立体物が検出される。前記複数の
危険領域で最初に立体物が検出された場合にはこの立体
物を障害物として認め前記検出領域移動手段による立体
物の検出が停止されることにより、画像全体について処
理を行わずに、最も認識したい立体物の検出ができ、計
算量が低減でき、効率的に障害物の検出が可能になる。
According to the obstacle detecting device of the present invention, the forward field of view is divided into a plurality of dangerous areas centering on the position of the host vehicle and in the traveling direction of the host vehicle, and the position of the host vehicle is determined. The plurality of dangerous areas move outward as a center, and a three-dimensional object is detected in this moving area. When a three-dimensional object is first detected in the plurality of dangerous areas, the three-dimensional object is recognized as an obstacle, and detection of the three-dimensional object by the detection area moving means is stopped, so that the entire image is not processed. The 3D object most desired to be recognized can be detected, the calculation amount can be reduced, and the obstacle can be efficiently detected.

【0014】[0014]

【実施例】以下本発明の実施例について図面を参照して
説明する。図1は本発明の実施例に係る障害物検出装置
の構成を示す図である。本図に示すように、障害物検出
装置には撮像装置111、112が設けられる。各撮像
装置111、112は、図8で説明したレンズ、撮像素
子を有し画像信号を出力する。各撮像装置111、11
2にそれぞれ接続されるA/D変換器113、114
(Analog to Digital Converter)は入力して得られた画
像信号を、例えば、256階調の輝度値に変換する。A
/D変換器113、114に接続される障害物検出用計
算機115は変換された輝度値を入力し、入力輝度値を
用いて立体物を抽出する立体物抽出手段116と、立体
物抽出データを基に障害物を検出する障害物検出手段1
17と、障害物との距離を視差から計算する視差計算手
段118とを具備する。距離計算機115には、得られ
た障害物に対する警告、距離等を表示する警告又は距離
表示器119が接続される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a configuration of an obstacle detection device according to an embodiment of the present invention. As shown in the figure, the obstacle detection device is provided with imaging devices 111 and 112. Each of the image pickup devices 111 and 112 has the lens and the image pickup element described in FIG. 8 and outputs an image signal. Each imaging device 111, 11
A / D converters 113 and 114 respectively connected to
(Analog to Digital Converter) converts the image signal obtained by input into a luminance value of 256 gradations, for example. A
The obstacle detection computer 115 connected to the D / D converters 113 and 114 inputs the converted luminance value and outputs the three-dimensional object extraction means 116 for extracting a three-dimensional object using the input luminance value, and three-dimensional object extraction data. Obstacle detecting means 1 for detecting an obstacle based on
17 and parallax calculation means 118 for calculating the distance to the obstacle from the parallax. To the distance calculator 115, a warning for the obtained obstacle, a warning for displaying a distance, or a distance display 119 is connected.

【0015】次に、効率的に障害物の検出を行うことを
可能にする障害物検出用計算機115について、以下に
詳細に説明する。車両の前方視界中に存在する障害物に
おいて、距離が近くかつ自分の進路上に存在するもの
が、最も危険な障害物であり、最も認識したい対象物で
ある。したがって、障害物検出用計算機115はこの最
も認識したい対象物を優先的に検出するために以下のよ
うに構成される。
Next, the obstacle detection computer 115 that enables efficient detection of obstacles will be described in detail below. Among obstacles existing in the forward field of view of a vehicle, those which are close to each other and which are present on the course of one's own are the most dangerous obstacles and the objects to be recognized most. Therefore, the obstacle detection computer 115 is configured as follows in order to preferentially detect the object to be most recognized.

