[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07278065A - Production of 3-aminodiphenylamine - Google Patents

Production of 3-aminodiphenylamine

Info

Publication number
JPH07278065A
JPH07278065A JP7034594A JP7034594A JPH07278065A JP H07278065 A JPH07278065 A JP H07278065A JP 7034594 A JP7034594 A JP 7034594A JP 7034594 A JP7034594 A JP 7034594A JP H07278065 A JPH07278065 A JP H07278065A
Authority
JP
Japan
Prior art keywords
cyclohexanone
reaction
hydrogen
aminodiphenylamine
catalysts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7034594A
Other languages
Japanese (ja)
Other versions
JP3137827B2 (en
Inventor
Masae Uchida
雅栄 内田
Masaru Wada
勝 和田
Teruyuki Nagata
輝幸 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP06070345A priority Critical patent/JP3137827B2/en
Publication of JPH07278065A publication Critical patent/JPH07278065A/en
Application granted granted Critical
Publication of JP3137827B2 publication Critical patent/JP3137827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To easily produce 3-aminodiphenylamine in high yield and raw material efficiency by using m-dinitrobenzene as a hydrogen acceptor and reacting m-phenylenediamine with cyclohexanone in the presence of a hydrogen-transfer catalyst. CONSTITUTION:This process for the production of 3-aminodiphenylamine in high raw material efficiency comprises the reaction of (A) m-phenylenediamine with (B) cyclohexanone in the presence of (C) a hydrogen-transfer catalyst such as palladium/carrier catalyst in (D) a sulfur-free polar solvent such as DMF using (E) m-dinitrobenzene as a hydrogen acceptor, thereby converting the component E into the reaction raw material component A in the reaction system.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3−アミノジフェニルア
ミンの改善された製造方法に関する。本発明の方法によ
って得られる3−アミノジフェニルアミンは染料等の中
間原料として有用である。
FIELD OF THE INVENTION This invention relates to an improved process for preparing 3-aminodiphenylamine. The 3-aminodiphenylamine obtained by the method of the present invention is useful as an intermediate raw material for dyes and the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】3−ア
ミノジフェニルアミンの製造方法としては3―ニトロジ
フェニルアミンを還元させる方法等が公知である。ま
た、本発明と類似して、水素移動触媒、水素受容体の存
在下、シクロヘキサノンとフェニレンジアミンとを反応
させてアミノジフェニルアミンを製造する方法について
も既に知られている。この場合水素受容体として、α−
メチルスチレンを使用して、パラジウム触媒使用下、シ
クロヘキサノンとフェニレンジアミンを反応させアミノ
ジフェニルアミンを得ることができるとの記載がある
(特開昭57−58648)。
2. Description of the Related Art As a method for producing 3-aminodiphenylamine, a method of reducing 3-nitrodiphenylamine is known. Similar to the present invention, a method for producing aminodiphenylamine by reacting cyclohexanone and phenylenediamine in the presence of a hydrogen transfer catalyst and a hydrogen acceptor is already known. In this case, as a hydrogen acceptor, α-
There is a description that cyclohexanone and phenylenediamine can be reacted with methylstyrene using a palladium catalyst to obtain aminodiphenylamine (JP-A-57-58648).

【0003】しかしながら、この方法においては、水素
受容体であるα−メチルスチレンは、水素受容体として
の利用以外、反応に有効に利用することはできず、原料
をすべてフェニレンジアミンの形で系内に供給しなくて
はならないこと、高温加圧下での反応であることから工
業的製法としては満足の行く方法とは言い難い。
However, in this method, α-methylstyrene, which is a hydrogen acceptor, cannot be effectively used in the reaction other than being used as a hydrogen acceptor, and the raw materials are all in the form of phenylenediamine in the system. It is difficult to say that it is a satisfactory method as an industrial production method because it must be supplied to the above and it is a reaction under high temperature and pressure.

