[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0726861B2 - Flow rate measuring device - Google Patents

Flow rate measuring device

Info

Publication number
JPH0726861B2
JPH0726861B2 JP27539089A JP27539089A JPH0726861B2 JP H0726861 B2 JPH0726861 B2 JP H0726861B2 JP 27539089 A JP27539089 A JP 27539089A JP 27539089 A JP27539089 A JP 27539089A JP H0726861 B2 JPH0726861 B2 JP H0726861B2
Authority
JP
Japan
Prior art keywords
sensor
error
value
flow rate
differential pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27539089A
Other languages
Japanese (ja)
Other versions
JPH03137419A (en
Inventor
鉄夫 秋山
弘司 中垣
斌 中安
秀昭 楢原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP27539089A priority Critical patent/JPH0726861B2/en
Publication of JPH03137419A publication Critical patent/JPH03137419A/en
Publication of JPH0726861B2 publication Critical patent/JPH0726861B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Feeding And Controlling Fuel (AREA)
  • Flow Control (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば加熱炉に供給する燃料、或は空気の管
路に適用する流量計測装置に関するものである。
TECHNICAL FIELD The present invention relates to a flow rate measuring device applied to, for example, a pipeline for fuel or air supplied to a heating furnace.

(従来の技術) 従来、この種の流量計測には、第7図に示すように、計
測対象である流体管路11に設けたオリフィス.ベンチュ
リ等の固定絞り機構12と、この固定絞り機構12の前後の
圧力差を測定する差圧計や差圧変換器等の差圧センサ13
と、差圧センサ13からの信号に基づいて流量を算出し、
出力する演算制御器14とを組合わせた装置を単独で用い
るのが通常である。
(Prior Art) Conventionally, in this type of flow rate measurement, as shown in FIG. 7, an orifice provided in the fluid pipe 11 to be measured is used. A fixed throttle mechanism 12 such as a venturi and a differential pressure sensor 13 such as a differential pressure gauge or a differential pressure converter for measuring the pressure difference between the fixed throttle mechanism 12 front and rear.
And calculate the flow rate based on the signal from the differential pressure sensor 13,
It is usual to use a single device in combination with the arithmetic controller 14 for output.

(発明が解決しようとする課題) 周知のように、固定絞り機構12の差圧は流量の自乗に比
例し、流量の低下につれて急激に低下するので、差圧セ
ンサ13に関する誤差による流量計測誤差は第8図(差圧
センサのゼロドリフトが±1%の場合)のように流量の
低下につれて急激に増大するという問題がある。
(Problem to be Solved by the Invention) As is well known, the differential pressure of the fixed throttle mechanism 12 is proportional to the square of the flow rate, and sharply decreases as the flow rate decreases. As shown in FIG. 8 (when the zero drift of the differential pressure sensor is ± 1%), there is a problem that the flow rate rapidly increases as the flow rate decreases.

一方、第9図は低流量領域における誤差を回避するよう
にした流量計測装置を示し、計測対象である流体管路21
に設けた可変絞り機構22と、可変絞り機構22の前後の差
圧を検出する差圧センサ23と、可変絞り機構22に取付け
た開度センサ24,可変絞り駆動機構25と、上記各センサ
からの信号に基づいて流量を算出し、出力する演算制御
器26とから形成してある。なお、第9図に示す例では、
上記算出した流量に基づいて可変絞り駆動機構25を介し
て可変絞り機構22の制御を行うようになっている。
On the other hand, FIG. 9 shows a flow rate measuring device for avoiding an error in a low flow rate region.
The variable throttle mechanism 22 provided in the, the differential pressure sensor 23 for detecting the differential pressure before and after the variable throttle mechanism 22, the opening sensor 24 attached to the variable throttle mechanism 22, the variable throttle drive mechanism 25, from the above sensors And the arithmetic controller 26 which calculates and outputs the flow rate based on the signal of (1). Incidentally, in the example shown in FIG.
The variable aperture mechanism 22 is controlled via the variable aperture drive mechanism 25 based on the calculated flow rate.

そして、この装置における流量計測誤差は、主として差
圧センサ23に関する誤差、および可変絞り機構22の開度
に関する誤差によるものであり、第10図(差圧センサの
ゼロドリフトが±1%、開度に関するゼロドリフトが±
0.5%の場合)のように、高流量領域においては固定絞
り機構12による流量計測法の流量計測誤差よりも可変絞
り機構22による流量計測誤差の方が大きくなるという問
題がある。
The flow rate measurement error in this device is mainly due to the error relating to the differential pressure sensor 23 and the error relating to the opening degree of the variable throttle mechanism 22, and is shown in FIG. 10 (zero drift of the differential pressure sensor is ± 1%, opening degree). Zero drift with respect to ±
In the high flow rate region, as in the case of 0.5%), there is a problem that the flow rate measurement error by the variable throttle mechanism 22 becomes larger than the flow rate measurement error by the flow rate measurement method by the fixed throttle mechanism 12.