【0016】まず、障害物検出用計算機115は道路上
の情報から区別して障害物である立体物のみを抽出する
立体物抽出手段116を具備する。ここに、立体物は、
道路の平面に垂直に立つものと定義され、以下により詳
細に説明する。図2は地面からある高さに、進行方向を
向いた撮像手段を置いて取り込んだ平面もしくはほとん
ど平面に近い二次元平面と仮定できる道路の画像を示す
図である。本図に示すように、自車両が走行する道路の
車線の前方に他の車両である対象物1が存在し、隣の車
線には他の車両である対象物2が存在し、左側の歩道に
は道路標識である対象物3が存在し、さらに電信柱であ
る対象物4が存在する。これらの対象物1、2、3及び
4が道路の平面に垂直な立体物である。以下にこの立体
物の抽出について説明する。
First, the obstacle detecting computer 115 is provided with a three-dimensional object extracting means 116 which distinguishes only three-dimensional objects which are obstacles from the information on the road. Here, the three-dimensional object is
It is defined as standing perpendicular to the plane of the road and is described in more detail below. FIG. 2 is a diagram showing an image of a road which can be assumed to be a plane or a two-dimensional plane almost close to a plane, which is captured by placing the image pickup means facing the traveling direction at a certain height from the ground. As shown in the figure, there is an object 1 which is another vehicle in front of the lane of the road on which the vehicle is traveling, and an object 2 which is another vehicle exists in the adjacent lane. Has an object 3 which is a road sign, and an object 4 which is a telephone pole. These objects 1, 2, 3 and 4 are three-dimensional objects that are perpendicular to the plane of the road. The extraction of this three-dimensional object will be described below.

【0017】図3は二つの撮像装置より得られた画像の
差分画像を形成して立体物を抽出する例を説明する図で
ある。本図(a)に示すように、車両の前方の映像は左
右の撮像装置111、112で取り込まれると、立体物
抽出手段116により重ねられる。実線が右画像であ
り、破線が左画像である。ここで、道路の平面を平坦と
みなすときは、道路面の視差は画面の垂直方向に変化す
るが、立体物の視差は変化せず一定である。そこで、片
方の画像を、画像の垂直位置毎に路面視差分を打ち消す
ように、平行移動させた後に両画像の差分画像を作成す
ると、路面の標識等を含む道路の平面の情報は消去され
る。一方、本図(b)に示すように、立体物の立体視差
は、路面視差と異なり斜線のように残り、このため立体
物が存在する領域が残る。なお、平行移動させる距離は
装置の設置条件を基に予め設定されるようにしてもよ
い。このようにして、道路の平面の情報を除去して障害
物の候補である立体物が容易に抽出される。
FIG. 3 is a diagram for explaining an example in which a three-dimensional object is extracted by forming a difference image of images obtained by two image pickup devices. As shown in this figure (a), when the images in front of the vehicle are captured by the left and right imaging devices 111, 112, they are superimposed by the three-dimensional object extracting means 116. The solid line is the right image and the broken line is the left image. Here, when the plane of the road is regarded as flat, the parallax of the road surface changes in the vertical direction of the screen, but the parallax of the three-dimensional object does not change and is constant. Therefore, if one image is moved in parallel so as to cancel the road surface difference for each vertical position of the image and then a difference image of both images is created, the information of the plane of the road including the road surface signs is deleted. . On the other hand, as shown in this figure (b), the stereoscopic parallax of the three-dimensional object remains like a diagonal line unlike the road surface parallax, and therefore the area where the three-dimensional object exists remains. The distance to be moved in parallel may be set in advance based on the installation conditions of the device. In this way, the three-dimensional object that is a candidate for an obstacle is easily extracted by removing the information about the plane of the road.

【0018】次に、障害物検出用計算機115は、立体
物抽出手段116で抽出された立体物から障害物を検出
する障害物検出手段117を具備する。該障害物検出手
段117は視界を複数の危険領域に区切り、最も認識し
たい領域から立体物の検出領域を移動していく検出領域
移動手段200と、検出領域内で最初に発見された立体
物を障害物として認識し検出を停止する検出停止手段2
01とを具備する。まず、検出領域移動手段200につ
いて説明する。
Next, the obstacle detecting computer 115 comprises an obstacle detecting means 117 for detecting an obstacle from the three-dimensional object extracted by the three-dimensional object extracting means 116. The obstacle detecting means 117 divides the field of view into a plurality of dangerous areas and moves the detection area moving means 200 that moves the detection area of the three-dimensional object from the area to be most recognized, and the three-dimensional object first found in the detection area. Detection stopping means 2 for recognizing an obstacle and stopping the detection
01 and. First, the detection area moving means 200 will be described.