【0004】[0004]

【課題を解決するための手段】本発明者等は従来の技術
より更に工業的に有利な製法を確立すべく検討した。そ
の結果、非含硫極性溶媒中において、水素移動触媒の存
在下、m−フェニレンジアミン(以下、m−MPDと略
する)とシクロヘキサノンを反応させるに際し、水素受
容体としてm−ジニトロベンゼン(以下、m−DNBと
略する)を使用することにより極めて温和な条件下で且
つ収率よく3−アミノジフェニルアミン(以下、ADP
Aと略する)が得られ、系内にてm−DNBより生成さ
れるm−MPDを原料として利用する事ができることを
見出し、本発明に到達した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted studies to establish a manufacturing method which is more industrially advantageous than the prior art. As a result, in the reaction of m-phenylenediamine (hereinafter abbreviated as m-MPD) with cyclohexanone in the presence of a hydrogen transfer catalyst in a non-sulfur-containing polar solvent, m-dinitrobenzene (hereinafter, By using m-DNB), 3-aminodiphenylamine (hereinafter referred to as ADP) under extremely mild conditions and in good yield.
It was found that m-MPD produced from m-DNB can be used as a raw material in the system, and the present invention has been reached.

【0005】即ち、本発明は水素移動触媒の存在下、m
−MPDとシクロヘキサノンを非含硫極性溶媒中に於い
て反応させるに際し、水素受容体としてm−DNBを使
用することを特徴とする3−ADPAの製造法である。
That is, according to the present invention, in the presence of a hydrogen transfer catalyst, m
A method for producing 3-ADPA, which comprises using m-DNB as a hydrogen acceptor when -MPD and cyclohexanone are reacted in a non-sulfur-containing polar solvent.

【0006】本発明方法においては、非含硫極性溶媒を
使用することが重要であり、例えば、N,N−ジメチル
ホルムアミド、N,N−ジメチルアセトアミド、テトラ
メチル尿素、メチルイソブチルケトン、テトラヒドロフ
ラン、ジオキサン、1,3−ジメチルイミダゾリジノ
ン、エチレングリコールジメチルエーテル、ジエチレン
グリコールジメチルエーテル等グライム類、サリチル酸
メチル、フェノール、メチルフェノール、2,4,6−
トリメチルフェノール等アルキルフェノール、3−メト
キシフェノール、4−メトキシフェノール等アルコキシ
フェノール等フェノール類が挙げられる。これらの溶媒
は1種叉は2種を混合して用いても良い。
In the method of the present invention, it is important to use a non-sulfur-containing polar solvent, for example, N, N-dimethylformamide, N, N-dimethylacetamide, tetramethylurea, methylisobutylketone, tetrahydrofuran, dioxane. , 1,3-dimethylimidazolidinone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, etc. glymes, methyl salicylate, phenol, methylphenol, 2,4,6-
Examples include alkylphenols such as trimethylphenol, phenols such as alkoxyphenol such as 3-methoxyphenol and 4-methoxyphenol. These solvents may be used alone or in combination of two.

【0007】尚、含硫極性溶媒であるジメチルスルホキ
シド、スルホラン等は水素移動触媒に毒作用があり好ま
しくない。
Sulfur-containing polar solvents such as dimethyl sulfoxide and sulfolane are not preferable because they have a poisoning effect on the hydrogen transfer catalyst.

