JPH0727425A - Solar concentrator and thermal storage apparatus - Google Patents
Solar concentrator and thermal storage apparatusInfo
- Publication number
- JPH0727425A JPH0727425A JP3150808A JP15080891A JPH0727425A JP H0727425 A JPH0727425 A JP H0727425A JP 3150808 A JP3150808 A JP 3150808A JP 15080891 A JP15080891 A JP 15080891A JP H0727425 A JPH0727425 A JP H0727425A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- heat storage
- contribution
- light
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/70—Arrangements for concentrating solar-rays for solar heat collectors with reflectors
- F24S23/74—Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S23/00—Arrangements for concentrating solar-rays for solar heat collectors
- F24S23/12—Light guides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S60/00—Arrangements for storing heat collected by solar heat collectors
- F24S60/10—Arrangements for storing heat collected by solar heat collectors using latent heat
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Lenses (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、特に太陽光などの効
率のよい集光あるいは蓄熱を低コストに行うことが可能
な集光装置、および蓄熱装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light concentrating device and a heat accumulating device capable of efficiently concentrating or accumulating heat such as sunlight at low cost.
【0002】[0002]
【従来の技術】近年、石油に代わるクリーンなエネルギ
ーの一つとして太陽光エネルギーの積極的な活用が望ま
れている。しかして、このような目的を果たすための装
置として、例えば太陽光を集光する光学系,集光された
光を伝送する光ファイバ,光ファイバから伝送されてき
た光を投光・照明する光学系とからなる装置が、特開昭
54−112653号公報などによって提案されてい
る。しかしながら、この種の装置は1cm2単位当たり
に降り注ぐエネルギーが2.0カロリー/秒であるとい
われている太陽光を、いかに効率よく集光し減衰率を低
く押さえて活用できるかが課題であり、上記したような
従来の装置は係る面で未だ種々の改良すべき問題点を有
している。2. Description of the Related Art In recent years, active use of solar energy has been desired as one of the clean energy alternatives to petroleum. As a device for achieving such an object, for example, an optical system for concentrating sunlight, an optical fiber for transmitting the condensed light, and an optical for projecting / illuminating the light transmitted from the optical fiber. An apparatus composed of a system is proposed by Japanese Patent Laid-Open No. 54-112653. However, the problem with this type of device is how to efficiently collect the sunlight, which is said to generate 2.0 calories / second per 1 cm 2 unit, and utilize it with a low attenuation rate. However, the conventional device as described above still has various problems to be improved in this respect.
【0003】そのために、本出願人は先に特開平2−2
33505号公報に示すような採光装置を提案した。こ
の採光装置は、凹状に形成されたプラスチック基板上に
二酸化ケイ素膜層および二酸化チタン膜層を介してアル
ミ蒸着膜層を形成し、かつ焦点位置に石英溶融材よりな
る反射光吸収体を設けた拠物鏡を、東,西,南の3方向
に常設する構成のものであり、太陽光の反射を100%
近く全反射可能とする拠物鏡を提供するとともに、追尾
装置などを付設することなく日中のいずれの時間帯にお
いても効率よく太陽光の集光を行うように構成されてい
る。Therefore, the applicant of the present invention has previously disclosed in Japanese Patent Laid-Open No. 2-2.
A lighting device as shown in Japanese Patent No. 33505 has been proposed. In this lighting device, an aluminum vapor deposition film layer is formed on a recessed plastic substrate through a silicon dioxide film layer and a titanium dioxide film layer, and a reflected light absorber made of a fused silica material is provided at a focal position. It has a structure in which the material mirrors are permanently installed in the three directions of east, west, and south, and the reflection of sunlight is 100%.
In addition to providing a contribution mirror that is capable of total internal reflection in the near future, it is configured to efficiently collect sunlight at any time of day without installing a tracking device or the like.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、この採
光装置にあっては、拠物鏡等の集光効率には優れるもの
のその拠物鏡を東,西,南の3方向に常設しなければな
らないため、一般普及型の装置としてはコスト面および
スペース効率などの点で未だ改良の余地が残されてい
た。本出願人らは、上記のような事情に鑑みてこの種装
置を鋭意研究した結果、3面に配置していた拠物鏡を1
面拠物鏡とすることが可能な集光効率がよく低コストで
しかもスペース効率に優れた太陽光の集光装置、および
それらとともにに用いるのに好適な蓄熱装置を完成し提
案するものである。However, in this daylighting device, although the concentrating efficiency of the contribution mirror or the like is excellent, the contribution mirror must be permanently installed in three directions of east, west, and south. There was still room for improvement in terms of cost and space efficiency as a general-purpose type device. As a result of earnest studies on this type of device in view of the above circumstances, the present applicants have found that the contribution mirrors arranged on three surfaces are
The present invention aims to complete and propose a solar light concentrating device that can be used as a surface mirror, has a high light converging efficiency, is low in cost, and is excellent in space efficiency, and a heat storage device suitable for use with them.
【0005】[0005]
【課題を解決するための手段】この発明は、上記のよう
な目的を達成するために、請求項1記載の如く、中央部
に透光用の開口部を設けてなる太陽光などの一次反射用
拠物鏡と、上記拠物鏡の開口部とこの拠物鏡の焦点位置
とを結ぶ線上で焦点位置よりもやや外側に配置される二
次反射用の凹面鏡と、上記拠物鏡の裏面側であって拠物
鏡の開口部に対向する位置に配置され、上記開口部を介
して入射される二次反射用凹面鏡からの反射光を受光す
る光伝送手段とよりなる集光装置、また請求項2記載の
如くその光伝送手段の終端側には照明手段を有する集光
装置を提供する。SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides primary reflection such as sunlight having an opening for light transmission in the center as described in claim 1. A contribution mirror, a concave mirror for secondary reflection that is arranged slightly outside the focal position on the line connecting the opening of the contribution mirror and the focal position of the contribution mirror, and the back side of the contribution mirror. 3. A light condensing device, which is arranged at a position facing the opening of the base mirror, and comprises a light transmitting means for receiving the reflected light from the concave mirror for secondary reflection that is incident through the opening, and also the condensing device according to claim 2. As described above, the light condensing device having the illumination means is provided on the terminal side of the optical transmission means.