【0019】図4は複数の立体物から障害物を検出する
例を説明するための図である。本図に示すように、視界
中心下部より視界周辺に向かって、自車からの距離が大
きくなる。すなわち、視界中心下部は自車に近い立体物
であり、視界中心上部は自車ら遠い立体物である。道路
面上に存在する立体物は空中に浮かんでいないため、視
界下部より上部に向かって立体物を検出していけば、距
離の近い立体物から、すなわち、危険な立体物から順に
検出されることになる。さらに、自分の進行方向は中心
線上を下から上に向かっており、同じ距離にある立体物
であっても自分の進路上にある立体物、すなわち、中心
線に近い立体物の方が危険である。
FIG. 4 is a diagram for explaining an example of detecting an obstacle from a plurality of three-dimensional objects. As shown in the figure, the distance from the vehicle increases from the lower part of the center of the field of vision toward the periphery of the field of view. That is, the lower part of the visual center is a three-dimensional object close to the own vehicle, and the upper central part of the visual field is a three-dimensional object far from the own vehicle. Since three-dimensional objects existing on the road surface do not float in the air, if three-dimensional objects are detected from the lower part of the field of view toward the upper part, they are detected in order from closer three-dimensional objects, that is, dangerous three-dimensional objects. It will be. In addition, the direction of my movement is from the bottom to the top on the center line, and even if there are three-dimensional objects at the same distance, three-dimensional objects on my path, that is, three-dimensional objects near the center line are more dangerous. is there.

【0020】図5は、視界を複数の領域に区切り、最も
危険な領域に存在する立体物を障害物として検出する例
を示す図であり、図6は図5の障害物の検出の変形を示
す図である。図5、6に示すように、検出領域移動手段
200では、自車前方の視界に対して、危険の程度を示
すために自車の位置からの距離、自車の進行する中心線
をパラメータとして、例えば、視界を複数の危険領域R
1、R2、R3、R4、R5に区切る。このような、複
数の危険領域の内から外に向かって、すなわち、危険領
域R1、R2、R3、R4、R5の順に移動して立体物
の存在が検出される。このため、危険度の高い立体物、
すなわち、認識したい立体物から順に検出されていくこ
とになる。
FIG. 5 is a diagram showing an example in which the field of view is divided into a plurality of areas and a three-dimensional object existing in the most dangerous area is detected as an obstacle. FIG. 6 shows a modification of the obstacle detection of FIG. FIG. As shown in FIGS. 5 and 6, in the detection area moving means 200, the distance from the position of the own vehicle and the center line of the own vehicle are used as parameters in order to indicate the degree of danger with respect to the field of view in front of the own vehicle. , For example, the field of view is a plurality of dangerous areas R
It is divided into 1, R2, R3, R4 and R5. The presence of a three-dimensional object is detected by moving from inside to outside of the plurality of dangerous areas, that is, in the order of the dangerous areas R1, R2, R3, R4, and R5. Therefore, three-dimensional objects with high risk,
That is, the three-dimensional object to be recognized is sequentially detected.

【0021】次に、検出領域移動手段200により立体
物の検出が一定の順序で行われるが、検出停止手段20
1は、検出領域移動手段200による最初に障害物の検
出の有無を判断し、検出されたとの判断で、検出領域移
動手段200の検出処理を停止させかつこの結果を警報
又は距離表示器119に表示させる。本発明は、車両の
走行進路上の危険を効率的に発見することが目的である
から、進行方向上にある最も危険な位置に存在する立体
物を障害物として検出すれば、目的は果たされる。すな
わち、計算量を少なくでき、効率化が図れる。
Next, the detection area moving means 200 detects the three-dimensional object in a fixed order.
First, the detection area moving means 200 first judges whether or not the obstacle is detected, and when it is judged that the obstacle is detected, the detection processing of the detection area moving means 200 is stopped and the result is displayed on the alarm or the distance indicator 119. Display it. Since the object of the present invention is to efficiently detect the danger on the traveling route of the vehicle, the object can be achieved if the three-dimensional object existing at the most dangerous position in the traveling direction is detected as an obstacle. . That is, the amount of calculation can be reduced and efficiency can be improved.