一般に、差圧センサに関する誤差、および可変絞り機構
の開度に関する誤差の変動は常時生じており、これらの
センサに関する誤差による流量計測制御精度の低下に伴
なう燃料原単位の悪化や製品品質の低下等の損失を回避
するには、各センサに関する誤差の修正、いわゆる校正
を頻繁に行う必要がある。従来、これらの校正は装置の
稼動を停止し、基準器等を用いて作業者が行わざるを得
ないものであり、校正頻度の増大は稼動の停止による生
産の機会損失や校正作業労力等の増大となる。
Generally, the error related to the differential pressure sensor and the error related to the opening degree of the variable throttle mechanism constantly fluctuate, and the deterioration of the fuel consumption rate and the deterioration of the product quality due to the decrease of the flow rate measurement control accuracy due to the error related to these sensors. In order to avoid a loss such as a decrease, it is necessary to frequently perform error correction for each sensor, that is, so-called calibration. Conventionally, these calibrations require the operator to stop the operation of the device and use a standard device or the like, and an increase in the frequency of calibration causes a loss of production opportunities due to the suspension of the operation, calibration work labor, etc. It will increase.

したがって、従来、多くの場合、両者の経済的妥協点で
操業されている。
Therefore, in the past, in many cases, they have been operating at an economic compromise between them.

本発明は、斯る従来の問題点を課題としてなされたもの
で、稼動中に高頻度で自動的に校正を行う、つまり各セ
ンサに関する誤差を自動的に補正することによって、入
手容易な汎用の圧力センサを用いながら全流量領域にお
いて高精度で、簡易な流量計測装置を提供しようとする
ものである。
The present invention has been made to solve the above-mentioned conventional problems, and automatically calibrates at a high frequency during operation, that is, automatically corrects an error relating to each sensor, thereby making it easy to obtain a general purpose An object of the present invention is to provide a simple flow rate measuring device with high accuracy in the entire flow rate region while using a pressure sensor.

(課題を解決するための手段) 上記課題を解決するために、本発明は、計測対象である
流体管路に設けた固定絞り機構および可変絞り機構と、
この可変絞り機構に取付けた可変絞り駆動機構および開
度センサと、上記固定絞り機構および可変絞り機構のお
のおのの前後の差圧を検出する第1差圧センサ,第2差
圧センサと、上記固定絞り機構,第1差圧センサを含む
固定絞り系の第1差圧センサからの信号に基づく流量計
測値、および上記可変絞り機構,開度センサ,第2差圧
センサを含む可変絞り系の開度センサ、第2差圧センサ
からの信号に基づく流量計測値のおのおのを算出するた
めの演算式の差と、両演算式についての「誤差の波及の
一般式」に基づいた上記各センサに関する誤差による流
量計測誤差の近似式の差とを等しいと仮定した誤差近似
式に、適正な間隔の所要数の流量時における上記各セン
サの実測値を代入した連立方程式をたてて、上記各セン
サに関する誤差について解くことにより、誤差の近似値
を算出し、この誤差の近似値により上記各センサの実測
値の補正を行い、この補正後の値により流量計測値を算
出し、出力する演算制御器とから形成した。
(Means for Solving the Problems) In order to solve the above problems, the present invention relates to a fixed throttle mechanism and a variable throttle mechanism provided in a fluid pipe line to be measured,
A variable throttle drive mechanism and an opening sensor attached to the variable throttle mechanism, a first differential pressure sensor and a second differential pressure sensor for detecting a differential pressure before and after each of the fixed throttle mechanism and the variable throttle mechanism, and the fixed sensor. Flow rate measurement value based on a signal from the first differential pressure sensor of the fixed throttle system including the throttle mechanism and the first differential pressure sensor, and opening of the variable throttle system including the variable throttle mechanism, the opening sensor, and the second differential pressure sensor. Of the flow rate measurement values based on the signals from the velocity sensor and the second differential pressure sensor, and the error relating to each of the above sensors based on the "general expression of error spread" for both calculation equations. Approximately equal to the difference between the approximate expressions of the flow rate measurement error due to To the error By calculating the approximate value of the error, the measured value of each sensor is corrected by the approximate value of the error, and the flow rate measurement value is calculated from the corrected value and output from the arithmetic controller. Formed.

(実施例) 次に、本発明の一実施例を図面にしたがって説明する。(Embodiment) Next, an embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係る流量計測装置を示し、計測対象
である流体管路1に固定絞り機構2と、開度に対する流
量係数の関係が既知で、かつ開度センサ3、および可変
絞り駆動機構4を取付けた可変絞り機構5を設けるとと
もに、固定絞り機構2、および可変絞り機構5のおのお
のの前後の差圧を検出する第1,第2差圧センサ6,7が設
けてある。
FIG. 1 shows a flow rate measuring device according to the present invention, in which a fixed throttle mechanism 2 is provided in a fluid pipeline 1 to be measured, a relationship of a flow rate coefficient with respect to an opening is known, and an opening sensor 3 and a variable throttle are provided. The variable throttle mechanism 5 to which the drive mechanism 4 is attached is provided, and the fixed throttle mechanism 2 and the first and second differential pressure sensors 6 and 7 for detecting the differential pressure before and after each of the variable throttle mechanism 5 are provided.

また、第1,第2差圧センサ6,7からの信号、および開度
センサ3からの信号を入力する演算制御器8が設けてあ
る。この演算制御器8は、マイクロプロセッサ等を利用
して形成したもので、予め記憶させた固定絞り機構2の
流量係数、および可変絞り機構5の開度に対する流量係
数の数式、またはテーブルの形で表わした関係と、上記
各センサ信号とに基づいて固定絞り機構2,第1差圧セン
サ6を含む固定絞り系と可変絞り機構5,開度センサ3,第
2差圧センサ7を含む可変絞り系とによる両流量計測値
を算出するための演算式の差と、両演算式についての
「誤差の波及の一般式」に基づいた各センサに関する誤
差による流量計測誤差の近似式の差とを等しいと仮定し
た誤差近似式に、適正な間隔の所要数の流量時における
各センサの実測値を代入した連立方程式をたてて、各セ
ンサに関する誤差について解くことにより、その近似値
を算出する。さらに、この演算制御器8は、これらの近
似値が所定の値より大きくなった場合に警報信号を出
し、および/またはその近似値による当該センサの実測
値の補正を行い、この補正後の値により流量計測値を時
々刻々算出し、出力するものである。
Further, an arithmetic controller 8 for inputting signals from the first and second differential pressure sensors 6 and 7 and a signal from the opening sensor 3 is provided. This arithmetic controller 8 is formed by using a microprocessor or the like, and is stored in advance in the form of a mathematical expression of the flow coefficient of the fixed throttle mechanism 2 and the flow coefficient with respect to the opening of the variable throttle mechanism 5, or in the form of a table. A fixed throttle system including a fixed throttle mechanism 2 and a first differential pressure sensor 6 and a variable throttle mechanism including a variable throttle mechanism 5, an opening sensor 3 and a second differential pressure sensor 7 based on the relations shown above and the above sensor signals. The difference between the calculation formulas for calculating both flow rate measured values by the system and the difference between the approximate formulas for the flow rate measurement error due to the error related to each sensor based on the "general formula of the spread of error" for both calculation formulas are equal. The approximate value is calculated by forming a simultaneous equation by substituting the actual measurement value of each sensor at the required number of flows at an appropriate interval into the approximate error equation and solving the error relating to each sensor. Further, the arithmetic controller 8 issues an alarm signal when these approximate values become larger than a predetermined value, and / or corrects the actual measurement value of the sensor by the approximate value, and the corrected value The flow rate measurement value is calculated every moment and output.

なお、この演算制御器8は流量、または可変絞り機構5
の差圧、或は開度を所定の値にするための制御機能も備
え、開度制御信号を可変絞り駆動機構4に送り、可変絞
り機構5の開度操作を行う。
It should be noted that the arithmetic controller 8 is used for the flow rate or the variable throttle mechanism 5.
It also has a control function for setting the differential pressure or the opening to a predetermined value, and sends an opening control signal to the variable diaphragm drive mechanism 4 to operate the opening of the variable diaphragm mechanism 5.

そこで、まず各センサに関する誤差の近似値を算出する
方法について詳述する。
Therefore, first, a method of calculating the approximate value of the error for each sensor will be described in detail.

固定絞り機構2の流量係数をA、その差圧の実測値、つ
まり第1差圧センサ6および差圧に関わる誤差を含む差
圧値をPaとすると、その流量計測値Qaは次の(1)式で
表される。
Assuming that the flow coefficient of the fixed throttle mechanism 2 is A and the measured value of the differential pressure thereof, that is, the differential pressure value including the error related to the first differential pressure sensor 6 and the differential pressure is Pa, the measured flow rate value Qa is ) Is represented by the formula.

可変絞り機構5の流量係数を開度の関数f(s)、その
開度の実測値、つまり開度センサ3および開度に関わる
誤差を含む開度値をs、その差圧の実測値、つまり第2
差圧センサ7、および差圧測定に関わる誤差を含む差圧
値をPbとすると、その流量計測値Qbは次の(2)式で表
される。
The flow coefficient of the variable throttle mechanism 5 is a function f (s) of the opening, an actual measurement value of the opening, that is, an opening value including an error related to the opening sensor 3 and the opening s, an actual measurement value of the differential pressure thereof, That is, the second
Letting Pb be a differential pressure value including an error related to the differential pressure sensor 7 and differential pressure measurement, the flow rate measurement value Qb is expressed by the following equation (2).

この二つの流量計測値は各センサに関する誤差により、
偶然の一致を除いて一般的に差を生じる。
These two flow rate measurement values are due to the error related to each sensor,
Except for coincidence, it generally makes a difference.

ここで、この(1)式の右辺と(2)式の右辺との差に
ついて、周知の「誤差の波及の一般式」に基づく近似式
を求めると次の(3)式となる。
Here, an approximate expression based on the well-known “general expression of error propagation” is obtained for the difference between the right side of the expression (1) and the right side of the expression (2), and the following expression (3) is obtained.

この(3)式は上記の(2)式の右辺から(1)式の右
辺を減じた差の近似式であるので、両者を等しいと仮定
した次の(4)式を、各センサに関する誤差の近似値を
算出するための基本式とし、誤差近似式と仮称する。
Since the expression (3) is an approximate expression of a difference obtained by subtracting the right side of the expression (1) from the right side of the expression (2), the following expression (4), which is assumed to be equal to each other, is calculated by using the following expression (4). Is a basic formula for calculating an approximate value of, and is tentatively called an error approximate formula.

この(4)式において可変絞り機構5の流量係数の開度
の関数f(s)および固定絞り機構2の流量係数Aは既
知であるので、(4)式に適正な間隔、例えば最大流量
の5%毎の、所要数、つまり未知数の個数であるセンサ
数と同数(本実施例では三つ)の流量時における各セン
サによる実測値を代入した所要数の式をたてて連立1次
方程式とし、各センサに関する誤差(δS,δPb,δPa)
を未知数として、周知の方法、例えばガウスの消去法に
より、各センサに関する誤差の近似値を求める。
Since the function f (s) of the opening of the flow coefficient of the variable throttle mechanism 5 and the flow coefficient A of the fixed throttle mechanism 2 in this equation (4) are known, the proper interval in the equation (4), for example, the maximum flow rate A system of simultaneous linear equations is created by formulating a required number for every 5%, that is, a required number obtained by substituting the actual measurement value of each sensor at the same number of flow rates (three in this embodiment) as the number of sensors, which is the number of unknowns. And error for each sensor (δS, δPb, δPa)
Is used as an unknown value, and an approximate value of the error for each sensor is obtained by a known method, for example, the Gaussian elimination method.

演算制御器8は、これらの近似値が所定の値より大きく
なった場合に警報信号を出し、および/またはその近似
値による当該センサによる実測値の補正を行い、この補
正後の値により流量計測値の算出を行う。
The arithmetic and control unit 8 issues an alarm signal when these approximate values become larger than a predetermined value, and / or corrects the actual measurement value by the sensor based on the approximate value, and measures the flow rate by the corrected value. Calculate the value.

次に、第2図にしたがって各センサによる実測値の取り
入れ、およびその記憶、ならびにそれらに関する誤差の
近似値の算出のための各センサによる実測値の選出ロジ
ックについて詳述する。
Next, the logic for selecting the actually measured value by each sensor for taking in and storing the actually measured value by each sensor and calculating the approximate value of the error relating to them will be described in detail with reference to FIG.

まず、予め所要流量領域の全域にわたって適正な間隔で
複数の設定流量値を定め(#2−1)、固定絞り系、ま
たは可変絞り系により得られた流量計測値を読み込み
(#2−2)、これがこの設定流量値と一致する毎に次
ステップに進み(#2−3)、各設定流量値に対応した
記憶領域に各センサの実測値を取り入れて(#2−
4)、記憶データの更新を行う(#2−5)。
First, a plurality of set flow rate values are determined in advance over the entire required flow rate region at appropriate intervals (# 2-1), and the flow rate measurement values obtained by the fixed throttle system or the variable throttle system are read (# 2-2). Every time this coincides with this set flow rate value, the process proceeds to the next step (# 2-3), and the measured value of each sensor is taken into the storage area corresponding to each set flow rate value (# 2-
4) The stored data is updated (# 2-5).

この各センサによる実測値の取り入れ、および記憶デー
タの更新が行われる毎に、更新が行われたものを含め、
それぞれ流量設定値の異なる最新の所要数の各センサの
実測値を選出し(#2−6)、これらを代入した誤差近
似式に基づく連立1次方程式により、各センサに関する
誤差の近似値の算出を行い(#2−7)、本演算は終了
し、この近似値に基づいて各センサによる実測値の補正
を行う。
Every time the measured value is taken in by each sensor and the stored data is updated, including the updated one,
The actual measured values of the latest required number of sensors with different flow rate setting values are selected (# 2-6), and the approximate value of the error for each sensor is calculated by a simultaneous linear equation based on the error approximate expression that substitutes these values. (# 2-7), this calculation ends, and the actual measurement value by each sensor is corrected based on this approximate value.

ここまで詳述した演算方法によれば、予め各センサの校
正が行われている等により、各センサに関する誤差が小
さく、例えば±1%以下であり、かつ所要流量領域が高
流量領域の限られた範囲、例えば最大流量の60〜80%の
範囲の場合には充分な精度、例えば±0.03%以下で各セ
ンサに関する誤差の近似値の算出が行えるので実用上充
分であるが、これらの誤差や流量領域が増すにつれて、
誤差近似式の近似に起因する各センサに関する誤差の近
似値の近似誤差が増大する。
According to the calculation method described in detail so far, since each sensor is calibrated in advance, the error related to each sensor is small, for example, ± 1% or less, and the required flow rate region is limited to the high flow rate region. In the range of 60 to 80% of the maximum flow rate, it is practically sufficient because the approximate value of the error for each sensor can be calculated with sufficient accuracy, for example, ± 0.03% or less. As the flow area increases,
The approximation error of the approximate value of the error for each sensor due to the approximation of the error approximation formula increases.

この近似誤差を充分小さくする演算方法について、次に
第3図にしたがって詳述する。
A calculation method for sufficiently reducing this approximation error will be described in detail with reference to FIG.

それぞれ設定流量値の異なる所要数の1組の各センサに
よる実測値を読込み(#3−1)、これについて、各セ
ンサに関する誤差の近似値を算出し(#3−2)、この
近似値と前回の近似値(最初は0)との差が所定の値よ
り小さいか否か判断し(#3−3)、小さくない場合は
その近似値の積算値によって各センサの実測値の修正を
行い(#3−5,#3−6)、修正された各センサの実測
値についての上記と同様の近似値の算出を行う(#3−
2)。近似値の算出、およびその積算、ならびに実測値
の修正の繰り返しを算出された近似値および/またはそ
の近似値と前回の近似値との差が所定の値より小さくな
るまで続ける。即ち、上記の繰り返しの最終において、
誤差近似式の近似に起因する各センサに関する誤差の近
似値の近似誤差が充分小さい値になるまで反復収束計算
を行うものであり、その収束結果の近似値の積算値は修
正前の各センサの実測値に含まれる各センサに関する誤
差の近似誤差が充分小さい近似値であるので、この積算
値により実測値の補正を行う(#3−4)。
The measured values by a required number of each set of sensors having different set flow rate values are read (# 3-1), and an approximate value of the error for each sensor is calculated (# 3-2). It is judged whether or not the difference from the previous approximate value (0 at the beginning) is smaller than a predetermined value (# 3-3). If not, the measured value of each sensor is corrected by the integrated value of the approximate values. (# 3-5, # 3-6), the same approximate value as above is calculated for the corrected actual measurement value of each sensor (# 3-
2). The calculation of the approximate value, the integration thereof, and the repetition of the correction of the measured value are repeated until the difference between the calculated approximate value and / or its approximate value and the previous approximate value becomes smaller than a predetermined value. That is, at the end of the above iteration,
Iterative convergence calculation is performed until the approximation error of the approximate value of the error for each sensor due to the approximation of the error approximation formula becomes a sufficiently small value, and the integrated value of the approximate value of the convergence result is the value of each sensor before correction. Since the approximation error of the error concerning each sensor included in the actual measurement value is a sufficiently small approximation value, the actual measurement value is corrected by this integrated value (# 3-4).

さらに、各センサに関する誤差が大きくなる場合、例え
ば製造直後の校正の大部分を自動校正に負わせて簡略化
する場合、或は所要流量領域が広くなる場合、例えばタ
ーンダウンレシオの大きい燃焼制御に使用する場合に
は、誤差近似式の近似に起因する各センサに関する誤差
の近似値の近似誤差が過大となり、上記のような反復計
算において発散するか、或は収束しないことがある。
Furthermore, when the error related to each sensor becomes large, for example, when most of the calibration immediately after manufacturing is simplified by applying automatic calibration, or when the required flow rate region becomes wide, for example, in combustion control with a large turndown ratio, When used, the approximation error of the approximation value of the error relating to each sensor due to the approximation of the error approximation formula becomes excessive and may diverge or not converge in the above-described iterative calculation.

この発散等を防止する演算方法について、次に第4図に
したがって詳述する。
A calculation method for preventing this divergence will be described in detail next with reference to FIG.

上記のような反復収束計算において、それぞれ設定流量
値の異なる所要数の一組の各センサによる実測値を読込
み(#4−1)、誤差近似式に基づく連立1次方程式に
よって誤差の近似値を算出し(#4−2)、算出した各
センサに関する誤差の近似値に1以下の係数、例えば0.
5を乗じて(#4−3)、および/またはこれらの近似
値が所定の値、例えば10%より大きい場合には所定の値
に制限して(#4−7)、その積算(#4−8)、およ
びその積算値による実測値の修正(#4−9)を繰り返
す反復収束計算を行い、誤差の近似誤差が充分小さい場
合には(#4−5)、上記積算値により実測値の補正を
行う(#4−6)。
In the iterative convergence calculation as described above, the actual measurement values by a required number of sets of sensors having different set flow rate values are read (# 4-1), and the approximate value of the error is calculated by the simultaneous linear equations based on the error approximation formula. Calculated (# 4-2), and the calculated error approximation value for each sensor has a coefficient of 1 or less, for example, 0.
Multiply by 5 (# 4-3), and / or if these approximate values are greater than a predetermined value, for example, 10%, the value is limited to a predetermined value (# 4-7), and the integrated value (# 4 -8) and iterative convergence calculation of repeating the correction (# 4-9) of the measured value by the integrated value, and when the approximation error of the error is sufficiently small (# 4-5), the measured value is calculated by the integrated value. Is corrected (# 4-6).

ここまでに詳述した演算方法によれば、各センサによる
実測値、および各センサに関する誤差の変動が、補正の
頻度に比べて緩やかな場合は問題ないが、これらの変動
が頻繁(短周期)な場合には、毎回の補正値の変動によ
る流量計測値の急変を生じ、特に流量計測値を制御に使
用する場合には制御の不安定化による制御精度の低下や
可動部の寿命短縮等の不具合を生じることが多い。
According to the calculation method described in detail so far, there is no problem if the actual measurement value by each sensor and the fluctuation of the error related to each sensor are more gradual than the frequency of correction, but these fluctuations are frequent (short cycle). In this case, the flow rate measurement value suddenly changes due to the fluctuation of the correction value every time.In particular, when the flow rate measurement value is used for control, the control accuracy becomes unstable due to instability of the control and the life of the moving part is shortened. It often causes problems.

この流量計測値の急変を回避する演算方法について、次
に第5図にしたがって詳述する。
A calculation method for avoiding the sudden change in the flow rate measurement value will be described in detail with reference to FIG.

計測制御対象流体はポンプ・ブロア等による脈動や系統
内の使用量の変動による圧力変動等、極めて短周期の変
動が定常的にあることが多く、これらによる各絞り機構
の差圧の変動、つまり各差圧センサによる実測値の変動
が大きいことが多い。
The fluid to be measured and controlled often has steady short-term fluctuations such as pulsations due to pumps and blowers, pressure fluctuations due to fluctuations in the amount used in the system, etc. In many cases, the actual measurement value of each differential pressure sensor varies greatly.

この種の変動による補正値の変動を抑制する方法の第1
は、各センサの誤差の近似値を算出するための各センサ
の実測値の取り入れに先だって、各センサによる実測値
を適正な時定数の移動平均化(指数平滑ともいう高周波
成分のフィルタリング)により短周期変動を充分小さく
しておくことで(#5−1)、平均化した各センサ値を
読込み(#5−2)、これに基づいて誤差の近似値およ
び補正値を算出する(#5−3)。
The first method of suppressing the variation of the correction value due to this type of variation
Is a moving average of the measured values of each sensor (filtering of high-frequency components, also known as exponential smoothing) to reduce the actual measured value of each sensor before calculating the approximate value of the error of each sensor. By keeping the periodic fluctuation small enough (# 5-1), the averaged sensor values are read (# 5-2), and the approximate value and the correction value of the error are calculated based on this (# 5-). 3).

各センサに関する誤差の変動は各センサによる実測値の
変動となっているので、上記のような実測値の変動の平
滑化によってかなり抑制できるが、必ずしも万全ではな
い。
Since the fluctuation of the error relating to each sensor is the fluctuation of the actual measurement value by each sensor, it can be considerably suppressed by smoothing the fluctuation of the actual measurement value as described above, but it is not always perfect.

補正値の変動による不具合が残る場合には、補正値の変
動を抑制する方法の第2としての算出された補正値の移
動平均化を併用して(#5−4)、各センサによる実測
値の補正を行う(#5−5)。
If the problem due to the fluctuation of the correction value remains, the moving average of the calculated correction value as the second method of suppressing the fluctuation of the correction value is also used (# 5-4), and the measured value by each sensor is used. Is corrected (# 5-5).

なお、上記のような実測値の変動が軽微な場合には上記
の補正値の移動平均化のみで充分な場合もある。
When the fluctuation of the actual measurement value is slight as described above, the moving average of the correction value may be sufficient.

ここまでに詳述した演算方法によれば、各センサに関す
る誤差が全測定範囲にわたって一定の値が加わる(また
は減ずる)いわゆるゼロドリフトが主であり、他の誤差
が無視できる場合には充分な誤差補正を行えるが、測定
値に比例して増大するいわゆる比例誤差や各センサ特有
の器差(予め補正を行っていない場合)が無視できない
場合には、測定値に対応した補正値を得る必要がある。
According to the calculation method described in detail up to this point, the error related to each sensor is mainly a so-called zero drift in which a constant value is added (or reduced) over the entire measurement range, and a sufficient error is obtained when other errors can be ignored. Correction can be performed, but if so-called proportional error that increases in proportion to the measured value and instrumental error peculiar to each sensor (when not corrected in advance) cannot be ignored, it is necessary to obtain the corrected value corresponding to the measured value. is there.

この測定値に対応した補正値を得る演算方法について、
次に第6図にしたがって詳述する。
Regarding the calculation method to obtain the correction value corresponding to this measured value,
Next, a detailed description will be given according to FIG.

各センサに関する誤差の近似値の算出にはセンサ数、つ
まり未知数と同数の適正な間隔の流量値群における各セ
ンサの実測値群が必要であり、誤差近似式に基づく連立
方程式による各センサに関する誤差の近似値の算出はそ
れらの誤差がその群の実測値において同一値であること
を前提としたものであるので、異なる場合には、それら
の誤差が同一であると見なしたことによる、見なし誤差
が算出した近似値に含まれるとともに、その近似値に対
応する実測値は不確定となる。
In order to calculate the approximate value of the error for each sensor, it is necessary to have the number of sensors, that is, the actual measurement value group of each sensor in the flow rate group of the same number as the unknown number, and the error for each sensor by the simultaneous equations based on the error approximation formula. Since the calculation of the approximate value of is based on the assumption that those errors are the same in the actual measurement values of the group, if they differ, it is considered that those errors are the same. The error is included in the calculated approximate value, and the actual measurement value corresponding to the approximate value becomes uncertain.

そこで、算出された近似値を、とりあえずその実測値群
の中央値に対応したものと仮定して、逐次、所要測定領
域全域にわたる補正値の数式またはデータテーブルを作
成し、これによる補正を行った実測値群による近似値の
算出等(#6−1)と、その近似値による補正値の数式
等の修正(#6−2)を順次繰り返すことにより、各セ
ンサによる実測値の補正を行って(#6−3)、次第に
見なし誤差の低減と対応する実測値の確定化を図るもの
である。
Therefore, assuming that the calculated approximate value corresponds to the median value of the measured value group for the time being, a formula or data table of the correction values over the entire required measurement region was sequentially created, and the correction was performed by this. Correction of the measured value by each sensor is performed by sequentially repeating the calculation of the approximate value by the measured value group (# 6-1) and the correction of the formula of the correction value by the approximate value (# 6-2). (# 6-3) is intended to gradually reduce the assumed error and establish the corresponding measured value.

(発明の効果) 以上の説明より明らかなように、本発明によれば、計測
対象である流体管路に設けた固定絞り機構および可変絞
り機構と、この可変絞り機構に取付けた可変絞り駆動機
構および開度センサと、上記固定絞り機構および可変絞
り機構のおのおのの前後の差圧を検出する第1差圧セン
サ,第2差圧センサと、上記固定絞り機構,第1差圧セ
ンサを含む固定絞り系の第1差圧センサからの信号に基
づく流量計測値、および上記可変絞り機構,開度セン
サ,第2差圧センサを含む可変絞り系の開度センサ、第
2差圧センサからの信号に基づく流量計測値のおのおの
を算出するための演算式の差と、両演算式についての
「誤差の波及の一般式」に基づいた上記各センサに関す
る誤差による流量計測誤差の近似式の差とを等しいと仮
定した誤差近似式に、適正な間隔の所要数の流量時にお
ける上記各センサの実測値を代入した連立方程式をたて
て、上記各センサに関する誤差について解くことによ
り、誤差の近似値を算出し、この誤差の近似値により上
記各センサの実測値の補正を行い、この補正後の値によ
り流量計測値を算出し、出力する演算制御器とから形成
してある。
(Effects of the Invention) As is apparent from the above description, according to the present invention, the fixed throttle mechanism and the variable throttle mechanism provided in the fluid pipe to be measured, and the variable throttle drive mechanism attached to the variable throttle mechanism. And an opening sensor, a first differential pressure sensor and a second differential pressure sensor for detecting a differential pressure before and after each of the fixed throttle mechanism and the variable throttle mechanism, and a fixed throttle mechanism including the fixed differential mechanism and the first differential pressure sensor. Flow rate measurement value based on the signal from the first differential pressure sensor of the throttle system, and the signal from the second throttle sensor of the variable throttle system including the variable throttle mechanism, the opening sensor, and the second differential pressure sensor. The difference between the calculation formulas for calculating each of the flow rate measurement values based on the above, and the difference in the approximate formula of the flow rate measurement error due to the error related to each sensor based on the "general formula of the spread of error" for both calculation formulas. Assumed equal An approximate value of the error is calculated by forming a simultaneous equation in which the measured values of the respective sensors at the required number of flows at appropriate intervals are substituted into the error approximate expression and solving the error regarding the respective sensors. The measurement value of each sensor is corrected based on the approximate value of the error, and the flow rate measurement value is calculated based on the corrected value, and the arithmetic controller is provided.

即ち、固定絞り機構と可変絞り機構による流量計測手段
の組合わせ・活用により、稼動中に自動的に各センサの
誤差の補正を行うものであり、入手容易な汎用センサを
用いて高精度の流量計測装置を得ることができるととも
に、校正作業を大幅に軽減することができるという効果
を奏する。
That is, the error of each sensor is automatically corrected during operation by combining and utilizing the flow rate measuring means with the fixed throttle mechanism and the variable throttle mechanism, and a highly accurate flow rate is obtained using an easily available general-purpose sensor. It is possible to obtain the measuring device and to significantly reduce the calibration work.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る流量計測装置の系統図、第2図〜
第6図は各センサの実測値の読込み、各センサの誤差の
近似値の算出,補正等の手順を示すフローチャート、第
7図は従来の固定絞り機構を利用した流量計測装置の系
統図、第8図は第7図における差圧センサのゼロドリフ
トによる流量計測誤差と流量との関係を示す図、第9図
は可変絞り機構を利用した流量計測装置の系統図、第10
図は第9図における差圧センサのゼロドリフト、および
開度センサのゼロドリフトによる流量計測誤差と流量と
の関係を示す図である。 1…流体管路、2…固定絞り機構、3…開度センサ、5
…可変絞り機構、6,7…第1,第2差圧センサ、8…演算
制御器。
FIG. 1 is a system diagram of a flow rate measuring device according to the present invention, and FIGS.
FIG. 6 is a flow chart showing the procedure of reading the actual measurement value of each sensor, calculating the approximate value of the error of each sensor, correcting, etc. FIG. 7 is a system diagram of a flow rate measuring device using a conventional fixed throttle mechanism, 8 is a diagram showing the relationship between flow rate measurement error and flow rate due to zero drift of the differential pressure sensor in FIG. 7, FIG. 9 is a system diagram of a flow rate measuring device using a variable throttle mechanism, and FIG.
The figure is a diagram showing the relationship between the flow rate measurement error and the flow rate due to the zero drift of the differential pressure sensor and the zero drift of the opening sensor in FIG. 1 ... Fluid line, 2 ... Fixed throttle mechanism, 3 ... Opening sensor, 5
... Variable throttle mechanism, 6, 7 ... First and second differential pressure sensor, 8 ... Arithmetic controller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中安 斌 大阪府大阪市西区京町堀2丁目4番7号 中外プロックス株式会社内 (72)発明者 楢原 秀昭 大阪府大阪市西区京町堀2丁目4番7号 中外プロックス株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akira Nakayasu 2-4-7 Kyomachibori, Nishi-ku, Osaka City, Osaka Prefecture Chugai Prox Co., Ltd. (72) Hideaki Narahara 2-4-4 Kyomachibori, Nishi-ku, Osaka City, Osaka Prefecture No. 7 inside Chugai Prox Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】計測対象である流体管路に設けた固定絞り
機構および可変絞り機構と、この可変絞り機構に取付け
た可変絞り駆動機構および開度センサと、上記固定絞り
機構および可変絞り機構のおのおのの前後の差圧を検出
する第1差圧センサ,第2差圧センサと、上記固定絞り
機構,第1差圧センサを含む固定絞り系の第1差圧セン
サからの信号に基づく流量計測値、および上記可変絞り
機構,開度センサ,第2差圧センサを含む可変絞り系の
開度センサ、第2差圧センサからの信号に基づく流量計
測値のおのおのを算出するための演算式の差と、両演算
式についての「誤差の波及の一般式」に基づいた上記各
センサに関する誤差による流量計測誤差の近似式の差と
を等しいと仮定した誤差近似式に、適正な間隔の所要数
の流量時における上記各センサの実測値を代入した連立
方程式をたてて、上記各センサに関する誤差について解
くことにより、誤差の近似値を算出し、この誤差の近似
値により上記各センサの実測値の補正を行い、この補正
後の値により流量計測値を算出し、出力する演算制御器
とからなることを特徴とする流量計測装置。
1. A fixed throttle mechanism and a variable throttle mechanism provided in a fluid pipe to be measured, a variable throttle drive mechanism and an opening sensor attached to the variable throttle mechanism, and the fixed throttle mechanism and the variable throttle mechanism. Flow rate measurement based on signals from the first differential pressure sensor and the second differential pressure sensor that detect the differential pressure before and after each, and the fixed throttle mechanism and the first differential pressure sensor of the fixed throttle system including the first differential pressure sensor. Of the flow rate measurement value based on the signal from the variable throttle mechanism including the variable throttle mechanism, the opening sensor, and the second differential pressure sensor, and the signal from the second differential pressure sensor. In the error approximation formula, which is assumed to be equal to the difference, the difference in the approximate formula of the flow rate measurement error due to the error related to each sensor based on the "general formula of the spread of error" for both arithmetic expressions At the flow rate of The approximate value of the error is calculated by forming a simultaneous equation in which the measured value of each sensor is substituted and solving the error related to each sensor, and the measured value of each sensor is corrected by the approximate value of this error. A flow rate measuring device comprising: an arithmetic controller that calculates and outputs a flow rate measurement value based on the corrected value.
JP27539089A 1989-10-23 1989-10-23 Flow rate measuring device Expired - Lifetime JPH0726861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27539089A JPH0726861B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27539089A JPH0726861B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Publications (2)

Publication Number Publication Date
JPH03137419A JPH03137419A (en) 1991-06-12
JPH0726861B2 true JPH0726861B2 (en) 1995-03-29

Family

ID=17554829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27539089A Expired - Lifetime JPH0726861B2 (en) 1989-10-23 1989-10-23 Flow rate measuring device

Country Status (1)

Country Link
JP (1) JPH0726861B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142478A (en) * 2012-01-06 2013-07-22 Toho Gas Co Ltd Combustion control device for gas burner
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604060B2 (en) * 1998-07-17 2004-12-22 株式会社堀場製作所 Gas flow controller for dilution
JP3604059B2 (en) * 1998-07-17 2004-12-22 株式会社堀場製作所 Partial dilution type gas dilution system
US7073392B2 (en) 2002-07-19 2006-07-11 Celerity, Inc. Methods and apparatus for pressure compensation in a mass flow controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142478A (en) * 2012-01-06 2013-07-22 Toho Gas Co Ltd Combustion control device for gas burner
JP2016020791A (en) * 2014-07-15 2016-02-04 三浦工業株式会社 Boiler system

Also Published As

Publication number Publication date
JPH03137419A (en) 1991-06-12

Similar Documents

Publication Publication Date Title
RU2209395C2 (en) Method of calibration of system of measurement of liquid flow pressure difference
CN100425955C (en) System and method for mass flow detection device calibration
EP0715710B1 (en) Differential current thermal mass flow transducer
JP2793869B2 (en) How to determine exhaust gas temperature or sensor temperature
US5305597A (en) Gas turbine fuel control
JP2004020524A (en) Differential pressure transmitter
JP3959038B2 (en) Method for calculating atmospheric pressure based on the pressure in the intake line of an internal combustion engine
JPH0726861B2 (en) Flow rate measuring device
US6996485B2 (en) Nullification of measurement error, particularly within a dual turbine flow meter used in a fuel dispenser
US5050560A (en) Setting system (open-loop and/or closed-loop control system) for motor vehicles
CN111238591A (en) Temperature and pressure compensation checking method and system for gas metering system and storage medium
JPS63309821A (en) Control of differential distribution scale especially for bulk load and differential distribution scale for executing the same
US5668313A (en) Method for correcting the output signal of an air mass meter
JP3989629B2 (en) Flow inspection device
US6167690B1 (en) Control system for controlling at least one variable of a process as well as a use of such a control system
US5929314A (en) Method and apparatus for volume determination
US6990856B2 (en) Method and apparatus for determining mass of engine intake air with reversion compensation
US4684886A (en) Automatic equalizer
GB2364398A (en) Compensating for systematic errors in an air/fuel control system
JPS61737A (en) Automatic calibration gas introduction time decision mechanism for continuous analyzer
JPH081330B2 (en) Temperature controller for continuous fluid heating device
JPH0523369B2 (en)
CN113739881B (en) Temperature drift resistant weighing sensor signal measuring circuit
US20230279816A1 (en) Method and Apparatus for Controlling Fuel Flow into an Aircraft Engine
JPS5926269Y2 (en) Pressure flow rate automatic measuring device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 14

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100329

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100329

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100329