【0006】さらに、請求項3記載の如く、中央部に透
光用の開口部を設けてなる太陽光などの一次反射用拠物
鏡と、上記拠物鏡の開口部とこの拠物鏡の焦点位置とを
結ぶ線上で焦点位置よりもやや外側に配置される二次反
射用の凹面鏡と、上記拠物鏡の裏面側であって拠物鏡の
開口部に対向する位置に配置され、上記開口部を介して
入射される二次反射用凹面鏡からの反射光を受光する光
伝送手段と、上記光伝送手段の終端側に設けられる蓄熱
手段とよりなる蓄熱装置、あるいは請求項4記載の如く
蓄熱手段に電力供給用ケーブルと接続された発熱手段が
具備されてなる蓄熱装置を提供する。Further, as described in claim 3, a contribution mirror for primary reflection such as sunlight having an opening for transmitting light in a central portion, an opening of the contribution mirror and a focal position of the contribution mirror. Concave mirror for secondary reflection that is arranged slightly outside the focus position on the line that connects, and is arranged on the back side of the above-mentioned contribution mirror and at a position facing the opening of the contribution mirror, through the above-mentioned opening. 5. A heat storage device comprising an optical transmission means for receiving incident reflected light from a concave mirror for secondary reflection, and a thermal storage means provided on the terminal side of the optical transmission means, or power supply to the thermal storage means according to claim 4. There is provided a heat storage device including a heat generating means connected to a cable for use.
【0007】そして、蓄熱手段には請求項5記載の如く
放熱手段が具備された蓄熱装置、また請求項6記載の如
く熱交換器が具備された蓄熱装置、さらに蓄熱手段は請
求項7記載の如く気密保持された顆粒状のリチウムであ
る蓄熱装置を提供する。The heat storage means is provided with a heat dissipation means as described in claim 5, the heat storage apparatus is provided with a heat exchanger as described in claim 6, and the heat storage means is described in claim 7. Thus, there is provided a heat storage device which is granular lithium which is hermetically maintained.
【0008】[0008]
【作用】この発明に係る集光装置によれば、太陽光に対
する集光効率がよく低コストでスペース効率に優れ、屋
内採光装置や蓄熱装置として活用するのに好適な太陽光
の集光装置を提供できる。また、この発明に係る蓄熱装
置によれば、太陽光や安価な深夜電力などを効率よく利
用しかつ可搬性やスペース効率などに優れた蓄熱装置を
提供できる。According to the concentrating device of the present invention, a concentrating device for sunlight, which has good efficiency of concentrating sunlight, is low in cost, and is excellent in space efficiency, and is suitable for use as an indoor lighting device or a heat storage device, is provided. Can be provided. Further, according to the heat storage device of the present invention, it is possible to provide a heat storage device that efficiently uses sunlight, inexpensive late-night power, and the like and is excellent in portability and space efficiency.
【0009】[0009]
【実施例】以下、この発明の実施例を図面に基づき詳細
に説明する。図1はこの発明に係る集光装置の概略構成
を示す断面図であり、同図に示すようにこの装置は、太
陽光を集光する一次用の反射鏡である拠物鏡1と、上記
拠物鏡1から一束に集光されてくる反射光を二次反射す
る凹面鏡2と、上記凹面鏡2から集束されてくる二次反
射光を受光し送光する光伝送手段3とにより構成されて
いる。Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view showing a schematic configuration of a light concentrating device according to the present invention. As shown in FIG. 1, the device is a contribution mirror 1 which is a primary reflecting mirror for concentrating sunlight, and the above-mentioned contribution mirror. The concave mirror 2 secondarily reflects the reflected light condensed from the object mirror 1 into a bundle, and the optical transmission means 3 which receives and transmits the secondary reflected light focused from the concave mirror 2. .
【0010】上記拠物鏡1は、図示を省略するが凹状に
湾曲されたプラスチック基板上に均一に、少なくとも二
酸化ケイ素膜層および二酸化チタン膜層を介してアルミ
蒸着膜層を積層して形成されており、太陽光の反射を1
00%近く全反射可能とするとともに、反射された太陽
光をその焦点位置に集束させる。ただし、塵埃などの付
着防止性を高めるためには、上記アルミ蒸着膜層に代え
て銀または銀系蒸着膜層がより好適である。そして、こ
の拠物鏡1の中央部位置には凹面鏡2からの二次反射光
を透光するための開口部1aが穿設されている。この開
口部1aの形状は、太陽光の入射角度の変化に伴う二次
反射光の経時的移動に対応するために、集光時間帯にお
ける透過光の移動範囲を許容しかつ加工性を容易とすべ
く円形の開口部として穿設されている(図2(a)参
照)。Although not shown, the above-mentioned base mirror 1 is formed by uniformly laminating an aluminum vapor deposition film layer on at least a silicon dioxide film layer and a titanium dioxide film layer on a concavely curved plastic substrate. And one reflection of sunlight
It enables total internal reflection of nearly 100% and focuses the reflected sunlight at its focal position. However, silver or a silver-based vapor deposition film layer is more suitable in place of the aluminum vapor deposition film layer in order to improve the adhesion preventing property of dust and the like. An opening 1a for transmitting the secondary reflected light from the concave mirror 2 is formed in the central position of the base mirror 1. The shape of the opening 1a allows the movement range of the transmitted light in the converging time zone and facilitates the workability because the shape of the opening 1a corresponds to the movement of the secondary reflected light with time accompanying the change of the incident angle of sunlight. In order to do so, a circular opening is formed (see FIG. 2A).
【0011】凹面鏡2は、上記拠物鏡1の開口部1aの
中心位置と焦点位置を結ぶ線上において焦点位置よりも
外側、例えば420φの拠物鏡とすると、拠物鏡1の外
周より約30mm(図中l)前後外側において反射面2
aを開口部1aに向けて配置されている。また、この凹
面鏡2は石英溶融材より形成されるとともに、420φ
の場合には20mm前後の形状として形成され、拠物鏡
1からの反射光を従来の平面状の反射鏡に比して効率よ
く集光し、開口部1aに向けて二次反射を行う。なお、
上記凹面鏡2の支持アームは図示しないが公知のパラボ
ラ型アンテナと同様に形成されるとともに、支柱等も高
さおよび角度調整可能な伸縮支持手段などを有してい
る。If the concave mirror 2 is a contribution mirror having an outer diameter of 420 °, for example, on the line connecting the center position of the opening 1a of the contribution mirror 1 and the focus position, it is about 30 mm from the outer circumference of the contribution mirror 1 (in the figure). l) Reflective surfaces 2 on the front and back sides
It is arranged with a facing the opening 1a. The concave mirror 2 is made of fused quartz and has a diameter of 420φ.
In the case of, the light is formed with a shape of about 20 mm, and the reflected light from the base mirror 1 is more efficiently condensed than the conventional planar reflecting mirror, and the secondary reflection is performed toward the opening 1a. In addition,
Although not shown, the support arm of the concave mirror 2 is formed in the same manner as a known parabolic antenna, and the support column and the like also have expansion / contraction support means capable of adjusting height and angle.
【0012】光伝送手段3は、光透過率の高い石英光フ
ァイバーが選択されるが、このような光ファイバー材と
しては、可視光領域0.38μ〜0.8μにおいてφ5
mm〜φ10mmとした場合その透過率としては98.
5%/mであるので、例えばファイバーの距離が7mで
は(0.985)7=0.90となり、90%の透過率
として設定することができる。また、この光伝送手段3
の始端側3aには開口部1aを介して入射されてきた二
次反射光の集光部4が設けられるが、この集光部4は太
陽光の入射角度の変化に伴う反射光の移動によっても良
好に集光を行うベく、その受光面は図2(b)に示すよ
うに楕円形状の受光面として形成されている。A quartz optical fiber having a high light transmittance is selected for the optical transmission means 3, and such an optical fiber material has a diameter of φ5 in the visible light range of 0.38 μ to 0.8 μ.
When the thickness is 10 mm to 10 mm, the transmittance is 98.
Since it is 5% / m, for example, when the fiber distance is 7 m, it becomes (0.985) 7 = 0.90, which can be set as a transmittance of 90%. Also, this optical transmission means 3
A light condensing unit 4 for the secondary reflected light that has been incident through the opening 1a is provided on the starting end side 3a of the light condensing unit 4. The light condensing unit 4 moves due to the movement of the reflected light accompanying the change in the incident angle of sunlight. In addition, the light receiving surface is formed as an elliptical light receiving surface as shown in FIG.
【0013】次に、上記拠物鏡1の径が290φの場合
を1例として拠物鏡1の常設方向の角度および照度等に
ついて説明する。 拠物鏡の径・・・R=290mm,太陽の常数・・・2
0カロリー,環境光度係数・・・午前9時点−1.77
正午時点−1.825 午後3時点−1.71,ワッ
トをカロリーに換算する係数・・・4.18,光ファイ
バー減衰率・・・1.5m/secの場合において拠物
鏡の径Rは、0.9×(2.0×4.18/60×π×
(R/2)2)×1.825=28.5≒290mmと
して求められる。また、このときのそれぞれの明るさ
は、午前9時点=141.6ワット 正午時点=14
6.0ワット 午後3時点=137.6ワットとなる。Next, the angle in the permanent direction of the contribution mirror 1 and the illuminance will be described by taking the case where the diameter of the contribution mirror 1 is 290φ as an example. Diameter of base mirror ... R = 290mm, solar constant ... 2
0 calories, environmental light coefficient ... 9 am-1.77
At noon-1.825 At 3 pm-1.71, coefficient for converting watts into calories ... 4.18, optical fiber attenuation rate ... In the case of 1.5 m / sec, the diameter R of the contribution mirror is 0. 9.9 × (2.0 × 4.18 / 60 × π ×
(R / 2) 2 ) × 1.825 = 28.5≈290 mm. In addition, each brightness at this time was 91.6 am = 141.6 watts and 12:00 noon = 14.
6.0 watts At 3 pm = 137.6 watts.
【0014】拠物鏡1の常設角度は次の如く求める。
(冬至から春分の中間日の子午線上において正午12時
における太陽光の方向に設置される。)そして、黄道の
冬至点と春分点の中間点は、−23.4/2=−11.
7度として求め、現地点の北緯度をΨとし、この時の地
平線から子午線の太陽の角度は東京の場合北緯35度5
2分として、90−{Ψ−(−11.7)}=42度7
8分となる。したがって、拠物鏡1の取付角度は上記し
たように正午時点の太陽方向に、42度78分に向けて
設置する。The permanent angle of the base mirror 1 is obtained as follows.
(It is installed in the direction of the sun light at 12:00 noon on the meridian of the mid-day between the winter solstice and the equinox.) The midpoint between the winter solstice and the equinox on the ecliptic is −23.4 / 2 = −11.
The angle of the sun from the horizon to the meridian at this time is 35 degrees 5 north latitude in the case of Tokyo.
As 2 minutes, 90- {Ψ-(-11.7)} = 42 degrees 7
8 minutes. Therefore, the installation angle of the contribution mirror 1 is set to 42 degrees and 78 minutes in the sun direction at noon as described above.
【0015】この発明に係る集光装置は、上記したよう
に反射率のよい鏡面を有する拠物鏡1においてその焦点
位置よりも外方位置に二次反射用の凹面鏡2が設けられ
るとともに、その凹面鏡2の反射方向である拠物鏡1の
中央部には透光用の開口部1aが設けられ、かつその開
口部1aに対向する拠物鏡1の裏面側には光伝送手段3
が設けられている。したがって、二次反射用の凹面鏡2
は焦点位置に集光されてくる一次反射光は勿論のこと従
来は受光されなかった一次反射光をも集光することかで
き、かつその凹面鏡2からの二次反射光は拠物鏡1中央
部の開口部1aを介して拠物鏡1の裏面側に配置されて
いる光伝送手段3に集束させて入射させることができ
る。このように、集光効率の向上と減衰率の低下防止が
図られているので、太陽光の集光装置として用いる場合
には、従来は東,西,南の3方向に常設されていた3面
鏡としての拠物鏡を1面拠物鏡とすることができ、集光
効率がよく低コストでスペース効率に優れた太陽光の集
光装置を提供することができる。In the condensing device according to the present invention, the concave mirror 2 for secondary reflection is provided at a position outside the focal position of the base mirror 1 having a mirror surface having a high reflectance as described above, and the concave mirror is provided. An opening portion 1a for transmitting light is provided in the central portion of the contribution mirror 1 in the reflection direction of 2, and the light transmission means 3 is provided on the rear surface side of the contribution mirror 1 facing the opening portion 1a.
Is provided. Therefore, the concave mirror 2 for secondary reflection
Can collect not only the primary reflected light that is focused at the focal position but also the primary reflected light that has not been received in the past, and the secondary reflected light from the concave mirror 2 is at the center of the contribution mirror 1. The light can be focused and incident on the optical transmission means 3 arranged on the back surface side of the contribution mirror 1 through the opening 1a. As described above, since the light collection efficiency is improved and the attenuation rate is prevented from lowering, when it is used as a light collection device for sunlight, it is conventionally permanently installed in three directions of east, west, and south. The contribution mirror as a surface mirror can be a one-sided contribution mirror, and it is possible to provide a solar light concentrating device that has good light collection efficiency, low cost, and excellent space efficiency.
【0016】次に、図3に示すものは上記集光装置を屋
内採光装置に適用した場合の概略構成図であり、光伝送
手段3の終端側3bには照明手段5が設けられている。
この照明手段5は、拠物鏡1と同様に凹形状のプラスチ
ック基板上に均一に少なくとも二酸化ケイ素膜層および
二酸化チタン膜層を介してアルミ蒸着膜層を、または銀
あるいは銀系蒸着膜層を積層した照射面が形成されてい
る。また、その焦点位置には石英溶融材よりなり、かつ
上記光伝送手段3からの出射光を照射面6に向けて放射
する放射部6aが設けられており、これにより上記光伝
送手段3からの出射光を設置室内などにほぼ100%照
射せしめる。Next, FIG. 3 is a schematic configuration diagram in the case where the above-mentioned light concentrating device is applied to an indoor lighting device, and an illuminating means 5 is provided on the terminal side 3b of the optical transmission means 3.
This illuminating means 5 is formed by laminating an aluminum vapor deposition film layer or a silver or silver-based vapor deposition film layer evenly on at least a silicon dioxide film layer and a titanium dioxide film layer on a concave plastic substrate, like the base mirror 1. The irradiated surface is formed. Further, at the focal position, a radiating portion 6a which is made of a fused silica material and which radiates the light emitted from the light transmitting means 3 toward the irradiation surface 6 is provided, whereby the radiating portion 6a from the light transmitting means 3 is provided. Almost 100% of the emitted light is applied to the installation room.
【0017】次に、この採光装置の構成例を示せば次の
表1の如くである。Next, the configuration example of this lighting device is shown in Table 1 below.
【0018】[0018]
【表1】 [Table 1]
【0019】次に、上記照明手段5の照度の1例を示
す。すなわち、上記したように正午の時点を146.0
ワットとして表1より2.450Lm(F)であり、こ
の部屋の表面積が7.3m2(A)である場合には、こ
の時の照度(E)はE=F/A(Lux)として求めら
れるので、 E=2.450/7.3=335.6Lux となり、照度基準JIS Z 900勉強部屋・事務所
で、300〜750Luxを得ることができる。したが
って、この照明手段5は日照条件の悪い北側の部屋や地
下室などに設置すれば、この集光装置は効率のよい採光
装置を提供することができる。Next, an example of the illuminance of the illumination means 5 will be shown. That is, as described above, the time at noon is 146.0.
If the wattage is 2.450 Lm (F) from Table 1 and the surface area of this room is 7.3 m 2 (A), the illuminance (E) at this time is calculated as E = F / A (Lux) Therefore, E = 2.450 / 7.3 = 335.6Lux, and 300 to 750Lux can be obtained in the illuminance standard JIS Z 900 study room / office. Therefore, if the lighting means 5 is installed in a room on the north side or a basement where the sunshine conditions are bad, the light concentrating device can provide an efficient daylighting device.
【0020】次に、図4に示すものは、図1に示した集
光装置における光伝送手段3の終端側3bに蓄熱手段7
を設けた構成の蓄熱装置である。すなわち、光伝送手段
3の終端側3bにはヒートパイプ8の一端が接続されて
おり、このヒートパイプ8を介して集光された太陽光を
熱エネルギーとして変換して貯熱すべく、ヒートパイプ
8の他端は蓄熱手段7中に挿入されている。蓄熱手段7
は後述する蓄熱材9が気密性を以て蓄熱槽10内に収納
された構成とされており、この蓄熱槽10は気密性の他
断熱性,防蝕性などに優れた材料、例えばガラス材や琺
瑯などを用いて形成されている。さらに、この蓄熱手段
7は断熱性に優れたハウジング11によってカバーされ
ており、このハウジング11は壁体11a中に断熱部材
11bを介在させて形成されている。Next, as shown in FIG. 4, the heat storage means 7 is provided on the terminal side 3b of the optical transmission means 3 in the condensing device shown in FIG.
Is a heat storage device having a configuration. That is, one end of the heat pipe 8 is connected to the terminating side 3b of the light transmission means 3, and the heat pipe 8 converts the sunlight collected through the heat pipe 8 into heat energy to store the heat. The other end of 8 is inserted in the heat storage means 7. Heat storage means 7
Is configured such that a heat storage material 9 described later is housed in a heat storage tank 10 with airtightness. The heat storage tank 10 is not only airtight but also excellent in heat insulation and corrosion resistance, such as glass material and enamel. Is formed by using. Further, the heat storage means 7 is covered by a housing 11 having an excellent heat insulating property, and the housing 11 is formed by interposing a heat insulating member 11b in the wall 11a.
【0021】従来知られている蓄熱材としては水やレン
ガ等の蓄熱材があるが、水は100℃で蒸気圧となり、
またレンガは水よりも蓄熱特性が小さい上重量物であり
蓄熱効果を増やすには体積を増やす必要がある等、両者
は太陽熱の蓄熱にはいずれも不向きである。Conventionally known heat storage materials include heat storage materials such as water and bricks, but water has a vapor pressure at 100 ° C.,
In addition, bricks are heavy objects that have smaller heat storage characteristics than water, and their volume must be increased in order to increase the heat storage effect. Both are unsuitable for storing solar heat.
【0022】しかして、蓄熱材としては溶融点・沸騰点
の高い組成物であって、体積・重量の値が小さい可搬性
や取扱性に優れたものがよいが、本出願人らは鋭意研究
の結果、このような蓄熱材9として顆粒状の水酸化リチ
ウム(LiOH),フッ化リチウム(LiF),あるい
はその混合リチウム(混合Li)が著しく効果的である
ことを知見した。なお、水酸化リチウムとフッ化リチウ
ムとの混合比は、20%Mol:80%Molのものが
特に蓄熱材としては優れていることを知見した。これら
リチウムは比熱・比重・分子量が水に近く、蒸発900
℃以上であり溶融時の潜熱を用いることにより小体積の
蓄熱装置を形成することができる。However, as the heat storage material, a composition having a high melting point / boiling point, which has a small volume / weight value and is excellent in portability and handleability, is preferable. As a result, it was found that granular lithium hydroxide (LiOH), lithium fluoride (LiF), or a mixed lithium (mixed Li) thereof is remarkably effective as the heat storage material 9. In addition, it was found that the mixing ratio of lithium hydroxide and lithium fluoride having a mixing ratio of 20% Mol: 80% Mol is particularly excellent as a heat storage material. These lithiums have a specific heat, specific gravity and molecular weight similar to that of water, and vaporize 900 times.
A heat storage device having a small volume can be formed by using latent heat at the time of melting, which is equal to or higher than ° C.
【0023】リチウムおよび水・空気の物性値を対比す
ると、次の表2の如くとなる。Table 2 below shows the comparison of the physical properties of lithium and water / air.
【0024】[0024]
【表2】 [Table 2]
【0025】次に、蓄熱量(δ)について説明する。蓄
熱量(δ)は、 照射エネルギー量×1/ワットとカロリーの換算係数×
集光時間 によって求めることができる。したがって、420φの
拠物鏡において6時間集光した場合には、 δ=294w×1/4.18×60 SEC×60mi
n×6H=1,519Kcalまた、340φの拠物鏡
の場合には、 δ=193w×1/4.18×60 SEC×60mi
n×6H=997Kcalとなり、420φの拠物鏡が
一般普及型のものとして蓄熱量,取扱性も適当であると
思われる。Next, the heat storage amount (δ) will be described. The amount of heat storage (δ) is the amount of irradiation energy × 1 / watt and the conversion coefficient of calories ×
It can be determined by the light collection time. Therefore, in the case of condensing for 6 hours in a 420φ contribution mirror, δ = 294w × 1 / 4.18 × 60 SEC × 60mi
n × 6H = 1,519 Kcal Further, in the case of a 340φ contribution mirror, δ = 193w × 1 / 4.18 × 60 SEC × 60mi
Since n × 6H = 997 Kcal, the 420φ contribution mirror is considered to be a general-purpose type, and the heat storage amount and handleability are also appropriate.
【0026】次に、蓄熱効果について説明する。所定蓄
熱量(δ)を達成することのできる体積(V)は、 δ×1/比重×比熱×温度 として求めることができる。また、重量(M)は体積
(V)×比重により定まる。したがって、本実施例にお
ける蓄熱効果としては、V×M値を各物質の比熱効果値
とし、この試算結果をれを次の表3に示す。Next, the heat storage effect will be described. The volume (V) capable of achieving the predetermined heat storage amount (δ) can be calculated as δ × 1 / specific gravity × specific heat × temperature. The weight (M) is determined by the volume (V) × specific gravity. Therefore, as the heat storage effect in this example, the V × M value was taken as the specific heat effect value of each substance, and the results of this trial calculation are shown in Table 3 below.
【0027】[0027]
【表3】 [Table 3]
【0028】以上の結果から明らかなように、太陽熱の
蓄熱には混合リチウムが体積・重量が最小であり、蓄熱
効果値がよいことがわかる。As is clear from the above results, mixed lithium has the smallest volume and weight for the storage of solar heat, and the heat storage effect value is good.
【0029】次に、太陽熱蓄熱後の利用について説明す
る。利用例としては、所定蓄熱温度で蓄熱した場合にお
いて例えば120℃の空気熱を毎秒1l取り出した場合
に使用できる時間(T)についてみる。 体積×比重×(定圧)比熱×温度×秒×分=蓄熱量
(δ) 空気量×比重×(定圧)比熱×温度×秒×分=空気消費
熱量(Q) 蓄熱量(δ)÷空気消費熱量(Q)=蓄熱利用時間
(T) 上記式に基づいて試算した場合、蓄熱温度440℃にけ
るフッ化リチウムの場合には、 蓄熱量(δ)=3.423ml×2.64 ×0.38
2×(440−120)=1.104.649cal
空気消費熱量(Q)=1.000×0.00116×
0.244×120×60×60 蓄熱利用時間(T)
=(δ)÷(Q)=9時間 となる。Next, use after solar heat storage will be described. As an example of use, let us look at the time (T) that can be used when 1 l of air heat of 120 ° C. is taken out per second when heat is stored at a predetermined heat storage temperature. Volume x specific gravity x (constant pressure) specific heat x temperature x seconds x min = heat storage amount (δ) Air amount x specific gravity x (constant pressure) specific heat x temperature x seconds x min = air consumption heat amount (Q) heat storage amount (δ) ÷ air consumption Heat quantity (Q) = Heat storage utilization time (T) In the case of trial calculation based on the above formula, in the case of lithium fluoride at a heat storage temperature of 440 ° C., heat storage quantity (δ) = 3.423 ml × 2.64 × 0. 38
2 x (440-120) = 1.104.649cal
Air consumption heat quantity (Q) = 1.000 x 0.00116 x
0.244 × 120 × 60 × 60 Heat storage utilization time (T)
= (Δ) ÷ (Q) = 9 hours.
【0030】各蓄熱温度範囲におけるフッ化リチウム、
および混合リチウムについての蓄熱利用時間の試算結果
1例を次の表3に示す。Lithium fluoride in each heat storage temperature range,
Table 3 below shows one example of the result of trial calculation of the heat storage utilization time for the lithium and mixed lithium.
【0031】[0031]
【表3】 [Table 3]
【0032】上記表3から明らかなように、この蓄熱材
9によれば、太陽光を1日5〜6時間程度集光し融点の
高い容積1lの混合リチウムに蓄熱し、120℃の熱を
10時間程度放熱し続けることができる。As is clear from Table 3, according to the heat storage material 9, sunlight is collected for about 5 to 6 hours a day, and heat is stored in the mixed lithium having a high melting point and a volume of 1 l to generate heat of 120 ° C. It can continue to radiate heat for about 10 hours.
【0033】したがって、図4のようにハウジング11
に通風口11cを開設し、このハウジング11にモータ
13によって駆動される放熱手段12、例えばファンを
設けた場合には、蓄熱材9の潜熱を利用した暖房器など
として用いることができる。なお、この場合における壁
体10は気密性を有するとともに、伝熱率の高いセラミ
ックスなどが用いられる。Therefore, as shown in FIG. 4, the housing 11
When the ventilation port 11c is provided in the housing 11 and the housing 11 is provided with the heat radiating means 12 driven by the motor 13, for example, a fan, it can be used as a heater using the latent heat of the heat storage material 9. In this case, the wall body 10 is made of ceramics or the like having airtightness and high heat transfer coefficient.
【0034】図5に示すものは、蓄熱手段7に熱交換器
14を具備してなる循環方式の蓄熱装置を示す。この蓄
熱装置は循環経路14a,14bにより伝熱循環が行わ
れ、余熱分が循環経路14bにより蓄熱手段7に戻され
るため、上記蓄熱条件と同一条件下でもこの場合には4
5〜50時間の放熱を達成することができる。FIG. 5 shows a circulation type heat storage device in which the heat storage means 7 is provided with a heat exchanger 14. In this heat storage device, heat transfer circulation is performed by the circulation paths 14a and 14b, and residual heat is returned to the heat storage means 7 by the circulation path 14b.
Heat dissipation of 5 to 50 hours can be achieved.
【0035】図6に示すものは、蓄熱手段7に電力供給
用ケーブル15と接続された発熱手段16が具備された
蓄熱装置を示すもので、発熱手段16はヒータ等が用い
られ、この蓄熱装置によれば安価な深夜電力による蓄熱
を図るとができる。FIG. 6 shows a heat storage device in which the heat storage means 7 is provided with a heat generation means 16 connected to the power supply cable 15, and the heat generation means 16 uses a heater or the like. According to the method, heat can be stored with inexpensive late-night power.
【0036】[0036]
【発明の効果】以上説明したように、請求項1記載の発
明によれば、太陽光に対する集光効率がよくスペース効
率に優れた低コスト集光装置を提供することができ、一
般普及型の集光装置として好適である。また、請求項2
記載の発明によれば、低コストに効率よく太陽光を集光
するとともに、スペース効率にも優れた集光装置を提供
することができるので、日照条件の悪い北側の部屋や地
下室などに設置する採光装置、あるいはトンネルや地下
鉄のホームなどに設置する安全対策用の採光装置として
好適である。また、請求項3記載の発明によれば、太陽
光を効率よく蓄熱することができるので、塗装の焼き付
け,魚の乾燥,家庭用の炊事用など各種分野の蓄熱装置
として用いることができる。さらに、請求項4記載の発
明によれば、発熱手段を介して安価な深夜電力を活用し
て蓄熱することができるので、蓄熱装置の低コストな利
用を図ることができる。さらに、請求項5記載の発明に
よれば、効率のよい蓄熱と放熱が行えるので、暖房装
置,急騰装置,野菜のハウス栽培などに用いる蓄熱装置
を低コストに提供することができる。また、請求項6記
載の発明によれば、余剰熱を循環再利用することができ
るので、一層効率のよい蓄熱装置を提供することができ
る。さらに、請求項7記載の発明によれば、小体積・小
重量で蓄熱効果の高い可搬性にすぐれた蓄熱材および蓄
熱装置を提供ることができるので、夏期の間に蓄熱を行
って保管し寒冷地に運搬して冬季にその潜熱利用を図る
ことも可能となる。As described above, according to the first aspect of the present invention, it is possible to provide a low-cost light concentrating device that has good concentrating efficiency for sunlight and excellent space efficiency. It is suitable as a light collecting device. In addition, claim 2
According to the invention described above, since it is possible to provide a light collector that efficiently collects sunlight at low cost and is also excellent in space efficiency, it is installed in a room or basement on the north side where the sunlight conditions are bad. It is suitable as a daylighting device or a daylighting device for safety measures installed in a tunnel, a subway platform, or the like. Further, according to the invention described in claim 3, since it is possible to efficiently store heat of sunlight, it can be used as a heat storage device in various fields such as baking of paint, drying of fish, and cooking for home use. Further, according to the invention as set forth in claim 4, since it is possible to store heat by utilizing inexpensive late-night power through the heat generating means, it is possible to use the heat storage device at low cost. Further, according to the invention of claim 5, efficient heat storage and heat dissipation can be performed, so that a heat storage device used for a heating device, a soaring device, a greenhouse cultivation of vegetables, etc. can be provided at low cost. Further, according to the invention of claim 6, since the surplus heat can be circulated and reused, a more efficient heat storage device can be provided. Further, according to the invention of claim 7, since it is possible to provide a heat storage material and a heat storage device which have a small volume and a small weight and a high heat storage effect and are excellent in portability, heat is stored during the summer and stored. It is also possible to transport it to cold regions and use its latent heat in winter.
【図1】図1は本発明に係る集光装置の概略構成を示す
断面図FIG. 1 is a sectional view showing a schematic configuration of a light collecting device according to the present invention.
【図2】図1に示す拠物鏡の正面図および光伝送手段の
始端側を示す斜視図FIG. 2 is a front view of the contribution mirror shown in FIG. 1 and a perspective view showing a starting end side of the optical transmission means.
【図3】図1に示す集光装置を採光装置に用いた場合を
示す説明図FIG. 3 is an explanatory view showing a case where the light collecting device shown in FIG. 1 is used for a daylighting device.
【図4】図1に示す集光装置を用いた蓄熱装置の第1の
実施例を示す説明図FIG. 4 is an explanatory diagram showing a first embodiment of a heat storage device using the light concentrating device shown in FIG.
【図5】図1に示す集光装置を用いた蓄熱装置の第2の
実施例を示す説明図5 is an explanatory view showing a second embodiment of a heat storage device using the light collecting device shown in FIG.
【図6】蓄熱装置の第3の実施例を示す説明図FIG. 6 is an explanatory view showing a third embodiment of the heat storage device.
1 拠物鏡 2 凹面鏡 3 光伝送手段 5 照明手段 7 蓄熱手段 9 蓄熱材 12 放熱手段 14 熱交換器 15 発熱手段 DESCRIPTION OF SYMBOLS 1 Contribution mirror 2 Concave mirror 3 Optical transmission means 5 Illumination means 7 Heat storage means 9 Heat storage material 12 Heat dissipation means 14 Heat exchanger 15 Heat generation means
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 17/00 Z 9120−2K ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G02B 17/00 Z 9120-2K
Claims (7)
光などの一次反射用拠物鏡と、 上記拠物鏡の開口部とこの拠物鏡の焦点位置とを結ぶ線
上で焦点位置よりもやや外側に配置される二次反射用の
凹面鏡と、 上記拠物鏡の裏面側であって拠物鏡の開口部に対向する
位置に配置され、上記開口部を介して入射される二次反
射用凹面鏡からの反射光を受光する光伝送手段と、 よりなることを特徴とする集光装置。Claim: What is claimed is: 1. A contribution mirror for primary reflection such as sunlight having an opening for light transmission provided in the center thereof, and a focus position on a line connecting the opening of the contribution mirror and the focus position of the contribution mirror. A concave mirror for secondary reflection that is arranged slightly outside, and a secondary mirror that is arranged on the back side of the above-mentioned contribution mirror and facing the opening of the contribution mirror, and is incident through the above-mentioned opening. A light condensing device comprising: an optical transmission unit that receives reflected light from a concave mirror.
ことを特徴とする請求項1記載の集光装置。2. The light condensing device according to claim 1, further comprising an illuminating device on the terminal side of the light transmitting device.
光などの一次反射用拠物鏡と、 上記拠物鏡の開口部とこの拠物鏡の焦点位置とを結ぶ線
上で焦点位置よりもやや外側に配置される二次反射用の
凹面鏡と、 上記拠物鏡の裏面側であって拠物鏡の開口部に対向する
位置に配置され、上記開口部を介して入射される二次反
射用凹面鏡からの反射光を受光する光伝送手段と、 上記光伝送手段の終端側に設けられる蓄熱手段と、 よりなることを特徴とする蓄熱装置。3. A contribution mirror for primary reflection such as sunlight having an opening for transmitting light in the center, and a focus position on a line connecting the opening of the contribution mirror and the focus position of this contribution mirror. A concave mirror for secondary reflection that is arranged slightly outside, and a secondary mirror that is arranged on the back side of the above-mentioned contribution mirror and opposite to the opening of the contribution mirror and is incident through the above-mentioned opening. A heat storage device comprising: an optical transmission unit that receives reflected light from a concave mirror; and a heat storage unit that is provided on the terminal side of the optical transmission unit.
た発熱手段が具備されてなることを特徴とする蓄熱装
置。4. A heat storage device, characterized in that the heat storage means comprises a heat generating means connected to a power supply cable.
とを特徴とする請求項3又は4記載の蓄熱装置。5. The heat storage device according to claim 3, wherein the heat storage means is provided with a heat radiation means.
とを特徴とする請求項3又は4記載の蓄熱装置。6. The heat storage device according to claim 3, wherein the heat storage means is provided with a heat exchanger.
ムであることを特徴とする請求項3,4,5又は6記載
の蓄熱装置7. The heat storage device according to claim 3, 4, 5 or 6, wherein the heat storage means is granular air-tight lithium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3150808A JPH0727425A (en) | 1991-02-25 | 1991-02-25 | Solar concentrator and thermal storage apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3150808A JPH0727425A (en) | 1991-02-25 | 1991-02-25 | Solar concentrator and thermal storage apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0727425A true JPH0727425A (en) | 1995-01-27 |
Family
ID=15504876
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3150808A Pending JPH0727425A (en) | 1991-02-25 | 1991-02-25 | Solar concentrator and thermal storage apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0727425A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100699275B1 (en) * | 2007-01-12 | 2007-03-23 | (주)신도컨설탄트 | Tunnel lighting apparatus using optical fiber |
JP2008134009A (en) * | 2006-11-29 | 2008-06-12 | Maruni Toryo Kk | Sunlight heat collector |
JP2009522607A (en) * | 2006-01-06 | 2009-06-11 | 玉晶光電(廈門)有限公司 | Solar energy optical collection system |
CN102975260A (en) * | 2011-09-05 | 2013-03-20 | 成都易生玄科技有限公司 | Method of gathering and transmitting sun rays to carbonize bamboo and wood |
JP2013535799A (en) * | 2010-08-13 | 2013-09-12 | スリーエム イノベイティブ プロパティズ カンパニー | Concentrating daylight concentrator |
KR101422170B1 (en) * | 2012-11-29 | 2014-07-22 | 윤지영 | Device for dollecting and distributing sunlight |
WO2015097629A1 (en) * | 2013-12-23 | 2015-07-02 | Johannes Jacobus Maria Schilder | Solar collector |
JP2019529961A (en) * | 2016-09-15 | 2019-10-17 | ロッドルヴァン インコーポレイテッドRodluvan Inc. | Method for conveying concentrated solar energy |
WO2020078589A1 (en) * | 2018-10-17 | 2020-04-23 | Orenko Limited | Sunlight collection and transportation system |
-
1991
- 1991-02-25 JP JP3150808A patent/JPH0727425A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009522607A (en) * | 2006-01-06 | 2009-06-11 | 玉晶光電(廈門)有限公司 | Solar energy optical collection system |
JP2008134009A (en) * | 2006-11-29 | 2008-06-12 | Maruni Toryo Kk | Sunlight heat collector |
KR100699275B1 (en) * | 2007-01-12 | 2007-03-23 | (주)신도컨설탄트 | Tunnel lighting apparatus using optical fiber |
JP2013535799A (en) * | 2010-08-13 | 2013-09-12 | スリーエム イノベイティブ プロパティズ カンパニー | Concentrating daylight concentrator |
CN102975260A (en) * | 2011-09-05 | 2013-03-20 | 成都易生玄科技有限公司 | Method of gathering and transmitting sun rays to carbonize bamboo and wood |
KR101422170B1 (en) * | 2012-11-29 | 2014-07-22 | 윤지영 | Device for dollecting and distributing sunlight |
WO2015097629A1 (en) * | 2013-12-23 | 2015-07-02 | Johannes Jacobus Maria Schilder | Solar collector |
US10408498B2 (en) | 2013-12-23 | 2019-09-10 | Johannes Jacobus Maria Schilder | Solar collector |
JP2019529961A (en) * | 2016-09-15 | 2019-10-17 | ロッドルヴァン インコーポレイテッドRodluvan Inc. | Method for conveying concentrated solar energy |
WO2020078589A1 (en) * | 2018-10-17 | 2020-04-23 | Orenko Limited | Sunlight collection and transportation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5829708B2 (en) | Solar energy conversion | |
US3841302A (en) | Solar energy system for a building | |
US4088116A (en) | Radiant energy collector | |
US4349245A (en) | Modular natural lighting system | |
US6691701B1 (en) | Modular solar radiation collection and distribution system | |
US4307711A (en) | Sun tracking solar energy collector system | |
CN2913955Y (en) | Heat self-dissipating solar energy accumulation type photovoltaic electricity generating system | |
CN101852499B (en) | Disc type focusing device capable of adjusting focusing ratio | |
US20100086775A1 (en) | Optical spectrally selective coatings | |
JP2003240356A (en) | Sun tracking system | |
CN101098112A (en) | Self-radiation solar energy accumulation type photovoltaic generator | |
WO2011023100A1 (en) | Solar photovoltaic device and system | |
CN101189480A (en) | Solar concentrator | |
JPS58502163A (en) | How to maximize solar radiation collection and use | |
GB1587132A (en) | Solar energy collection apparatus | |
JPH0247416Y2 (en) | ||
JPH0727425A (en) | Solar concentrator and thermal storage apparatus | |
WO2012073664A1 (en) | Solar thermal collector tube | |
JP2004205062A (en) | Light-concentrating solar water heater | |
RU2172903C1 (en) | Solar module with concentrator | |
WO1995006330A1 (en) | Non-tracking solar concentrator heat sink and housing system | |
WO2024081208A1 (en) | Solar concentrating roof-integrated multi-process energy supply system | |
RU2206837C2 (en) | Solar module with concentrator (alternatives) | |
CN2580363Y (en) | Basically fixed high power focusing solar heat collector | |
US4090493A (en) | Solar heater |