【0022】図7は本発明の実施例の一連の動作を説明
する図である。ステップS1において、立体物抽出手段
116は各撮像装置111、112からの画像を取り込
む。ステップS2において、各撮像装置111、112
からの右画像及び左画像を平行移動して両画像の差分画
像を形成し道路の平面の像を消去し、立体物の像だけを
抽出する。
FIG. 7 is a diagram for explaining a series of operations of the embodiment of the present invention. In step S1, the three-dimensional object extracting unit 116 captures images from the image pickup devices 111 and 112. In step S2, the imaging devices 111 and 112
The right image and the left image from are moved in parallel to form a difference image between the two images, the plane image of the road is erased, and only the image of the three-dimensional object is extracted.

【0023】ステップS3において、検出領移動手段2
00において、危険領域R=1に設定して、立体物の検
出を開始する。ステップS4において、検出停止手段2
01において、危険領域R=1に立体物すなわち立体物
が存在するかを判断する。ステップS5において、上記
判断が「YES」で、立体物が有るならばこれを障害物
として判断し、検出領域移動手段200の検出を停止さ
せる。
In step S3, the detection area moving means 2
At 00, the dangerous area R is set to 1 and detection of a three-dimensional object is started. In step S4, the detection stopping means 2
In 01, it is judged whether or not a three-dimensional object, that is, a three-dimensional object exists in the dangerous area R = 1. In step S5, if the above determination is "YES", and if there is a three-dimensional object, it is determined as an obstacle and the detection of the detection area moving means 200 is stopped.

【0024】ステップS6において、「障害物有り」の
警告を警報又は距離表示器119により行う。ステップ
S7において、前述の式(1)により障害物までの距離
を計算する。ステップS8において、上記距離を警報又
は距離表示器119により表示して、処理を終了する。
In step S6, the warning "distance is present" is issued by the alarm or the distance display 119. In step S7, the distance to the obstacle is calculated by the above equation (1). In step S8, the above distance is displayed by the alarm or the distance display 119, and the process ends.

【0025】ステップS9において、ステップS4での
判断が「NO」なら、立体物無しとの判断なら、危険領
域R=Rmax の成否を判断する。この判断が「YES」
なら、自車前方の視界のどの危険領域にも障害物がない
ので処理を終了する。ステップS10において、上記判
断が「NO」の場合には、Rをカウントアップして、検
出領域移動手段200により、次の危険領域で、障害物
の有無の検索を続行するため、ステップS4に戻り、上
記処理を繰り返る。
In step S9, if the determination in step S4 is "NO", that is, if there is no three-dimensional object, it is determined whether or not the dangerous area R = Rmax is satisfied. This judgment is "YES"
If so, there is no obstacle in any of the dangerous areas in the field of view in front of the own vehicle, so the processing ends. If the determination is “NO” in step S10, R is counted up, and the detection area moving means 200 continues the search for the presence or absence of an obstacle in the next dangerous area. Therefore, the process returns to step S4. The above process is repeated.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、自
車両の位置を中心にかつ自車の進行方向に向かって、前
方視界が複数の危険領域に区切られ、自車両の位置を中
心として外側に向かって複数の危険領域が移動してこの
移動領域で立体物が検出され、複数の危険領域で最初に
立体物が検出された場合にはこの立体物を障害物として
認め立体物の検出が停止されるので、画像全体について
処理を行わずに、最も認識したい立体物の検出ができ、
計算量が低減でき、効率的に障害物の検出が可能にな
る。
As described above, according to the present invention, the forward field of view is divided into a plurality of dangerous areas centering on the position of the host vehicle and in the traveling direction of the host vehicle, and the position of the host vehicle is centered. As a result, a plurality of dangerous areas move outward, and a three-dimensional object is detected in this moving area.If a three-dimensional object is first detected in a plurality of dangerous areas, the three-dimensional object is recognized as an obstacle and a three-dimensional object is detected. Since detection is stopped, you can detect the three-dimensional object you want to recognize most without performing processing on the entire image,
The calculation amount can be reduced, and the obstacle can be detected efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る障害物検出装置の構成を
示す図である。
FIG. 1 is a diagram showing a configuration of an obstacle detection device according to an embodiment of the present invention.

【図2】地面からある高さに、進行方向を向いた撮像手
段を置いて取り込んだ平面もしくはほとんど平面に近い
二次元面と仮定できる道路の画像を示す図である。
FIG. 2 is a diagram showing an image of a road that can be assumed to be a plane or a two-dimensional plane that is almost plane and is captured by placing an image pickup unit facing the traveling direction at a certain height from the ground.

【図3】二つの撮像装置より得られた画像の差分画像を
形成して立体物を抽出する例を説明する図である。
FIG. 3 is a diagram illustrating an example of extracting a three-dimensional object by forming a difference image of images obtained by two imaging devices.

【図4】複数の立体物から障害物を検出する例を説明す
るための図である。
FIG. 4 is a diagram for explaining an example of detecting an obstacle from a plurality of three-dimensional objects.

【図5】視界を複数の領域に区切り、最も危険な領域に
存在する立体物を障害物として検出する例を示す図であ
る。
FIG. 5 is a diagram showing an example of dividing a field of view into a plurality of areas and detecting a three-dimensional object existing in the most dangerous area as an obstacle.

【図6】図5の障害物の検出の変形を示す図である。FIG. 6 is a diagram showing a modification of the detection of an obstacle in FIG.

【図7】本発明の実施例に一連の動作を説明する図であ
る。
FIG. 7 is a diagram illustrating a series of operations according to the embodiment of the present invention.

【図8】従来の一般的な立体視に基づく距離計測装置の
構成を示す図である。
FIG. 8 is a diagram showing a configuration of a conventional general stereoscopic distance measuring device.

【図9】図8の撮像素子14及び15に形成される画像
の例を示す図である。
9 is a diagram showing an example of an image formed on the image pickup devices 14 and 15 of FIG.

【図10】図9のそれぞれ参照符号22及び23の1行
の輝度値を取り出した例を示すグラフである。
10 is a graph showing an example in which the luminance values of one row of reference numerals 22 and 23 of FIG. 9 are extracted.

【図11】図10から図9の対象物21の部分を取り出
した例を示す図である。
FIG. 11 is a diagram showing an example in which a portion of the object 21 of FIGS. 10 to 9 is taken out.

【図12】V(i)の結果の例を示す図である。FIG. 12 is a diagram showing an example of a result of V (i).

【図13】二次元撮像装置の相関計算方法を説明する図
である。
FIG. 13 is a diagram illustrating a correlation calculation method of the two-dimensional imaging device.

【符号の説明】[Explanation of symbols]

111、112…撮像装置 115…障害物検出用計算機 116…立体物抽出手段 117…障害物検出手段 118…視差計算手段 119…警報又は距離表示器 200…検出領域移動手段 201…検出停止手段 111, 112 ... Imaging device 115 ... Obstacle detection computer 116 ... Three-dimensional object extraction means 117 ... Obstacle detection means 118 ... Parallax calculation means 119 ... Warning or distance indicator 200 ... Detection area moving means 201 ... Detection stopping means

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G08B 21/00 H G08G 1/16 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G08B 21/00 H G08G 1/16 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自車両の前方視界を撮像素子により取得
し、その前方視界の画像から立体物を抽出し障害物を検
出する障害物検出装置において、 前記自車両の位置を中心にかつ自車両の進行方向に向か
って、前記前方視界を複数の危険領域に区切り、前記自
車両の位置を中心として外側に向かって前記複数の危険
領域を移動してこの移動領域で立体物を検出する検出領
域移動手段と、 前記複数の危険領域で最初に立体物が検出された場合に
はこの立体物を障害物として認め前記検出領域移動手段
による立体物の検出を停止させる検出停止手段とを備え
ることを特徴とする障害物検出装置。
1. An obstacle detection device for acquiring a front field of view of an own vehicle by an image sensor, extracting a three-dimensional object from an image of the front field of view, and detecting an obstacle, the center of the position of the own vehicle and the own vehicle. In the traveling direction, the front view is divided into a plurality of dangerous areas, and the plurality of dangerous areas are moved outward with the position of the own vehicle as a center to detect a three-dimensional object in the moving area. A moving means and a detection stopping means for recognizing the three-dimensional object as an obstacle when the three-dimensional object is first detected in the plurality of dangerous areas and stopping the detection of the three-dimensional object by the detection area moving means. Characteristic obstacle detection device.
【請求項2】 前記障害物の検出の結果を警告すること
を特徴とする、請求項1に記載の障害物検出装置。
2. The obstacle detection device according to claim 1, wherein the obstacle detection device warns a result of the obstacle detection.
【請求項3】 検出された前記障害物との距離を、視差
を基に、算出することを特徴とする、請求項1に記載の
障害物検出装置。
3. The obstacle detection device according to claim 1, wherein the detected distance to the obstacle is calculated based on parallax.
JP08470094A 1994-04-22 1994-04-22 Obstacle detection device Expired - Fee Related JP3540005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08470094A JP3540005B2 (en) 1994-04-22 1994-04-22 Obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08470094A JP3540005B2 (en) 1994-04-22 1994-04-22 Obstacle detection device

Publications (2)

Publication Number Publication Date
JPH07294251A true JPH07294251A (en) 1995-11-10
JP3540005B2 JP3540005B2 (en) 2004-07-07

Family

ID=13837949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08470094A Expired - Fee Related JP3540005B2 (en) 1994-04-22 1994-04-22 Obstacle detection device

Country Status (1)

Country Link
JP (1) JP3540005B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293670A (en) * 1999-04-08 2000-10-20 Asia Air Survey Co Ltd Method and device for automatically recognizing road sign of video picture and storage medium storing program for automatically recognizing road sign
JP2003157498A (en) * 2001-11-19 2003-05-30 Honda Motor Co Ltd Obstacle warning device
JP2006285422A (en) * 2005-03-31 2006-10-19 Denso It Laboratory Inc Scene-estimating device, scene-image extracting method, and sound-reproducing apparatus
US7170548B2 (en) 2001-11-26 2007-01-30 Denso Corporation Obstacle monitoring device using one-dimensional signal
JP2009217832A (en) * 2009-04-27 2009-09-24 Asia Air Survey Co Ltd Method and device for automatically recognizing road sign in video image, and storage medium which stores program of road sign automatic recognition
JP2009262736A (en) * 2008-04-24 2009-11-12 Daihatsu Motor Co Ltd Obstacle recognition device
JP2010258705A (en) * 2009-04-23 2010-11-11 Honda Motor Co Ltd Vehicle surrounding monitoring device
KR101452628B1 (en) * 2013-04-16 2014-10-23 한양대학교 산학협력단 Method for detecting critical area for pedestrian protection system and apparatus therefor
US8872919B2 (en) 2005-02-24 2014-10-28 Aisin Seiki Kabushiki Kaisha Vehicle surrounding monitoring device
WO2018123547A1 (en) * 2016-12-26 2018-07-05 株式会社東海理化電機製作所 Viewing device for vehicles
KR102616565B1 (en) * 2023-08-16 2023-12-21 오토아이티(주) Compact Apparatus and method for around view monitor image processing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267709A (en) * 1990-03-17 1991-11-28 Toyota Motor Corp Distance detector for vehicle
JPH0412217A (en) * 1990-05-01 1992-01-16 Toyota Motor Corp On-vehicle distance detector
JPH0412218A (en) * 1990-05-01 1992-01-16 Toyota Motor Corp Distance detecting device for vehicle
JPH06102040A (en) * 1992-09-21 1994-04-12 Toyota Motor Corp Distance detector between cars
JPH06107096A (en) * 1992-09-25 1994-04-19 Yazaki Corp Forward monitoring method for vehicle
JPH07225126A (en) * 1994-02-14 1995-08-22 Mitsubishi Motors Corp On-road object recognizing device for vehicle
JPH07250319A (en) * 1994-03-14 1995-09-26 Yazaki Corp Supervisory equipment around vehicle
JPH07250268A (en) * 1994-03-14 1995-09-26 Yazaki Corp Vehicle periphery monitoring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267709A (en) * 1990-03-17 1991-11-28 Toyota Motor Corp Distance detector for vehicle
JPH0412217A (en) * 1990-05-01 1992-01-16 Toyota Motor Corp On-vehicle distance detector
JPH0412218A (en) * 1990-05-01 1992-01-16 Toyota Motor Corp Distance detecting device for vehicle
JPH06102040A (en) * 1992-09-21 1994-04-12 Toyota Motor Corp Distance detector between cars
JPH06107096A (en) * 1992-09-25 1994-04-19 Yazaki Corp Forward monitoring method for vehicle
JPH07225126A (en) * 1994-02-14 1995-08-22 Mitsubishi Motors Corp On-road object recognizing device for vehicle
JPH07250319A (en) * 1994-03-14 1995-09-26 Yazaki Corp Supervisory equipment around vehicle
JPH07250268A (en) * 1994-03-14 1995-09-26 Yazaki Corp Vehicle periphery monitoring device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000293670A (en) * 1999-04-08 2000-10-20 Asia Air Survey Co Ltd Method and device for automatically recognizing road sign of video picture and storage medium storing program for automatically recognizing road sign
JP2003157498A (en) * 2001-11-19 2003-05-30 Honda Motor Co Ltd Obstacle warning device
US7170548B2 (en) 2001-11-26 2007-01-30 Denso Corporation Obstacle monitoring device using one-dimensional signal
US8872919B2 (en) 2005-02-24 2014-10-28 Aisin Seiki Kabushiki Kaisha Vehicle surrounding monitoring device
JP4634842B2 (en) * 2005-03-31 2011-02-16 株式会社デンソーアイティーラボラトリ Landscape estimation device
JP2006285422A (en) * 2005-03-31 2006-10-19 Denso It Laboratory Inc Scene-estimating device, scene-image extracting method, and sound-reproducing apparatus
JP2009262736A (en) * 2008-04-24 2009-11-12 Daihatsu Motor Co Ltd Obstacle recognition device
JP2010258705A (en) * 2009-04-23 2010-11-11 Honda Motor Co Ltd Vehicle surrounding monitoring device
JP4517003B2 (en) * 2009-04-27 2010-08-04 アジア航測株式会社 Automatic road sign recognition system
JP2009217832A (en) * 2009-04-27 2009-09-24 Asia Air Survey Co Ltd Method and device for automatically recognizing road sign in video image, and storage medium which stores program of road sign automatic recognition
KR101452628B1 (en) * 2013-04-16 2014-10-23 한양대학교 산학협력단 Method for detecting critical area for pedestrian protection system and apparatus therefor
WO2018123547A1 (en) * 2016-12-26 2018-07-05 株式会社東海理化電機製作所 Viewing device for vehicles
KR102616565B1 (en) * 2023-08-16 2023-12-21 오토아이티(주) Compact Apparatus and method for around view monitor image processing

Also Published As

Publication number Publication date
JP3540005B2 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
US8548229B2 (en) Method for detecting objects
JP3367170B2 (en) Obstacle detection device
JP4930046B2 (en) Road surface discrimination method and road surface discrimination device
JP3562751B2 (en) Forward vehicle detection method and device
JP2000357233A (en) Body recognition device
KR102130316B1 (en) Apparatus and method for image recognition
JPH10143659A (en) Object detector
JP2003098424A (en) Range finder based on image processing
KR20140056790A (en) Apparatus for image recognition and method thereof
JP3961584B2 (en) Lane marking detector
JP3540005B2 (en) Obstacle detection device
JP3328711B2 (en) Vehicle height measuring device and vehicle monitoring system using the same
JP3633368B2 (en) Obstacle detection device
JP2800530B2 (en) Inter-vehicle distance detection device
JP2007316856A (en) Traveling object detecting device, computer program, and traveling object detection method
JP3384278B2 (en) Distance measuring device
JPH07244717A (en) Travel environment recognition device for vehicle
JP2008165595A (en) Obstacle detection method, obstacle detection device, and obstacle detection system
JPH07225126A (en) On-road object recognizing device for vehicle
JP2983420B2 (en) Inter-vehicle distance measurement device
JP2536549B2 (en) Inter-vehicle distance detection method
JP4106163B2 (en) Obstacle detection apparatus and method
JP5392473B2 (en) Vehicle driving support device
JPH1141521A (en) Image pickup device, instrument and method for measuring distance between vehicles
KR20160063039A (en) Method of Road Recognition using 3D Data

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees