[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07252109A - Antimicrobial far infrared radiating material and radiator - Google Patents

Antimicrobial far infrared radiating material and radiator

Info

Publication number
JPH07252109A
JPH07252109A JP4437394A JP4437394A JPH07252109A JP H07252109 A JPH07252109 A JP H07252109A JP 4437394 A JP4437394 A JP 4437394A JP 4437394 A JP4437394 A JP 4437394A JP H07252109 A JPH07252109 A JP H07252109A
Authority
JP
Japan
Prior art keywords
antibacterial
far
metal
infrared
aluminum silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4437394A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和夫 里
Shigeo Sawazaki
栄夫 沢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kagaku Kogyo Co Ltd
Original Assignee
Asahi Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kagaku Kogyo Co Ltd filed Critical Asahi Kagaku Kogyo Co Ltd
Priority to JP4437394A priority Critical patent/JPH07252109A/en
Publication of JPH07252109A publication Critical patent/JPH07252109A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To obtain a radiating material, excellent in emissivity within a wider range of wavelength than that of a conventional far infrared radiating material and having antimicrobial properties together. CONSTITUTION:This antimicrobial far infrared radiating material comprises aluminum silicate and one or two or more metallic oxides selected from the group consisting of silver, copper and zinc. Furthermore, this antimicrobial far infrared radiator contains the radiating material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、遠赤外線を高い放射率
で放射しかつ抗菌力を有する抗菌性遠赤外線放射材およ
びそれを含有して成る抗菌性遠赤外線放射体に関する。
さらに詳しくは、加熱、暖房、乾燥、食品加工、除菌、
殺菌、温熱治療等の分野で利用し得る抗菌性遠赤外線放
射材および放射体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antibacterial far infrared emitting material which emits far infrared rays at a high emissivity and has an antibacterial activity, and an antibacterial far infrared emitting body containing the same.
More specifically, heating, heating, drying, food processing, sterilization,
The present invention relates to an antibacterial far-infrared radiation material and a radiator that can be used in fields such as sterilization and thermotherapy.

【0002】[0002]

【従来の技術】遠赤外線とは、一般に波長が4〜40μ
m程度の範囲の赤外線として定義され、物体に対しての
浸透性が優れているので、様々な態様の加熱に応用され
ている。さらに、常温付近での遠赤外線は生物体を構成
する有機化合物と振動が共鳴し、活性化するため、生物
の健康状態に好影響を与えると考えられ、最近注目され
ているところである。前者の加熱利用は、主として広範
囲な用途に用いられる加熱機、乾燥機等に見られ、また
後者の非加熱利用は、主に人体と接触する衣料素材とし
てである。
Far infrared rays generally have a wavelength of 4 to 40 μm.
It is defined as infrared rays in the range of about m and has excellent penetrability to objects, so it is applied to various modes of heating. Further, far infrared rays near room temperature are considered to have a positive effect on the health condition of living organisms because vibrations resonate with the organic compounds that compose living organisms and activate the organisms, which has recently been drawing attention. The former use of heating is found mainly in heaters and dryers used in a wide range of applications, and the latter non-heating use is mainly as a clothing material that comes into contact with the human body.

【0003】従来、セラミック材料を素材とした遠赤外
線放射体は、数々知られており、たとえばジルコニア、
チタニア、アルミナ、その他遷移金属元素酸化物系セラ
ミックスを利用したヒーターはすでに実用化されてい
る。
Many far-infrared radiators made of a ceramic material have been known, for example, zirconia,
Heaters using titania, alumina, and other transition metal element oxide-based ceramics have already been put into practical use.

【0004】遠赤外線放射セラミックス素材の製造に用
いられる原料物質の具体例として、以下の特許文献に開
示される酸化物が挙げられる。
Specific examples of the raw material used for producing the far infrared radiation ceramic material include oxides disclosed in the following patent documents.

【0005】1.Al23、SiO2 (特公昭53−4
4928号) 2.ZrO2、Y23、La23、CeO2 (特開昭5
7−67078号) 3.Fe23、MgO、BaO (特開昭61−232
68号) 4.SnO2、Sb23 (特開昭61−1755号) 5.TiO2、CuO (特開昭60−251322号) しかしながら、シリカやアルミナは安価であるものの、
その遠赤外線放射率が低く、充分な効果を発揮し得な
い。
1. Al 2 O 3 , SiO 2 (Japanese Patent Publication No. 53-4
4928) 2. ZrO 2, Y 2 O 3, La 2 O 3, CeO 2 ( JP 5
7-67078) 3. Fe 2 O 3 , MgO, BaO (JP-A-61-232
No. 68) 4. SnO 2, Sb 2 O 3 (JP 61-1755) 5. TiO 2 and CuO (JP-A-60-251322) However, although silica and alumina are inexpensive,
Its far-infrared emissivity is low and it cannot exert a sufficient effect.

【0006】また、これら従来の遠赤外線放射材は、い
ずれも高温での乾燥または焼結等の処理が必要であり、
それらの製造は工業的に有利なものと言えなかった。加
えて、従来技術では遠赤外線の波長領域において、黒体
に近い放射率を有する素材はほとんど知られていない。
ここで言う「黒体」とは、物理学で汎用される概念で、
入射したあらゆる光を完全に吸収する理想的な物体であ
る。この黒体は、持っているエネルギーを放射する能力
があらゆる物質より大きく、黒体の放射率を基準とし
て、いろいろな物体の熱(あるいは光)の放射能力が比
較される。また、黒体は500℃以下の温度では赤外線
(0.75μm以上)だけを、200℃以下の温度では
遠赤外線だけを放射するとされている。たとえば、高田
紘一、“セラミックス”23巻、310〜321頁、1
988年を参照。
Further, all of these conventional far-infrared radiation materials require treatment such as drying or sintering at high temperature,
Their production was not industrially advantageous. In addition, in the prior art, there is almost no known material having an emissivity close to that of a black body in the far infrared wavelength range.
"Black body" here is a concept commonly used in physics,
It is an ideal object that completely absorbs all incident light. This black body has a greater ability to radiate energy than any other substance, and the radiative ability of heat (or light) from various objects is compared based on the emissivity of a black body. Further, it is said that a black body emits only infrared rays (0.75 μm or more) at a temperature of 500 ° C. or lower, and only far infrared rays at a temperature of 200 ° C. or lower. For example, Koichi Takada, “Ceramics”, Volume 23, pp. 310-321,
See 988.

【0007】一方、銀、銅、亜鉛等の重金属(またはイ
オン)が抗菌、抗真菌作用を有することは公知であり、
さらにこれらの重金属化合物を活性炭、アルミナ、シリ
カゲル等の吸着物質に吸着し殺菌、除菌目的に利用する
ことも知られている。
On the other hand, it is known that heavy metals (or ions) such as silver, copper and zinc have antibacterial and antifungal actions,
Further, it is also known that these heavy metal compounds are adsorbed on an adsorbing substance such as activated carbon, alumina and silica gel and used for sterilization and disinfection purposes.

【0008】また、抗菌性重金属イオンの保持量を自在
に変えることができる抗菌性珪酸アルミニウム組成物お
よびその製法が本出願人による特開平4−77311号
に開示されている。しかしながら、この抗菌性珪酸アル
ミニウム組成物が遠赤外線放射特性を有することは知ら
れていなかった。
An antibacterial aluminum silicate composition capable of freely changing the amount of antibacterial heavy metal ions retained and a method for producing the same are disclosed in Japanese Patent Application Laid-Open No. 4-77311 by the present applicant. However, it has not been known that the antibacterial aluminum silicate composition has far infrared radiation characteristics.

【0009】セラミック材料を住宅建材、健康製品(衣
料を含む)に使用する場合、遠赤外線放射性と抗菌性を
併せて持つことが望ましいが、両者とも兼ね備えた満足
すべき材料は、現在見当たらない。
When ceramic materials are used for housing construction materials and health products (including clothing), it is desirable to have both far-infrared radiation and antibacterial properties, but at present, no satisfactory material having both of them has been found.

【0010】[0010]

【発明が解決しようとする課題】従来技術に鑑み、本発
明の目的は、比較的安価で、広範囲の波長域で遠赤外線
放射率の高い(すなわち、放射率の波長依存性の低い)
優れた放射特性を有しかつ優れた抗菌性を兼ね備えた抗
菌性遠赤外線放射材および放射体を提供することであ
る。
In view of the prior art, it is an object of the present invention to be relatively inexpensive and have a high far-infrared emissivity in a wide wavelength range (that is, the emissivity has a low wavelength dependence).
An object is to provide an antibacterial far-infrared radiation material and a radiator which have excellent radiation properties and also have excellent antibacterial properties.

【0011】[0011]

【課題を解決するための手段】前記の目的は、鋭意研究
の結果、珪酸アルミニウム塩および特定の金属酸化物か
らなる珪酸アルミニウム組成物が望ましい抗菌特性遠赤
外線放射特性を有することを知見して、達成することが
できた。
As a result of intensive studies, it was found that an aluminum silicate composition comprising an aluminum silicate salt and a specific metal oxide has desirable antibacterial properties and far infrared radiation properties. I was able to achieve it.

【0012】本発明は、珪酸アルミニウム塩および銀、
銅、そして亜鉛から成る群より選ばれる1種または2種
以上の金属酸化物から成る抗菌性遠赤外線放射材をその
要旨とするものである。
The present invention is directed to aluminum silicate salts and silver,
The gist is an antibacterial far-infrared radiation material composed of one or more metal oxides selected from the group consisting of copper and zinc.

【0013】本発明によれば、珪酸アルミニウム塩およ
び銀、銅、そして亜鉛から成る群より選ばれる1種また
は2種以上の金属酸化物を同時粉砕して得られる抗菌性
遠赤外線放射材も提供される。
According to the present invention, there is also provided an antibacterial far-infrared emitting material obtained by simultaneously pulverizing aluminum silicate and one or more metal oxides selected from the group consisting of silver, copper and zinc. To be done.

【0014】さらに、本発明によれば、アルミニウム塩
(A)、銀、銅、そして亜鉛から成る群より選ばれる1
種または2種以上の金属または金属塩(B)および珪酸
アルカリ(C)の3者を同時に中和反応させて得られる
該金属珪酸アルミニウム塩から成る抗菌性遠赤外線放射
材も提供される。
Further according to the invention, 1 selected from the group consisting of aluminum salt (A), silver, copper and zinc.
There is also provided an antibacterial far-infrared emitting material comprising one or more metals or metal salts (B) and an alkali metal silicate (C) which are simultaneously neutralized to obtain the metal aluminum silicate.

【0015】加えて、本発明によれば、イオン交換性珪
酸アルミニウム塩(D)を、銀、銅、そして亜鉛から成
る群より選ばれる1種または2種以上の金属塩の水溶液
(E)に添加し、イオン交換させて得られる該金属珪酸
アルミニウム塩からなる抗菌性遠赤外線放射材も提供さ
れる。
In addition, according to the present invention, the ion-exchangeable aluminum silicate salt (D) is made into an aqueous solution (E) of one or more metal salts selected from the group consisting of silver, copper and zinc. There is also provided an antibacterial far-infrared emitting material comprising the metal aluminum silicate obtained by adding and ion-exchanging.

【0016】さらに加えて、本発明によれば、珪酸アル
ミニウム塩および銀、銅、そして亜鉛から成る群より選
ばれる1種または2種以上の金属酸化物から成る抗菌性
遠赤外線放射材を骨材として、結合剤を添加し、成形し
て成ることを特徴とする抗菌性遠赤外線放射体も提供さ
れる。
Furthermore, according to the present invention, an antibacterial far-infrared radiation material comprising an aluminum silicate salt and one or more metal oxides selected from the group consisting of silver, copper and zinc is used as an aggregate. Also provided is an antibacterial far-infrared radiator characterized by being formed by adding a binder.

【0017】以下に、本発明を詳細に説明する。The present invention will be described in detail below.

【0018】本発明の抗菌性遠赤外線放射材の製法は、
大別して3方法に分けられる。
The method for producing the antibacterial far infrared radiation material of the present invention is as follows:
It can be roughly divided into three methods.

【0019】第1の製法は、原材料(珪酸アルミニウム
塩、金属酸化物)を適度の粒径になるように同時粉砕す
る工程から成る。
The first manufacturing method comprises a step of simultaneously pulverizing raw materials (aluminum silicate salt, metal oxide) so as to have an appropriate particle size.

【0020】第2の製法は、原材料((A),(B),
(C)の3者)を直接、同時に中和反応せしめる工程か
ら成る。
The second manufacturing method is to use raw materials ((A), (B),
(C) (three parties) is directly and simultaneously subjected to a neutralization reaction.

【0021】第3の製法は、(D)を(E)に加え、イ
オン交換反応を行う工程から成る。
The third manufacturing method comprises the step of adding (D) to (E) and carrying out an ion exchange reaction.

【0022】前記のいずれの方法においても、得られた
生成物(あるいは反応物)を適宜、脱水、洗浄、乾燥、
さらに粉砕して抗菌性遠赤外線放射材とする各工程を付
加することができる。
In any of the above methods, the obtained product (or reaction product) is appropriately dehydrated, washed, dried,
Further, each step of crushing to obtain an antibacterial far infrared ray emitting material can be added.

【0023】本発明に用いることのできる珪酸アルミニ
ウム塩としては、通常のゼオライト系のものが好まし
い。たとえば、天然ゼオライト(モルデナイト等)、合
成ゼオライト(A型ゼオライト等)が例示される。ここ
で言う「珪酸アルミニウム塩」とは、珪酸アルミニウム
自身をも包含する。珪酸アルミニウム塩は、晶質あるい
は非晶質のいずれでもよく、したがって生成する金属珪
酸アルミニウム塩もいずれか一方、またはそれらの混合
物である。
As the aluminum silicate salt that can be used in the present invention, an ordinary zeolite-based salt is preferable. For example, natural zeolite (mordenite etc.) and synthetic zeolite (A type zeolite etc.) are illustrated. The "aluminum silicate salt" referred to here also includes aluminum silicate itself. The aluminum silicate salt may be either crystalline or amorphous, and thus the produced metal aluminum silicate salt is either one or a mixture thereof.

【0024】本発明に用いることのできるイオン交換性
珪酸アルミニウム塩(D)とは、分子内にイオン交換性
を有する金属あるいはアンモニウムイオンを含むもので
ある。イオン交換性金属の代表的なものは、ナトリウム
(Na)、カリウム(K)、リチウム(Li)、鉄(F
e(II))、マグネシウム(Mg(II))、カルシ
ウム(Ca)、コバルト(Co(II))、ニッケル
(Ni(II))等である。
The ion-exchangeable aluminum silicate salt (D) which can be used in the present invention contains a metal or ammonium ion having ion-exchangeability in the molecule. Typical ion-exchangeable metals are sodium (Na), potassium (K), lithium (Li), iron (F).
e (II)), magnesium (Mg (II)), calcium (Ca), cobalt (Co (II)), nickel (Ni (II)) and the like.

【0025】本発明に用いることのできるアルミニウム
塩(A)としては、Al(SO43、Al(NO33
AlCl3、Al(CH3COO)3 、等の遊離の無機酸
あるいは有機酸を含むこともある水溶性のアルミニウム
塩あるいはAl2(OH)3Cl3、Al2(OH)2(C
3COO)4 等の水溶性塩基性アルミニウム塩が例示
される。特に、前記第2の製法に使用する場合、その水
溶液のpHが7未満のもの(酸性アルミニウム塩)が好
ましい。
The aluminum salt (A) that can be used in the present invention includes Al (SO 4 ) 3 , Al (NO 3 ) 3 ,
AlCl 3 , Al (CH 3 COO) 3 , etc., a water-soluble aluminum salt which may contain a free inorganic acid or organic acid, or Al 2 (OH) 3 Cl 3 , Al 2 (OH) 2 (C
Water-soluble basic aluminum salts such as H 3 COO) 4 are exemplified. In particular, when used in the second production method, the aqueous solution having a pH of less than 7 (acidic aluminum salt) is preferable.

【0026】本発明に用いることのできる金属は、銀
(Ag)、銅(Cu)、亜鉛(Zn)から成る群から選
ばれる。したがって、金属酸化物としては、M2/n
(Mは前記の金属、nはMの原子価)の1種または2種
以上を使用する。しかしながら、その他の抗菌性重金
属、たとえば水銀(Hg)、錫(Sn)、鉛(Pb)、
ビスマス(Bi)、カドミウム(Cd)、クロム(C
r)等も本発明に用いることができる。前記の第2、第
3の製法に用いることのできる金属塩としては、次のよ
うな無機または有機酸の塩、あるいは金属錯塩が例示さ
れる。
The metal that can be used in the present invention is selected from the group consisting of silver (Ag), copper (Cu) and zinc (Zn). Therefore, as the metal oxide, M 2 / n 2 O
(M is the above-mentioned metal, n is a valence of M), and one or more kinds thereof are used. However, other antibacterial heavy metals such as mercury (Hg), tin (Sn), lead (Pb),
Bismuth (Bi), Cadmium (Cd), Chromium (C
r) and the like can also be used in the present invention. Examples of the metal salt that can be used in the second and third production methods include the following inorganic or organic acid salts or metal complex salts.

【0027】Cu(SO4)、CuCl2、Cu(N
32・3H2O、Cu(CH3COO)、〔Cu(N
42+、Zn(SO4)、ZnCl2、Zn(SC
N)2、Zn(CH3COO)2・3H2O、〔Zn(NH
342+、Ag(NO33、Ag(CH3COO)、
〔Ag(CN)2- 特に、前記第2の製法に用いる金属塩は、水不溶性であ
ってもよく、たとえばCuO、Zn(OH)2 等は
(A)の水溶液に混合したとき溶解し、Cu(S
4)、Zn(SO4)等を生成するので、使用可能であ
る。前記第3の製法に用いる金属塩は、水溶性であるこ
とが好ましい。
Cu (SO 4 ), CuCl 2 , Cu (N
O 3) 2 · 3H 2 O , Cu (CH 3 COO) 2, [Cu (N
H 3 ) 4 ] 2+ , Zn (SO 4 ), ZnCl 2 , Zn (SC
N) 2 , Zn (CH 3 COO) 2 .3H 2 O, [Zn (NH
3 ) 4 ] 2+ , Ag (NO 3 ) 3 , Ag (CH 3 COO),
[Ag (CN) 2] - In particular, the metal salt used in the second production method may be a water-insoluble, eg CuO, Zn (OH) 2 or the like is dissolved when mixed with an aqueous solution of (A) , Cu (S
Since it produces O 4 ), Zn (SO 4 ), etc., it can be used. The metal salt used in the third production method is preferably water-soluble.

【0028】前記第1の製法において、珪酸アルミニウ
ム塩は、好ましくは粒径20〜100μmのものを使用
する。通常、金属酸化物を用いるが、酸化物以外の金属
化合物、たとえば水酸化物、硫酸塩、硝酸塩等を使用し
ても、これらが製法工程中、分解して金属酸化物を与え
るものならば、差し支えない。粉砕方法は特に限定され
ないが、ボールミル、ジェットミル、振動ボールミル等
の方法を挙げることができる。粉砕後の粒子体の平均粒
径は好ましくは10μm以下、さらに好ましくは5μm
以下である。粒径がこの範囲より大きいと、遠赤外線放
射率が低下し、また素材への混入も粒径が小さい程よ
く、微粒が望まれる。
In the first production method, the aluminum silicate salt preferably has a particle size of 20 to 100 μm. Usually, a metal oxide is used, but even if a metal compound other than an oxide, such as a hydroxide, a sulfate or a nitrate, is used, if these decompose to give a metal oxide, It doesn't matter. The pulverization method is not particularly limited, and examples thereof include a ball mill, a jet mill and a vibrating ball mill. The average particle size of the pulverized particles is preferably 10 μm or less, more preferably 5 μm.
It is the following. If the particle size is larger than this range, the far-infrared emissivity is lowered, and mixing into the raw material is better as the particle size is smaller, and fine particles are desired.

【0029】前記第2の製法において、反応方法として
は、(A),(B)および(C)が水溶液であれば撹拌
水中に、それぞれ、個別にかつ同時にあるいはいずれか
一方または(A)および(B)の混合水溶液を反応槽に
投入撹拌し残りの水溶液をそれぞれ個別にかつ同時に添
加してもよいが、(B)が無機または有機酸の塩の場合
は(A)と(B)を混合した水溶液と(C)の水溶液を
反応槽内の撹拌水中に添加する方が均質な金属珪酸アル
ミニウム塩が得られるので好ましい。
In the second production method, as a reaction method, when (A), (B) and (C) are aqueous solutions, they are separately and simultaneously or in either one or both of them in the stirring water. The mixed aqueous solution of (B) may be charged into a reaction tank and stirred, and the remaining aqueous solutions may be added individually and simultaneously, but when (B) is a salt of an inorganic or organic acid, (A) and (B) are combined. It is preferable to add the mixed aqueous solution and the aqueous solution (C) to the stirred water in the reaction tank because a homogeneous aluminum metal silicate salt can be obtained.

【0030】典型的には、(A),(B)の水溶液を調
合し、次いで必要に応じて水酸化アルカリでpH調整し
た(C)の水溶液とを所定量の水の中に撹拌しながら、
同時添加し中和反応させる。得られたゲル状物を濾過、
洗浄し、含水量70〜80%まで脱水する。次いで10
0〜300℃で乾燥して金属珪酸アルミニウム塩を得
る。これをこのまま抗菌性遠赤外線放射材として使用し
てもよいが、前記第1の製法と同様に、慣用手段で微粒
化することが好ましい。本方法で製造される金属珪酸ア
ルミニウム塩は、式ZM2/nO・Al23・YSiO2
・mH2O(式中、Mは前記金属、nはMの原子価、Z
およびYは正の整数、mは0または正の整数である)で
表される。なお、該金属珪酸アルミニウム塩の合成条件
については、特開平4−77311号(第3頁右上段2
行目〜第4頁右下段20行目)に詳細に開示されてい
る。
Typically, the aqueous solutions of (A) and (B) are prepared, and then the aqueous solution of (C) whose pH is adjusted with alkali hydroxide is stirred in a predetermined amount of water while stirring. ,
Simultaneously add and neutralize. The obtained gel-like material is filtered,
Wash and dehydrate to a water content of 70-80%. Then 10
It is dried at 0 to 300 ° C. to obtain a metal aluminum silicate salt. Although this may be used as it is as an antibacterial far-infrared radiation material, it is preferably atomized by a conventional means as in the first production method. Metal aluminum silicate salts prepared by this method, equation ZM 2 / n O · Al 2 O 3 · YSiO 2
MH 2 O (wherein M is the metal, n is the valence of M, Z
And Y are positive integers, m is 0 or a positive integer). The conditions for synthesizing the metal aluminum silicate are described in JP-A-4-77311 (page 3, upper right column 2).
The details are disclosed in the second line to the lower right of page 4 (the 20th line).

【0031】前記第3の製法において、典型的には、ア
ルミニウム塩と珪酸アルカリを酸性条件下で反応させ
て、一旦、珪酸アルミニウムアルカリ(D)を生成さ
せ、次いでこれを所望の金属の金属塩とイオン交換し、
アルカリ金属元素を該金属で置換し、該金属珪酸アルミ
ニウム塩を得る。得られた金属珪酸アルミニウム塩は、
慣用手段で微粒化することができる。
In the third production method, typically, an aluminum salt and an alkali silicate are reacted under an acidic condition to once generate an alkali aluminum silicate (D), which is then reacted with a metal salt of a desired metal. Ion exchange with
The alkali metal element is replaced with the metal to obtain the metal aluminum silicate salt. The obtained metal aluminum silicate salt is
It can be atomized by conventional means.

【0032】本発明の抗菌性遠赤外線放射材は、該金属
を酸化物として重量換算で約1〜約70%含有すること
が好ましい。金属酸化物の含有量が約1%以下のとき、
組成が珪酸アルミニウムに近くなり、遠赤外線放射率が
著しく低下する。また、金属酸化物の含有量が約70%
以上のとき、金属酸化物と珪酸アルミニウム中のシリ
カ、アルミナとの相互作用が弱まり、遠赤外線放射率は
金属酸化物単体のそれに近くなり、望ましい複合効果が
期待できない。金属酸化物の含有量が約20%〜約50
%のとき、遠赤外線放射率は最善である。抗菌作用は、
金属酸化物の含有量にほぼ比例するので、金属酸化物が
多い程、好ましい。
The antibacterial far infrared emitting material of the present invention preferably contains the metal as an oxide in an amount of about 1 to about 70% by weight. When the content of metal oxide is less than about 1%,
The composition is close to that of aluminum silicate, and the far infrared ray emissivity is significantly reduced. Also, the content of metal oxide is about 70%
In the above case, the interaction between the metal oxide and silica or alumina in aluminum silicate is weakened, and the far-infrared emissivity becomes close to that of the metal oxide alone, and the desired composite effect cannot be expected. The content of metal oxide is about 20% to about 50
%, The far infrared emissivity is best. Antibacterial action
Since it is almost proportional to the content of the metal oxide, the more the metal oxide is, the more preferable.

【0033】さらに、本発明の抗菌性遠赤外線放射材
は、酸化物として表した3成分モル比で下記に相当する
組成の金属珪酸アルミニウム塩から成ることが好まし
い。
Further, the antibacterial far-infrared radiation material of the present invention is preferably composed of a metal aluminum silicate having a composition corresponding to the following in terms of a three component molar ratio expressed as an oxide.

【0034】M2/nO/Al23 :約0.1〜約2.0 SiO2/Al23 :約2.0〜約2.4 (Mは前記の金属、nはMの原子価を表す) 本発明の抗菌性遠赤外線放射材が、何故、予期せぬ高効
率の遠赤外線放射特性を与えるかについての理由は、詳
らかでない。本発明の第1の製法では、特定金属の存在
下で粉砕することによりメカノケミカル的に珪酸アルミ
ニウム塩の結晶構造の中にこれらの金属元素が組み込ま
れる。第2、第3の製法では、中和、あるいはイオン変
換により、金属元素が直接、珪酸アルミニウム塩の結晶
構造中に組み込まれる。これにより結晶構造の状態に影
響を与え、光放射特性が遠赤外線側にシフトして、結果
として広い遠赤外線の波長領域で高効率の放射特性が得
られるものと考えられる。
[0034] M 2 / n O / Al 2 O 3: about 0.1 to about 2.0 SiO 2 / Al 2 O 3 : about 2.0 to about 2.4 (M is the metal, n represents M The reason why the antibacterial far-infrared emitting material of the present invention gives an unexpectedly highly efficient far-infrared emitting characteristic is not clear. In the first production method of the present invention, these metal elements are mechanochemically incorporated into the crystal structure of the aluminum silicate salt by grinding in the presence of a specific metal. In the second and third production methods, the metal element is directly incorporated into the crystal structure of the aluminum silicate salt by neutralization or ion conversion. It is considered that this affects the state of the crystal structure and shifts the light emission characteristics to the far infrared side, resulting in highly efficient emission characteristics in a wide wavelength range of far infrared rays.

【0035】本発明の抗菌性遠赤外線放射材は、使用目
的に応じて適宜加工され、抗菌性遠赤外線放射体を形成
する。得られた抗菌性遠赤外線放射体は、有効量の抗菌
性遠赤外線放射材を含有して成り、前述のごとく、乾
燥、治療、暖房、食品加工、殺菌、除菌等、種々の分野
に応用できる。したがって、本発明の抗菌性遠赤外線放
射材から成形された抗菌性遠赤外線放射体も本発明の範
囲である。
The antibacterial far-infrared emitting material of the present invention is appropriately processed according to the purpose of use to form an antibacterial far-infrared emitting body. The obtained antibacterial far-infrared radiator comprises an effective amount of antibacterial far-infrared radiator and is applied to various fields such as drying, treatment, heating, food processing, sterilization and sterilization as described above. it can. Therefore, the antibacterial far-infrared radiator formed from the antibacterial far-infrared radiator of the present invention is also within the scope of the present invention.

【0036】本発明の抗菌性遠赤外線放射材、放射体の
応用分野と期待される効果の代表的なものについて、表
1に示す。
Table 1 shows typical application fields and expected effects of the antibacterial far-infrared radiation material and radiator of the present invention.

【0037】[0037]

【表1】 [Table 1]

【0038】前記の応用分野において、本発明の抗菌性
遠赤外線放射体は、食品包装体(たとえばカップ、バッ
グ)、衣料、寝具、靴中敷き、暖房具(たとえば加熱ヒ
ーター)、乾燥器具(たとえばヘアドライヤー)、調理
器具(たとえば魚焼材)、発酵器(たとえば孵卵器)、
建築材料(たとえば壁材、壁紙)等の物品に加工可能で
ある。
In the above-mentioned application fields, the antibacterial far-infrared radiator of the present invention is used for food packaging (eg cups, bags), clothing, bedding, insoles, heaters (heaters), drying equipment (hair, etc.). Dryer), cookware (eg fish grill), fermenter (eg incubator),
It can be processed into articles such as building materials (eg wall materials, wallpaper).

【0039】さらに本発明の抗菌性遠赤外線放射材は、
各種の細菌(グラム陽性、陰性菌、メシチレン耐性菌)
や真菌類(カビ)に対する殺菌力に優れることが後述の
試験により確認されている。したがって、抗菌作用が望
まれる食品包装材、衣料、寝具、住宅建材として特に有
用である。
Further, the antibacterial far infrared ray emitting material of the present invention is
Various bacteria (Gram positive, negative bacteria, mesitylene resistant bacteria)
It has been confirmed by the tests described later that the bactericidal activity against fungi and fungi is excellent. Therefore, it is particularly useful as a food packaging material, clothing, bedding, and housing building material for which antibacterial action is desired.

【0040】使用目的に応じた加工法は、当業者の知る
ところであるが、たとえば、本発明の抗菌性遠赤外線放
射材を塗料として、素材に塗布し、抗菌性遠赤外線放射
性膜を形成し、本発明の抗菌性遠赤外線放射体として成
形することができる。典型的には、本発明の抗菌性遠赤
外線放射材を微粒化し、骨材となし、適当な結合剤(水
ガラス、エポキシ、フッ素樹脂等)、被膜調整剤(たと
えばカルボキシメチルセルローズ)および必要ならば水
を加え塗料化する。この塗料をスプレーで壁基材(モル
タル等)に、所望の厚みになるように塗布乾燥する。
The processing method according to the purpose of use is known to those skilled in the art. For example, the antibacterial far-infrared radiation material of the present invention is applied as a paint to the material to form an antibacterial far-infrared radiation film, It can be molded as the antibacterial far infrared radiator of the present invention. Typically, the antibacterial far-infrared radiation material of the present invention is atomized to form an aggregate, a suitable binder (water glass, epoxy, fluororesin, etc.), a film modifier (for example, carboxymethyl cellulose) and, if necessary, Add water to make paint. This paint is sprayed onto a wall substrate (mortar or the like) so as to have a desired thickness and dried.

【0041】[0041]

【作用】本発明の抗菌性遠赤外線放射材は、常温付近で
物理化学反応により合成され、比較的低温度で加熱乾燥
されるので、製造工程におけるエネルギー消費が少なく
低コストで製造することができる。
The antibacterial far-infrared radiation material of the present invention is synthesized by a physicochemical reaction at around room temperature and heated and dried at a relatively low temperature, so that it consumes less energy in the manufacturing process and can be manufactured at low cost. .

【0042】また、本発明の抗菌性遠赤外線放射材は、
金属珪酸アルミニウム塩中、金属と珪酸アルミニウムの
相互作用により優れた遠赤外線放射特性を有し、その放
射率は黒体の放射率に近づく。
The antibacterial far infrared radiation material of the present invention is
The metal aluminum silicate has excellent far-infrared radiation characteristics due to the interaction between metal and aluminum silicate, and its emissivity approaches that of a black body.

【0043】さらに、本発明の抗菌性遠赤外線放射材
は、抗菌性金属の含有量が高いにも拘わらず、該金属の
環境への放出量が低い。すなわち抗菌性がより長時間継
続する優れた抗菌材料でもある。
Further, the antibacterial far-infrared radiation material of the present invention has a low content of the antibacterial metal in spite of its high content. That is, it is also an excellent antibacterial material whose antibacterial property continues for a long time.

【0044】以下、実施例、比較例、試験例を挙げて本
発明を具体的に説明するが、本発明はこれらに限定され
るものではない。なお、実施例、比較例において、特に
ことわりのない限り、重量百分率(%)を用いてある。
The present invention will be specifically described below with reference to Examples, Comparative Examples and Test Examples, but the present invention is not limited to these. In Examples and Comparative Examples, weight percentages (%) are used unless otherwise specified.

【0045】[0045]

【実施例】 実施例1 張水した反応槽中に撹拌下、Al2(SO43(Al2
3 =8.1%)397gとZnSO4 (ZnO=7.0
%)302gを混合した水溶液および珪酸ナトリウム
(SiO2=28.5%、Na2O=9.2%)109g
とNaOH(Na2O=9.8%)756gを混合した
水溶液をそれぞれ、同時に添加し、珪酸アルミニウム亜
鉛を含むスラリーを合成した。
Example 1 Al 2 (SO 4 ) 3 (Al 2 O) was stirred in a reaction tank filled with water with stirring.
3 = 8.1%) 397 g and ZnSO 4 (ZnO = 7.0)
%) 302 g of aqueous solution and sodium silicate (SiO 2 = 28.5%, Na 2 O = 9.2%) 109 g
And 756 g of NaOH (Na 2 O = 9.8%) were simultaneously added to each to simultaneously add them to synthesize a slurry containing aluminum zinc silicate.

【0046】次いで、このスラリーをSO4 イオンが1
%以下になるまで、脱水、洗浄し、200〜220℃に
て乾燥した。ZnO/Al23=2.0(モル比、以下
同様)、SiO2/Al23 =2.0なる抗菌遠赤外線
放射性珪酸アルミニウム亜鉛を得た。
Then, the slurry was mixed with SO 4 ions at 1
It was dehydrated, washed and dried at 200 to 220 [deg.] C. until the content became not more than%. An antibacterial far infrared radiation aluminum zinc silicate having ZnO / Al 2 O 3 = 2.0 (molar ratio, the same applies hereinafter) and SiO 2 / Al 2 O 3 = 2.0 was obtained.

【0047】実施例2 実施例1で得られた珪酸アルミニウム亜鉛をジェットミ
ルで平均粒径を約5μmまで粉砕し、抗菌遠赤外線放射
性珪酸アルミニウム亜鉛粉末品を得た。
Example 2 The aluminum zinc silicate obtained in Example 1 was pulverized by a jet mill to an average particle size of about 5 μm to obtain an antibacterial far infrared radiation aluminum zinc silicate powder product.

【0048】実施例3 実施例1で得られた珪酸アルミニウム亜鉛をジェットミ
ルで平均粒径を約2μmまで粉砕し、抗菌遠赤外線放射
性珪酸アルミニウム亜鉛微粉末品を得た。
Example 3 The aluminum zinc silicate obtained in Example 1 was pulverized with a jet mill to an average particle size of about 2 μm to obtain an antibacterial far infrared ray emitting aluminum zinc silicate fine powder product.

【0049】実施例4 張水した反応槽中に撹拌下、Al2(SO43(Al2
3 =8.1%)397gとCuSO4 (CuO=13.
0%)222gを混合した水溶液および珪酸ナトリウム
(SiO2=28.5%、Na2O=9.2%)133g
とNaOH(Na2 O=9.8%)728gを混合した
水溶液をそれぞれ、同時に添加し、珪酸アルミニウム銅
を含むスラリーを合成した。
Example 4 Al 2 (SO 4 ) 3 (Al 2 O under stirring in a reaction tank filled with water.
3 = 8.1%) 397 g and CuSO 4 (CuO = 13.
0%) 222 g mixed aqueous solution and sodium silicate (SiO 2 = 28.5%, Na 2 O = 9.2%) 133 g
And 728 g of NaOH (Na 2 O = 9.8%) were simultaneously added to each to simultaneously add them to synthesize a slurry containing copper aluminum silicate.

【0050】次いで、このスラリーをSO4 イオンが1
%以下になるまで、脱水、洗浄し、200〜220℃に
て乾燥し、さらにジェットミルで平均粒径を約5μmま
で粉砕し、CuO/Al23 =0.7、SiO2/Al
23=2.0なる抗菌遠赤外線放射性珪酸アルミニウム
銅粉末品を得た。
Next, the slurry was mixed with SO 4 ions to 1
%, Dehydrated, washed, dried at 200 to 220 ° C., pulverized with a jet mill to an average particle size of about 5 μm, CuO / Al 2 O 3 = 0.7, SiO 2 / Al
An antibacterial far-infrared radiation aluminum copper silicate powder product with 2 O 3 = 2.0 was obtained.

【0051】実施例5 張水した反応槽中に撹拌下、Al2(NO33(Al2
3 =8.0%)420gとAgNO3水溶液(Ag2O=
15.2%)69.5gを混合した水溶液および珪酸ナ
トリウム(SiO2=28.5%、Na2O=9.2%)
58gとNaOH(Na2 O=9.8%)240gを混
合した水溶液をそれぞれ、同時に添加し、珪酸アルミニ
ウム銀を含むスラリーを合成した。
Example 5 Al 2 (NO 3 ) 3 (Al 2 O under stirring in a reaction tank filled with water.
3 = 8.0%) 420 g and AgNO 3 aqueous solution (Ag 2 O =
15.2%) 69.5 g mixed aqueous solution and sodium silicate (SiO 2 = 28.5%, Na 2 O = 9.2%)
An aqueous solution prepared by mixing 58 g and 240 g of NaOH (Na 2 O = 9.8%) was simultaneously added to synthesize a slurry containing silver aluminum silicate.

【0052】次いで、このスラリーをNO3 イオンが1
%以下になるまで、脱水、洗浄し、200〜220℃に
て乾燥し、さらにジェットミルで平均粒径を約5μmま
で粉砕し、Ag2O/Al23=0.1、SiO2/Al
23=2.0なる抗菌遠赤外線放射性珪酸アルミニウム
銀粉末品を得た。
Next, the slurry is mixed with NO 3 ions of 1: 1.
% Or less, dehydration, washing, drying at 200 to 220 ° C., crushing with a jet mill to an average particle size of about 5 μm, Ag 2 O / Al 2 O 3 = 0.1, SiO 2 / Al
An antibacterial far-infrared radiation aluminum silicate silver powder product having 2 O 3 = 2.0 was obtained.

【0053】実施例6 張水した反応槽中に撹拌下、Al(NO33 (Al2
3 =10.4%)490gにCu(NO32(CuO=
7.2%)138gおよびAgNO3 水溶液(Ag2
=15.2%)38gを混合した水溶液と実施例5で用
いた珪酸ナトリウム水溶液237gとNaOH水溶液8
39gを混合した水溶液をそれぞれ、同時に添加し、珪
酸アルミニウム(銅−銀)を含むスラリーを合成した。
Example 6 Al (NO 3 ) 3 (Al 2 O) was stirred with stirring in a reaction tank filled with water.
3 = 10.4%) 490 g of Cu (NO 3 ) 2 (CuO =
7.2%) 138 g and AgNO 3 aqueous solution (Ag 2 O
= 15.2%) aqueous solution mixed with 38 g and the sodium silicate aqueous solution 237 g and NaOH aqueous solution 8 used in Example 5.
An aqueous solution prepared by mixing 39 g was simultaneously added to synthesize a slurry containing aluminum silicate (copper-silver).

【0054】次いで、このスラリーをNO3 イオンが1
%以下になるまで、脱水、洗浄し、200〜220℃に
て乾燥し、さらにジェットミルで平均粒径を約5μmま
で粉砕し、CuO/Al23=0.2、Ag2O/Al2
3=0.1、SiO2/Al 23=2.25なる抗菌遠
赤外線放射性珪酸アルミニウム(銅−銀)粉末品を得
た。
Next, this slurry is added to NO.3 Ion is 1
To 200-220 ℃, dehydration and washing until
And dry it, and then use a jet mill to reduce the average particle size to approximately 5 μm.
Crushed with CuO / Al2O3= 0.2, Ag2O / Al2
O3= 0.1, SiO2/ Al 2O3= 2.25 antibacterial distance
Obtained infrared radiation aluminum silicate (copper-silver) powder
It was

【0055】実施例7 CuSO4 水溶液(CuO=7.0%)284g中に比
較例1で得る珪酸アルミニウム(未粉砕品)185gを
添加し、撹拌下に5時間保持し、イオン交換を行い、珪
酸アルミニウム銅を含むスラリーを合成した。
Example 7 To 284 g of an aqueous CuSO 4 solution (CuO = 7.0%) was added 185 g of the aluminum silicate (unmilled product) obtained in Comparative Example 1, and the mixture was kept under stirring for 5 hours for ion exchange. A slurry containing aluminum copper silicate was synthesized.

【0056】次いで、このスラリーを脱水、洗浄し、2
00〜220℃にて乾燥し、さらにジェットミルで平均
粒径を約5μmまで粉砕し、CuO/Al23=0.
5、SiO2/Al23=2.37なる抗菌遠赤外線放
射性珪酸アルミニウム銅粉末品を得た。
Then, this slurry is dehydrated and washed, and
It is dried at 00 to 220 ° C., further ground by a jet mill to an average particle size of about 5 μm, and CuO / Al 2 O 3 = 0.
5, SiO 2 / Al 2 O 3 = 2.37 was obtained, which was an antibacterial far infrared radiation aluminum copper silicate powder.

【0057】実施例8 ZnSO4 水溶液(ZnO=7.1%)276.5g中
に比較例1で得る珪酸アルミニウム(未粉砕品)185
gを添加し、撹拌下に5時間保持し、イオン交換を行
い、珪酸アルミニウム亜鉛を含むスラリーを合成した。
Example 8 Aluminum silicate (unground product) 185 obtained in Comparative Example 1 was added to 276.5 g of an aqueous ZnSO 4 solution (ZnO = 7.1%).
g was added, and the mixture was kept under stirring for 5 hours to carry out ion exchange to synthesize a slurry containing aluminum zinc silicate.

【0058】次いで、このスラリーを脱水、洗浄し、2
00〜220℃にて乾燥し、さらにジェットミルで平均
粒径を約5μmまで粉砕し、ZnO/Al23=0.
5、SiO2/Al23 =2.37なる抗菌遠赤外線放
射性珪酸アルミニウム亜鉛粉末品を得た。
Next, this slurry is dehydrated and washed, and
It is dried at 00 to 220 ° C., further ground by a jet mill to an average particle size of about 5 μm, and ZnO / Al 2 O 3 = 0.
5, a SiO 2 / Al 2 O 3 = 2.37 antibacterial far-infrared radiation aluminum zinc silicate powder product was obtained.

【0059】実施例9 ZnO159g、比較例1で得る珪酸アルミニウム粉末
370gを混合し、さらにジェットミルで平均粒径を約
5μmまで粉砕し、ZnO/Al23=2.0、SiO
2/Al23 =2.37なる抗菌遠赤外線放射性珪酸ア
ルミニウム亜鉛粉末品を得た。
Example 9 159 g of ZnO and 370 g of aluminum silicate powder obtained in Comparative Example 1 were mixed and further pulverized with a jet mill to an average particle size of about 5 μm. ZnO / Al 2 O 3 = 2.0, SiO
An antibacterial far-infrared radiation aluminum zinc silicate powder product having 2 / Al 2 O 3 = 2.37 was obtained.

【0060】実施例10 実施例2の抗菌遠赤外線放射材粉末150gに水ガラス
(4号)20ml、水60ml、カルボキシセルローズ
2gを添加し、ポットミルで2時間混合、塗料化して、
はけ塗り、ディップ、スプレー等で壁材に0.3mmの
厚さで塗布、乾燥し、抗菌遠赤外線放射性壁材を得た。
Example 10 To 150 g of the antibacterial far-infrared radiation material powder of Example 2, 20 ml of water glass (No. 4), 60 ml of water, and 2 g of carboxycellulose were added, and mixed in a pot mill for 2 hours to form a paint,
A wall material having a thickness of 0.3 mm was applied by brushing, dipping, spraying or the like and dried to obtain an antibacterial far infrared radiation wall material.

【0061】参考例 張水した反応槽中に撹拌下、Al(NO33 (Al2
3 =8.1%)769gとSnCl4(SnO2=11.
5%)195gを混合した水溶液および珪酸ナトリウム
(SiO2=28.5%、Na2O=9.2%)125g
とNaOH(Na2 O=9.8%)744gを混合した
水溶液をそれぞれ、同時に添加し、珪酸アルミニウム錫
を含むスラリーを合成した。
Reference Example Al (NO 3 ) 3 (Al 2 O) was stirred with stirring in a reaction tank filled with water.
3 = 8.1%) 769 g and SnCl 4 (SnO 2 = 11.1.
5%) 195 g mixed aqueous solution and sodium silicate (SiO 2 = 28.5%, Na 2 O = 9.2%) 125 g
And 744 g of NaOH (Na 2 O = 9.8%) were simultaneously added to each to simultaneously add them to synthesize a slurry containing aluminum tin silicate.

【0062】次いで、このスラリーをNO3 イオンが1
%以下になるまで、脱水、洗浄し、200〜220℃に
て乾燥し、さらにジェットミルで平均粒径を約5μmま
で粉砕し、SnO2/Al23=0.5、SiO2/Al
23=2.0なる抗菌遠赤外線放射性珪酸アルミニウム
錫粉末品を得た。
Next, this slurry was mixed with NO 3 ions of 1
%, Dehydration, washing, drying at 200 to 220 ° C., crushing with a jet mill to an average particle size of about 5 μm, SnO 2 / Al 2 O 3 = 0.5, SiO 2 / Al
An antibacterial far infrared radiation aluminum tin silicate powder product having 2 O 3 = 2.0 was obtained.

【0063】前記実施例、参考例のうち、代表的なもの
について酸化物重量組成を表2に示す。
Table 2 shows the weight composition of oxides of the representative examples of the above examples and reference examples.

【0064】[0064]

【表2】 [Table 2]

【0065】比較例 NaOH水溶液(Na2 O=5.1%)400g撹拌
下、アルミン酸ナトリウム水溶液(Al23 =13.
3%、Na2O=13.1%)1170gおよび珪酸ナ
トリウム水溶液(SiO2=28.5%、Na2O=9.
2%)1037gをそれぞれ同時に添加した。添加後、
4時間撹拌を続行した後、洗浄濾液のpHが10.3に
なるまで、脱水、洗浄、乾燥を行い、さらにジェットミ
ルで平均粒径を約5μmまで粉砕し、珪酸アルミニウム
ナトリウム(0.91Na2O・Al23・2.37S
iO2・3.88H2O)の粉末品を得た。
Comparative Example 400 g of an aqueous NaOH solution (Na 2 O = 5.1%) was stirred, and an aqueous sodium aluminate solution (Al 2 O 3 = 13.
3%, Na 2 O = 13.1%) 1170 g and sodium silicate aqueous solution (SiO 2 = 28.5%, Na 2 O = 9.
2%) 1037 g were added simultaneously. After addition
After continuing stirring for 4 hours, dehydration, washing and drying were carried out until the pH of the washing filtrate became 10.3, and further pulverization with a jet mill to an average particle size of about 5 μm was carried out, and sodium aluminum silicate (0.91Na 2 O ・ Al 2 O 3・ 2.37S
A powder of iO 2 · 3.88H 2 O) was obtained.

【0066】(試験例1)本発明の実施例および比較例
において、得られた材料について、遠赤外線放射特性を
調べるため、放射エネルギーを各波長毎に測定し、放射
率を計算した結果を表3に示す。放射スペクトルの測定
は、日本分光工業製フーリエ変換赤外線分光計E500
型を用い、測定条件を温度40℃、分解能1/16c
m、積算回数200回、検知器MCTと設定した。
(Test Example 1) In the examples and comparative examples of the present invention, in order to investigate the far infrared radiation characteristics of the obtained materials, the radiant energy was measured for each wavelength and the emissivity was calculated. 3 shows. The emission spectrum is measured by the Fourier transform infrared spectrometer E500 manufactured by JASCO Corporation.
Mold, measurement conditions are temperature 40 ℃, resolution 1 / 16c
m, the number of integrations was 200, and the detector MCT was set.

【0067】[0067]

【表3】 [Table 3]

【0068】さらに実施例3の抗菌性遠赤外線放射材に
ついて、放射率を図1に示す。
Further, the emissivity of the antibacterial far infrared radiation material of Example 3 is shown in FIG.

【0069】(試験例2) 抗菌性試験 本発明の抗菌性遠赤外線放射材の細菌や真菌に対する抗
菌力を評価するために、抗菌力の評価試験を下記の条件
で実施した。
Test Example 2 Antibacterial Test In order to evaluate the antibacterial activity of the antibacterial far infrared radiation material of the present invention against bacteria and fungi, an antibacterial activity evaluation test was carried out under the following conditions.

【0070】(1)試験菌 大腸菌(Escherichia coli) メチシリン耐性黄色ブドウ球菌(Staphylococcus aureu
s,MRSA) 黒かび(Aspergilus nigel) (2)試験方法 (a)抗菌 滅菌イオン交換水に試料を添加して試験液を調製し、そ
れに各試験菌の菌液(菌を滅菌イオン交換水に懸濁させ
たもの)を添加し、30℃で保存、6時間後、24時間
後の生菌数をそれぞれ測定した。測定結果を表4に示
す。
(1) Test bacterium Escherichia coli Methicillin-resistant Staphylococcus aureu
s, MRSA) Black mold (Aspergilus nigel) (2) Test method (a) Antibacterial Addition of a sample to sterile ion-exchanged water to prepare a test solution, and the bacterial solution of each test bacteria (Suspended) was added and stored at 30 ° C., and after 6 hours and 24 hours, the viable cell count was measured. The measurement results are shown in Table 4.

【0071】(b)抗真菌 試料を添加したポテト−デキストロース寒天平板培地に
試験菌を接種し、27℃で4〜30日間培養を行い、菌
の成育度を内眼で観察した。観察結果を表5に示す。
(B) Antifungal The test bacterium was inoculated on a potato-dextrose agar plate medium to which the sample was added, culturing was carried out at 27 ° C. for 4 to 30 days, and the growth rate of the bacterium was observed with the inner eye. The observation results are shown in Table 5.

【0072】[0072]

【表4】 [Table 4]

【0073】[0073]

【表5】 [Table 5]

【0074】[0074]

【発明の効果】前記試験例1に記載のとおり、本発明の
抗菌性遠赤外線放射材は、比較例の材料と比較して、幅
広い波長域で高い遠赤外線放射率を示し、黒体の放射輝
度に近い輝度をも得る。また本発明の抗菌性遠赤外線放
射材は、前記試験例2に記載のとおり、かびや細菌(病
院内感染として問題になっているMRSA菌を含む)に
対して優れた抗菌作用を発揮する。本発明によれば、極
めて良好な放射率と抗菌性とを有する抗菌性遠赤外線放
射材、放射体が比較的安価に製造され、これらを様々な
応用分野で使用することによって、目的とする乾燥、加
熱、治療、殺菌効果等を得ることができる。
As described in Test Example 1 above, the antibacterial far-infrared ray emitting material of the present invention exhibits a high far-infrared ray emissivity in a wide wavelength range as compared with the material of the comparative example, and emits a black body. The brightness close to the brightness is also obtained. Further, the antibacterial far-infrared radiation material of the present invention exhibits an excellent antibacterial action against fungi and bacteria (including MRSA bacteria which is a problem in hospital infection) as described in Test Example 2 above. According to the present invention, an antibacterial far-infrared emitting material having a very good emissivity and antibacterial property, a radiator can be produced at a relatively low cost, and by using these in various application fields, a desired drying property can be obtained. , Heating, treatment, bactericidal effect, etc. can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の抗菌性遠赤外線放射材(実施例3)の
放射率を示す図である。
FIG. 1 is a diagram showing the emissivity of an antibacterial far-infrared radiation material of the present invention (Example 3).

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 珪酸アルミニウム塩および銀、銅、そし
て亜鉛から成る群より選ばれる1種または2種以上の金
属酸化物から成る抗菌性遠赤外線放射材。
1. An antibacterial far-infrared radiation material comprising an aluminum silicate salt and one or more metal oxides selected from the group consisting of silver, copper and zinc.
【請求項2】 該金属酸化物が重量換算で1〜70%含
有されている請求項1記載の抗菌性遠赤外線放射材。
2. The antibacterial far-infrared emitting material according to claim 1, wherein the metal oxide is contained in an amount of 1 to 70% by weight.
【請求項3】 該金属酸化物が20〜50%含有されて
いる請求項2記載の抗菌性遠赤外線放射材。
3. The antibacterial far-infrared emitting material according to claim 2, wherein the metal oxide is contained in an amount of 20 to 50%.
【請求項4】 遠赤外線放射率が少なくとも90%であ
る請求項1〜請求項3のいずれかの項に記載の抗菌性遠
赤外線放射材。
4. The antibacterial far-infrared emitting material according to claim 1, which has a far-infrared emissivity of at least 90%.
【請求項5】 珪酸アルミニウム塩および銀、銅、そし
て亜鉛から成る群より選ばれる1種または2種以上の金
属酸化物を同時粉砕して得られる請求項1記載の抗菌性
遠赤外線放射材。
5. The antibacterial far infrared radiation emitting material according to claim 1, which is obtained by simultaneously pulverizing an aluminum silicate salt and one or more metal oxides selected from the group consisting of silver, copper and zinc.
【請求項6】 該珪酸アルミニウム塩および該金属酸化
物がともに粒子体である請求項1または請求項5記載の
抗菌性遠赤外線放射材。
6. The antibacterial far-infrared emitting material according to claim 1 or 5, wherein both the aluminum silicate salt and the metal oxide are particles.
【請求項7】 該粒子体の平均粒径が10μm以下であ
る請求項6記載の抗菌性遠赤外線放射材。
7. The antibacterial far-infrared emitting material according to claim 6, wherein the average particle size of the particles is 10 μm or less.
【請求項8】 該平均粒径が5μm以下である請求項7
記載の抗菌性遠赤外線放射材。
8. The average particle diameter is 5 μm or less.
The described antibacterial far infrared radiation material.
【請求項9】 酸化物として表した3成分モル比で M2/nO/Al23 :0.1〜2.0 SiO2/Al23 :2.0〜2.4 (Mは銀、銅、そして亜鉛から成る群より選ばれる1種
または2種以上の金属を、nは該金属の原子価を表す)
に相当する請求項1記載の抗菌性遠赤外線放射材。
9. M 2 / n O / Al 2 O 3 : 0.1-2.0 SiO 2 / Al 2 O 3 : 2.0-2.4 (M Is one or more metals selected from the group consisting of silver, copper, and zinc, and n is the valence of the metal)
The antibacterial far-infrared radiation material according to claim 1 corresponding to.
【請求項10】 アルミニウム塩(A)、銀、銅、そし
て亜鉛から成る群より選ばれる1種または2種以上の金
属または金属塩(B)および珪酸アルカリ(C)の3者
を同時に中和反応させて得られる該金属珪酸アルミニウ
ム塩から成る抗菌性遠赤外線放射材。
10. A neutralization of at least one of three or more metals or metal salts (B) and an alkali silicate (C) selected from the group consisting of aluminum salts (A), silver, copper and zinc. An antibacterial far-infrared radiation material comprising the metal aluminum silicate obtained by reaction.
【請求項11】 イオン交換性珪酸アルミニウム塩
(D)を、銀、銅、そして亜鉛から成る群より選ばれる
1種または2種以上の金属塩の水溶液(E)に添加し、
イオン交換させて得られる該金属珪酸アルミニウム塩か
らなる抗菌性遠赤外線放射材。
11. An ion-exchangeable aluminum silicate salt (D) is added to an aqueous solution (E) of one or more metal salts selected from the group consisting of silver, copper and zinc,
An antibacterial far-infrared radiation material comprising the metal aluminum silicate obtained by ion exchange.
【請求項12】 珪酸アルミニウム塩および銀、銅、そ
して亜鉛から成る群より選ばれる1種または2種以上の
金属酸化物から成る抗菌性遠赤外線放射材を骨材とし
て、結合剤を添加し、成形して成ることを特徴とする抗
菌性遠赤外線放射体。
12. An antibacterial far-infrared emitting material composed of an aluminum silicate salt and one or more metal oxides selected from the group consisting of silver, copper and zinc is used as an aggregate and a binder is added, An antibacterial far-infrared radiator characterized by being formed.
JP4437394A 1994-03-15 1994-03-15 Antimicrobial far infrared radiating material and radiator Withdrawn JPH07252109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4437394A JPH07252109A (en) 1994-03-15 1994-03-15 Antimicrobial far infrared radiating material and radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4437394A JPH07252109A (en) 1994-03-15 1994-03-15 Antimicrobial far infrared radiating material and radiator

Publications (1)

Publication Number Publication Date
JPH07252109A true JPH07252109A (en) 1995-10-03

Family

ID=12689710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4437394A Withdrawn JPH07252109A (en) 1994-03-15 1994-03-15 Antimicrobial far infrared radiating material and radiator

Country Status (1)

Country Link
JP (1) JPH07252109A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088054A1 (en) * 2000-05-19 2001-11-22 Toshio Komuro Composition for far infrared irradiation with excellent antistatic property and fiber and textile product both containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001088054A1 (en) * 2000-05-19 2001-11-22 Toshio Komuro Composition for far infrared irradiation with excellent antistatic property and fiber and textile product both containing the same

Similar Documents

Publication Publication Date Title
EP2208420B1 (en) Silver-containing inorganic antibacterial
EP2213173B1 (en) Silver-containing inorganic antibacterial
US20120064131A1 (en) Silver-based inorganic antimicrobial agent and method for preparing the same
CN101952525A (en) Modified mineral-based fillers
KR101405092B1 (en) Method for preparing zirconium phosphate particles coated by antibiotic, and zirconium phosphate particles prepared thereby
KR102051622B1 (en) Method For preparing Inorganic Antimicrobial And Inorganic Antimicrobial Prepared By The Same Method
CN104206420A (en) Preparation method and application of silver-free powdery solid solution anti-bacterial agent
KR20160086906A (en) Antiviral composition, antiviral agent, photocatalyst and virus inactivation method
JPH062570B2 (en) Antibacterial agent
KR940000032B1 (en) Disinfectant bioceramic composition
TW200814930A (en) Silver-containing inorganic disinfectant
JPH07116008B2 (en) Antibacterial agent
JPH07252109A (en) Antimicrobial far infrared radiating material and radiator
JPH10273322A (en) Antifungal composite titanate and manufacture of the same
Lavrynenko et al. Morphology, phase and chemical composition of the nanostructures formed in the systems containing lanthanum, cerium, and silver
JPH0977553A (en) Far infrared ray radiating material and antibacterial far infrared ray radiating material
JP2559126B2 (en) Weather resistant antibacterial zeolite composition
JP2559125B2 (en) Method for producing antibacterial zeolite
JPH07247110A (en) Far infrared radiation material and radiation unit
CN114698649A (en) Rare earth antibacterial material, preparation method and application thereof
JP3467447B2 (en) Inorganic antibacterial material using calcium silicates
JPH09175819A (en) Anionic silver complex ion-containing hydrotalcite compound and antimicrobial agent
JPH10120420A (en) Antimicrobial titanate and its production
JP3599304B2 (en) Amorphous antibacterial titanate compound
KR100626407B1 (en) Preparation method of silver-doped hydroxyapatite using sol-gel method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040809