【0008】本発明の方法において使用される水素移動
触媒としては公知のいかなるものでも良いが、具体的に
は、ラネーニッケル、還元ニッケル、ニッケルを硅藻
土、アルミナ、軽石、シリカゲル、酸性白土などの種々
の担体に担持したニッケル担体触媒;ラネーコバルト、
還元コバルト、コバルト、コバルト・担体触媒などのコ
バルト触媒;ラネー銅、還元銅、銅・担体触媒などの銅
触媒;パラジウム黒、酸化パラジウム、コロイドパラジ
ウム、パラジウム・炭素、パラジウム・硫酸バリウム、
パラジウム・炭酸バリウムなどのパラジウム触媒;白金
黒、コロイド白金、白金海綿、酸化白金、硫化白金、白
金・炭素などの白金・担体触媒等の白金触媒;コロイド
ロジウム、ロジウム・炭素、酸化ロジウムなどのロジウ
ム触媒;ルテニウム触媒などの白金族触媒;七酸化二レ
ニウム、レニウム・炭素などのレニウム触媒;銅クロム
酸化物触媒;酸化モリブデン触媒;酸化バナジウム触
媒;酸化タングステン触媒などを例示することができ
る。これらの触媒のうちでは、パラジウム触媒を使用す
ることが好ましく、特にパラジウム・担体触媒を使用す
ることが好ましく、とりわけパラジウム・炭素、パラジ
ウム・アルミナを使用するのが良い。 これらの水素移
動触媒の使用量はシクロヘキサノンに対し、金属原子と
して通常0.001〜1.0グラム原子、好ましくは
0.002〜0.2グラム原子が良い。
Any known hydrogen transfer catalyst may be used in the method of the present invention. Specifically, Raney nickel, reduced nickel, nickel-containing diatomaceous earth, alumina, pumice, silica gel, acid clay and the like can be used. Nickel carrier catalysts supported on various carriers; Raney cobalt,
Cobalt catalysts such as reduced cobalt, cobalt, cobalt / support catalysts; copper catalysts such as Raney copper, reduced copper, copper / support catalysts; palladium black, palladium oxide, colloidal palladium, palladium / carbon, palladium / barium sulfate,
Palladium catalysts such as palladium and barium carbonate; platinum catalysts such as platinum black, colloidal platinum, platinum sponge, platinum oxide, platinum sulfide, platinum and carrier catalysts such as platinum and carbon; colloidal rhodium, rhodium and carbon, rhodium such as rhodium oxide. Examples include catalysts; platinum group catalysts such as ruthenium catalysts; rhenium catalysts such as dirhenium heptaoxide and rhenium-carbon; copper chromium oxide catalysts; molybdenum oxide catalysts; vanadium oxide catalysts; tungsten oxide catalysts. Among these catalysts, it is preferable to use a palladium catalyst, particularly preferably a palladium-supported catalyst, and particularly preferably palladium-carbon or palladium-alumina. The amount of these hydrogen transfer catalysts to be used is usually 0.001 to 1.0 gram atom, preferably 0.002 to 0.2 gram atom, as a metal atom, based on cyclohexanone.

【0009】本発明方法においてはm−MPDとシクロ
ヘキサノンの縮合によりシッフ塩基を形成後、脱水素反
応によりADPAが生成される。本発明ではその際、発
生する水素の受容体としてm−DNBを使用する。そう
することによって、同一の反応系内でm−DNBがm−
MPDへと転換され、そのm−MPDともう一方の原料
であるシクロヘキサノンとの反応により、さらにADP
Aが生成する。
In the method of the present invention, ADPA is produced by dehydrogenation reaction after forming a Schiff base by condensation of m-MPD and cyclohexanone. In the present invention, m-DNB is used as an acceptor of hydrogen generated in that case. By doing so, m-DNB becomes m- in the same reaction system.
It is converted to MPD, and the m-MPD is reacted with cyclohexanone, which is the other raw material, to further produce ADP.
A produces.

【0010】本発明方法においてはシッフ塩基1モルに
ついてm−DNB0.33モルをm−MPDへ変換する
ことが可能である。従って系内で発生する水素を完全に
有効利用するためにはm−DNB/シクロヘキサノンの
モル比を0.33で反応すれば十分である。m−DNB
のシクロヘキサノンに対するモル比が0.33より多い
と反応速度が低下する傾向にあり得策ではない。またm
−MPD/シクロヘキサノンのモル比が小さすぎると、
系内にて生成したADPAとシクロヘキサノンがさらに
反応してN,N’−ジフェニル−m−フェニレンジアミ
ン(以下、N,N’−DPPAと略する)が副生する傾
向にある。これらの欠点を避けるため反応当初よりシク
ロヘキサノン1モルに対し0.33モルのm−DNB、
及び0.67モル以上のm−MPDを加えて反応させる
のが好ましい。さらに好ましくは、m−DNBとm−M
PDとの総和がシクロヘキサノン1モルに対して1.4
モル以上、特に1.7モル以上で反応するのがよい。
In the method of the present invention, 0.33 mol of m-DNB can be converted to m-MPD per mol of Schiff base. Therefore, in order to make effective use of the hydrogen generated in the system, it is sufficient to react at a molar ratio of m-DNB / cyclohexanone of 0.33. m-DNB
If the molar ratio of the above to cyclohexanone is more than 0.33, the reaction rate tends to decrease, which is not a good idea. Also m
If the MPD / cyclohexanone molar ratio is too low,
ADPA produced in the system and cyclohexanone further react, and N, N′-diphenyl-m-phenylenediamine (hereinafter, abbreviated as N, N′-DPPA) tends to be by-produced. In order to avoid these drawbacks, from the beginning of the reaction, 0.33 mol of m-DNB per 1 mol of cyclohexanone,
And it is preferable to add 0.67 mol or more of m-MPD for reaction. More preferably, m-DNB and mm
Total with PD is 1.4 per 1 mol of cyclohexanone
It is preferable to react in a molar amount of at least 1.7 mol.

【0011】反応形式は一括装入法、滴下法等のいづれ
の方法をとることが出来る。例えば、滴下法では予めメ
タフェニレンジアミンとシクロヘキサノンよりシッフ塩
基を形成し、そのシッフ塩基とメタジニトロベンゼンと
を同時にまたは混合した後滴下する。
The reaction can be carried out by a batch charging method, a dropping method or the like. For example, in the dropping method, a Schiff base is previously formed from metaphenylenediamine and cyclohexanone, and the Schiff base and metadinitrobenzene are simultaneously or mixed and then added dropwise.

【0012】本発明方法においては反応で生成する水を
除去する為にベンゼン、トルエン、キシレンのような溶
媒を用いて共沸脱水しながら反応混合物から分離する方
法もとることができる。反応の際の温度は通常140〜
250℃、好ましくは160〜200℃の範囲で選ばれ
る。
In the method of the present invention, in order to remove water generated in the reaction, a method of separating from the reaction mixture while azeotropically dehydrating with a solvent such as benzene, toluene and xylene can be used. The temperature during the reaction is usually 140-
It is selected in the range of 250 ° C, preferably 160 to 200 ° C.

【0013】生成したADPAは反応終了後の混合物を
蒸留、晶析、抽出等の常法に従って処理することにより
得られる。例えば、反応終了液をろ過し触媒を分離す
る。この回収触媒は再使用できる。ろ液を濃縮し溶媒を
回収する。釜内のADPAは場合によってはそのまま次
の反応原料として使用できるが必要なら蒸留、晶析等に
より精製する。
The produced ADPA can be obtained by treating the mixture after the reaction according to a conventional method such as distillation, crystallization and extraction. For example, the reaction completed liquid is filtered to separate the catalyst. This recovered catalyst can be reused. The filtrate is concentrated and the solvent is recovered. In some cases, ADPA in the kettle can be used as it is as the next reaction raw material, but if necessary, it is purified by distillation, crystallization or the like.

【0014】[0014]

【実施例】以下、本発明の方法を実施例によって具体的
に説明する。 実施例1 分離器を備えた還流冷却器、温度計、撹拌装置を備えた
200mlの丸底フラスコに、m−MPD21.6g、
シクロヘキサノン19.6gジエチレングリコール40
gを装入し155℃で4時間撹拌したものと、m−DN
B11.2gを滴下ロートに装入し、それを、分離器を
備えた還流冷却器、温度計、撹拌装置を備えた200m
lの丸底フラスコに、エヌ・イー・ケムキャット社製5
0wet%5%Pd/C4.33g、ジエチレングリコ
ール25.0gを装入したものに、155℃で8時間か
けて滴下した後、2時間熟成を行った。この間に生成す
る水はトルエンを装入して共沸させ、還流冷却器にて凝
縮させた後、分離器より分離した。次いで反応液を室温
まで冷却し、反応混合液より5%Pd/Cを濾別した。
濾液をガスクロマトグラフィーを用いて分析したとこ
ろ、シクロヘキサノンの転化率は99.5(mol%/
シクロヘキサノン)、ADPAの収率は61.2(mo
l%/シクロヘキサノン),N,N’−ジフェニルフェ
ニレンジアミンの収率は28.0(mol%/シクロヘ
キサノン),未脱水素物の収率は10.3(mol%/
シクロヘキサノン)であった。
EXAMPLES The method of the present invention will be described in detail below with reference to examples. Example 1 In a 200 ml round bottom flask equipped with a reflux condenser equipped with a separator, a thermometer, and a stirring device, 21.6 g of m-MPD,
Cyclohexanone 19.6g Diethylene glycol 40
g, and stirred for 4 hours at 155 ° C. and m-DN
B11.2 g was charged into a dropping funnel, and 200 m equipped with a reflux condenser equipped with a separator, a thermometer, and a stirring device.
In a round-bottomed 1-liter flask, 5 manufactured by NE Chemcat
A mixture of 033% 5% Pd / C (4.33 g) and diethylene glycol (25.0 g) was added dropwise at 155 ° C. over 8 hours, and then aged for 2 hours. The water produced during this time was azeotropically charged with toluene, condensed with a reflux condenser, and then separated with a separator. Then, the reaction solution was cooled to room temperature, and 5% Pd / C was filtered off from the reaction mixture solution.
When the filtrate was analyzed by gas chromatography, the conversion of cyclohexanone was 99.5 (mol% /
The yield of cyclohexanone) and ADPA is 61.2 (mo
1% / cyclohexanone), N, N′-diphenylphenylenediamine yield 28.0 (mol% / cyclohexanone), undehydrogenated product yield 10.3 (mol% /
Cyclohexanone).

【0015】実施例2 m−MPDの使用量を43.3gとした以外は実施例1
と同様の操作を行った。分析を行った結果、シクロヘキ
サノンの転化率は99.6(mol%/シクロヘキサノ
ン)、ADPAの収率は74.2(mol%/シクロヘ
キサノン),N,N’−ジフェニルフェニレンジアミン
の収率は14.8(mol%/シクロヘキサノン),未
脱水素物の収率は10.6(mol%/シクロヘキサノ
ン)であった。
Example 2 Example 1 except that the amount of m-MPD used was 43.3 g.
The same operation was performed. As a result of analysis, the conversion of cyclohexanone was 99.6 (mol% / cyclohexanone), the yield of ADPA was 74.2 (mol% / cyclohexanone), and the yield of N, N′-diphenylphenylenediamine was 14. 8 (mol% / cyclohexanone), the yield of undehydrogenated product was 10.6 (mol% / cyclohexanone).

【0016】実施例3〜5、比較例1 溶媒を変えた以外は実施例2と同様の操作を行った。結
果を第1表に示す。
Examples 3 to 5 and Comparative Example 1 The same operation as in Example 2 was performed except that the solvent was changed. The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明の方法は工業的に安価なm−DN
Bを水素受容体として用いることにより工業的に有利な
製法となる。
Industrial Applicability The method of the present invention is an industrially inexpensive m-DN.
By using B as a hydrogen acceptor, it becomes an industrially advantageous production method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素移動触媒の存在下、m−フェニレン
ジアミンとシクロヘキサノンを非含硫極性溶媒中に於い
て反応させるに際し、水素受容体としてm−ジニトロベ
ンゼンを使用することを特徴とする3−アミノジフェニ
ルアミンの製造法。
1. When m-phenylenediamine and cyclohexanone are reacted in the presence of a hydrogen transfer catalyst in a non-sulfur-containing polar solvent, m-dinitrobenzene is used as a hydrogen acceptor. A method for producing aminodiphenylamine.
JP06070345A 1994-04-08 1994-04-08 Method for producing 3-aminodiphenylamine Expired - Fee Related JP3137827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06070345A JP3137827B2 (en) 1994-04-08 1994-04-08 Method for producing 3-aminodiphenylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06070345A JP3137827B2 (en) 1994-04-08 1994-04-08 Method for producing 3-aminodiphenylamine

Publications (2)

Publication Number Publication Date
JPH07278065A true JPH07278065A (en) 1995-10-24
JP3137827B2 JP3137827B2 (en) 2001-02-26

Family

ID=13428749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06070345A Expired - Fee Related JP3137827B2 (en) 1994-04-08 1994-04-08 Method for producing 3-aminodiphenylamine

Country Status (1)

Country Link
JP (1) JP3137827B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532775A (en) * 2015-10-21 2018-11-08 セニックス・カンパニー・リミテッド Process for producing aryl-substituted para-phenylenediamine materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532775A (en) * 2015-10-21 2018-11-08 セニックス・カンパニー・リミテッド Process for producing aryl-substituted para-phenylenediamine materials
US10793510B2 (en) 2015-10-21 2020-10-06 Sennics Co., Ltd. Method for preparing aryl substituted p-phenylenediamine substance

Also Published As

Publication number Publication date
JP3137827B2 (en) 2001-02-26

Similar Documents

Publication Publication Date Title
CN110734380B (en) Preparation method of diaryl p-phenylenediamine anti-aging agent
JPH07278065A (en) Production of 3-aminodiphenylamine
JP3137828B2 (en) Method for producing aminodiphenylamine
JP2702262B2 (en) Method for producing bis (3-aminophenoxy) compound
JPH0533215B2 (en)
KR970001221B1 (en) Process for the preparation of aromatic secondary amino compound
JP3177350B2 (en) Method for producing dinonyldiphenylamine
JP3154598B2 (en) N- (4'-nonylcyclohexyl) -4-nonylaniline and method for producing the same
EP0630881A1 (en) Process for the preparation of diphenylamine
JP4723943B2 (en) Method for producing 3,3'-dialkyl-4,4'-biphenol
US5545752A (en) Process for the preparation of diphenylamine or nucleus-substituted derivative thereof
JP3213502B2 (en) Method for producing triphenylamines
JP3234655B2 (en) Process for producing diphenylamine or its nuclear substituted product
JP3177351B2 (en) Method for producing tris (diarylamino) benzenes
JP2523140B2 (en) Method for producing (4-hydroxyphenyl) -cyclohexanecarboxylic acid
JP3218102B2 (en) Method for producing indole or indole derivative
JPH0725836A (en) Production of dinonyldiphenylamine
JP3714539B2 (en) Method for producing aromatic secondary amino compound
JPH0770003A (en) Production of diphenylamines
JP2795492B2 (en) Method for producing indole or indole derivative
JPS61183250A (en) Production of triphenylamine or nuclear substitution product thereof
JP4896539B2 (en) Method for producing 3-alkyl-4,4'-biphenol and method for producing a mixture of 3-alkyl-4,4'-biphenol and 3,3'-dialkyl-4,4'-biphenol
JPH0717925A (en) N-cyclohexyl-n-phenyl-alkoxyaniline and production thereof
JPH06192187A (en) Production of diphenylamine or its ring-substituted product
JPS60202846A (en) Production of n,n'-diphenyl-phenylenediamine or its nucleus-substituted derivative

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees