[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0723794B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0723794B2
JPH0723794B2 JP61132218A JP13221886A JPH0723794B2 JP H0723794 B2 JPH0723794 B2 JP H0723794B2 JP 61132218 A JP61132218 A JP 61132218A JP 13221886 A JP13221886 A JP 13221886A JP H0723794 B2 JPH0723794 B2 JP H0723794B2
Authority
JP
Japan
Prior art keywords
electric expansion
expansion valve
temperature
refrigerant
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61132218A
Other languages
Japanese (ja)
Other versions
JPS6396438A (en
Inventor
功 近藤
晶夫 樋口
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP61132218A priority Critical patent/JPH0723794B2/en
Publication of JPS6396438A publication Critical patent/JPS6396438A/en
Publication of JPH0723794B2 publication Critical patent/JPH0723794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、開度調整可能な電動膨脹弁を備えた空気調和
装置に関し、特にその電動膨脹弁の最大開度を制限し
て、湿り運転を防止するようにしたものの改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner provided with an electric expansion valve whose opening can be adjusted, and more particularly to limiting the maximum opening of the electric expansion valve to perform wet operation. Regarding the improvement of what was made to prevent.

(従来の技術) 従来より、1台の室外ユニットに複数台の室内ユニット
が並列に接続されて構成されるマルチ型空気調和装置に
おいて、各室内ユニットの高圧液冷媒分岐管にそれぞれ
配設された電動膨脹弁の開度を室内の温度と設定温度と
の偏差に応じて制御して、各室内の負荷に応じた冷媒分
配を行う能力制御時、室内温度と設定温度との偏差が大
きいと、電動膨脹弁の開度が大きくなりすぎて、冷房運
転時には冷媒の湿り度が過大となる湿り運転となる一
方、暖房運転時には、ガス管と液管の圧力差が過小とな
って、配管の設計上制約が強くなるという問題がある。
(Prior Art) Conventionally, in a multi-type air conditioner configured by connecting a plurality of indoor units in parallel to one outdoor unit, the multi-unit air conditioner is provided in each high-pressure liquid refrigerant branch pipe of each indoor unit. When the capacity control for controlling the opening of the electric expansion valve according to the deviation between the room temperature and the set temperature and performing the refrigerant distribution according to the load in each room, when the deviation between the room temperature and the set temperature is large, The degree of opening of the electric expansion valve becomes too large, and the wetness of the refrigerant becomes excessive during cooling operation, while the pressure difference between the gas pipe and liquid pipe becomes too small during heating operation, resulting in piping design. There is a problem that the upper constraint becomes stronger.

このような問題を改善するものとして、従来、例えば特
開昭60−108633号公報に開示されるごとく、室内温度と
設定温度との偏差に比例して電動膨脹弁の開度を制御し
ながら、各室内熱交換器の出口および入口側配管にそれ
ぞれ設けた温度センサーにより冷媒過熱度を測定し、該
冷媒過熱度が一定値以下とならないように電動膨脹弁の
最大開度を制限して冷暖房時の電動膨張弁の開度過大に
よる上記問題点を解決しようとするものがある。
In order to improve such a problem, conventionally, for example, as disclosed in JP-A-60-108633, while controlling the opening of the electric expansion valve in proportion to the deviation between the room temperature and the set temperature, During the heating and cooling, the refrigerant superheat is measured by the temperature sensors provided at the outlet and inlet pipes of each indoor heat exchanger, and the maximum opening of the electric expansion valve is limited so that the refrigerant superheat does not fall below a certain value. There is an attempt to solve the above problem due to the excessive opening of the electric expansion valve.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、電動膨脹弁の最大
開度を制限する制御パラメータとして室内熱交換器出口
においての冷媒の過熱度を用いているために、各室内熱
交換器の出口および入口付近に、温度センサーを設け
て、それぞれの場所での冷媒の温度を測定する必要があ
る。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional one, since the degree of superheat of the refrigerant at the outlet of the indoor heat exchanger is used as a control parameter for limiting the maximum opening degree of the electric expansion valve, It is necessary to provide temperature sensors near the outlet and inlet of the indoor heat exchanger to measure the temperature of the refrigerant at each place.

したがって、各室内ユニット毎に2ケ以上のセンサーを
必要とし、なおかつ、冷媒の温度変動、気液混合による
測定値の変動が大きいために、制御パラメータである過
熱度の測定値変動が大きく、ハンチングを防止しきれな
いという欠点がある。
Therefore, since two or more sensors are required for each indoor unit and the variation in the measured value due to the temperature variation of the refrigerant and the gas-liquid mixing is large, the variation in the measured value of the superheat degree, which is a control parameter, is large and the hunting is large. There is a drawback in that

本発明は、斯かる点に鑑みてなされたものであり、その
目的は、上記の如く、電動膨脹弁の開度を制御して、室
内ユニットへの能力制御を行うときに、過熱度以外の安
定した制御パラメータを用いて、電動膨脹弁の最大開度
を制限し、湿り運転等の問題を防止しつつ安定した制御
を行うことにある。
The present invention has been made in view of such a point, and an object thereof is to control the opening degree of the electric expansion valve and perform capacity control to the indoor unit other than the superheat degree as described above. The stable control parameter is used to limit the maximum opening degree of the electric expansion valve, and to perform stable control while preventing problems such as wet operation.

(問題点を解決するための手段) 上記目的を達成するため、本発明の解決手段は、第1図
に示されるように、圧縮機(1)と室外熱交換器(3)
とを内蔵した1台の室外ユニット(A)に対し、室内熱
交換器(5)を内蔵した複数台の室内ユニット(B),
…(E)を並列に接続した空気調和装置を対象とする。
そして、上記各室内ユニット(B),(E)…の高圧液
冷媒分岐管にそれぞれ配設された電動膨張弁(6)と、
上記各室内ユニット(B),…(E)の吸込空気温度
(Ta)とその設定温度(Tr)との偏差に応じて対応する
電動膨脹弁(6)の開度(U)を制御する制御手段
(F)とを備える。さらに、上記各室内ユニット
(B),…(E)の吸込空気温度(Ta)と室内熱交換器
(5)の冷媒蒸発温度Te又は冷媒凝縮温度Tcとの偏差に
基づいて上記制御手段(F)による電動膨脹弁(6)の
最大開度(Umax)を制限する最大開度制限手段(J)を
備える構成にしたものである。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the solution means of the present invention is, as shown in FIG. 1, a compressor (1) and an outdoor heat exchanger (3).
In contrast to one outdoor unit (A) with a built-in and a plurality of indoor units (B) with a built-in indoor heat exchanger (5),
The target is an air conditioner in which (E) is connected in parallel.
An electric expansion valve (6) disposed in each of the high pressure liquid refrigerant branch pipes of each of the indoor units (B), (E) ...
Control for controlling the opening degree (U) of the electric expansion valve (6) corresponding to the deviation between the intake air temperature (Ta) of each indoor unit (B), ... (E) and its set temperature (Tr). And means (F). Further, the control means (F) is based on the deviation between the intake air temperature (Ta) of each indoor unit (B), ... (E) and the refrigerant evaporation temperature Te or the refrigerant condensation temperature Tc of the indoor heat exchanger (5). ), The maximum opening degree limiting means (J) for limiting the maximum opening degree (Umax) of the electric expansion valve (6) is provided.

(作用) 以上の構成により、本発明では、室内温度(Ta)と設定
温度(Tr)との偏差(Ta〜Tr)に応じて開度が制御され
る電動膨脹弁(6)によって各室内の状態に応じた適切
な冷媒分配がなされる。その際、温度差(Ta〜Tr)が大
きすぎて、電動膨脹弁(6)の開度が過大になるときに
は、最大開度制限手段(16)により、室内ユニット
(B),(E)…の吸込空気温度Taと冷媒の蒸発温度Te
又は凝縮温度Tcとの偏差に応じた値Umaxに電動膨張弁
(6)の最大開度が制限されるので、冷房運転時には、
電動膨張弁の過大な開度により湿り運転となるのが有効
に防止され、暖房運転時には、ガス管と液管との圧力差
が過小になるのが有効に防止されつつハンチング等のな
い安定した室内ユニットの能力制御が行われる。
(Operation) With the above-described configuration, in the present invention, the electric expansion valve (6) whose opening is controlled according to the deviation (Ta to Tr) between the room temperature (Ta) and the set temperature (Tr) controls the inside of each room. Appropriate refrigerant distribution is made according to the state. At that time, when the temperature difference (Ta to Tr) is too large and the opening degree of the electric expansion valve (6) becomes excessively large, the indoor unit (B), (E) ... Intake air temperature Ta and refrigerant evaporation temperature Te
Alternatively, since the maximum opening degree of the electric expansion valve (6) is limited to the value Umax corresponding to the deviation from the condensation temperature Tc, during the cooling operation,
The excessive opening of the electric expansion valve effectively prevents wet operation, and during the heating operation, the pressure difference between the gas pipe and the liquid pipe is effectively prevented from becoming too small, and stable without hunting or the like. Capacity control of the indoor unit is performed.

また、この電動膨張弁(6)の最大開度の制限は、吸込
空気温度(Ta)と冷媒の蒸発温度(Te)又は凝縮温度
(Tc)との偏差に応じて行われるが、この吸込空気温度
(Ta)の検知は既設のサーモスタットを利用して検知で
きるので、センサの数が少なくて済む。
The maximum opening degree of the electric expansion valve (6) is limited according to the difference between the intake air temperature (Ta) and the refrigerant evaporation temperature (Te) or the condensation temperature (Tc). Since the temperature (Ta) can be detected using an existing thermostat, the number of sensors can be small.

(実施例) 以下、本発明の実施例を第2図以下の図面に基づいて説
明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は、本発明を適用したマルチ型空気調和装置の冷
媒配管系統を示し、(A)は室外ユニット、(B),
(C),(D)は該室外ユニット(A)に並列に接続さ
れた室内ユニットである。上記室内ユニット(A)の内
部には、電源周波数を可変にするインバータ(1a)によ
り能力制御される圧縮機(1)と、冷房運転時に図中実
線の如く切換わり暖房運転時に図中破線の如く切換る四
路切換弁(2)と、室外熱交換器(3)とが主要機器と
して内蔵されていて、該各機器(1)〜(3)は各々冷
媒配管(8)で冷媒の流通可能に接続されている。また
上記室内ユニット(B)…(D)は同一構成であり、各
々室内熱交換器(5)を備え、かつ該各室内熱交換器
(5)の高圧液冷媒配管(8)には、冷媒流量を調節し
減圧を行う電動制御弁(6)が冷媒の流通可能にそれぞ
れ接続されている。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner to which the present invention is applied, where (A) is an outdoor unit, (B),
(C) and (D) are indoor units connected in parallel to the outdoor unit (A). Inside the indoor unit (A), a compressor (1) whose capacity is controlled by an inverter (1a) that makes the power supply frequency variable, and a solid line in the figure during cooling operation and a dashed line in the figure during heating operation The four-way switching valve (2) for switching as described above and the outdoor heat exchanger (3) are built in as main equipment, and the respective equipments (1) to (3) respectively flow the refrigerant through the refrigerant pipe (8). Connected possible. Further, the indoor units (B) ... (D) have the same configuration, each is provided with an indoor heat exchanger (5), and the high pressure liquid refrigerant pipe (8) of each indoor heat exchanger (5) has a refrigerant. Electric control valves (6) for adjusting the flow rate and reducing the pressure are connected to each other so that the refrigerant can flow.

また、(7)は上記各室内ユニット(B)…(D)の本
体ケーシングの空気吸込口付近に設置して、吸込空気温
度を検出する室温サーモスタット、(9)は上記室外ユ
ニット(A)の運転を制御する室外制御ユニット、(1
0)は該室外制御ユニット(9)に信号線にて並列に接
続され、各室内ユニット(B)…(E)の個別運転を制
御する室内制御ユニットであり、該室内制御ユニット
(10)には、第3図にその信号伝達経路を示すように上
記室温サーモスタット(7)から出力される設定値Trと
吸込空気温度Taとの偏差値ΔTr(=Ta−Tr)に応じて上
記電動膨脹弁(6)の開度を制御する制御手段としての
制御回路(F)と、予め定められた冷媒の蒸発温度Teお
よび凝縮温度Tcの値その他を記憶する記憶回路(G)
と、前記吸込空気温度Taと上記蒸発温度Teあるいは凝縮
温度Tcとの偏差ΔTe(=Ta−Te)あるいはΔTc(=Tc−
Ta)を演算する比較回路(H)と、該比較回路(I)の
出力信号に応じて上記電動膨張弁(6)の最大開度を制
限する飽和信号を制御回路(F)に出力する飽和回路
(I)とが内蔵されている。
Further, (7) is a room temperature thermostat that is installed near the air intake port of the main body casing of each of the indoor units (B) ... (D), and detects the intake air temperature, and (9) is for the outdoor unit (A). Outdoor control unit to control the operation, (1
0) is an indoor control unit that is connected in parallel to the outdoor control unit (9) by a signal line and controls the individual operation of each indoor unit (B) ... (E). Is the electric expansion valve according to the deviation value ΔTr (= Ta−Tr) between the set value Tr output from the room temperature thermostat (7) and the intake air temperature Ta as shown in the signal transmission path in FIG. A control circuit (F) as a control means for controlling the opening degree of (6), and a storage circuit (G) for storing values of a predetermined refrigerant evaporation temperature Te and condensation temperature Tc and others.
And the deviation ΔTe (= Ta−Te) or ΔTc (= Tc−) between the intake air temperature Ta and the evaporation temperature Te or the condensation temperature Tc.
Ta) and a saturation circuit that outputs a saturation signal that limits the maximum opening of the electric expansion valve (6) to the control circuit (F) according to the output signal of the comparison circuit (I). The circuit (I) is incorporated.

第2図において、冷房運転時には、上記四方切換弁
(2)は実線で示すように接続され、圧縮機(1)から
吐出される冷媒の流れは実線矢印の方向となって、冷媒
は室外熱交換器(3)を経て、各室内ユニット(B)…
(E)の高圧液冷媒分岐管に設けられた電動膨張弁
(6)にて絞り作用を受け、室内熱交換器(5)で気化
されて、冷媒配管(8)を経て再び圧縮機(1)に戻
る。
In FIG. 2, during cooling operation, the four-way switching valve (2) is connected as shown by the solid line, the flow of the refrigerant discharged from the compressor (1) is in the direction of the solid line arrow, and the refrigerant is the outdoor heat. Each indoor unit (B) through the exchanger (3) ...
The electric expansion valve (6) provided in the high pressure liquid refrigerant branch pipe of (E) receives a throttling action, is vaporized in the indoor heat exchanger (5), and again passes through the refrigerant pipe (8) to the compressor (1). ) Return to.

上記冷媒の流れにおいて、冷媒が電動弁(6)によって
絞り作用を受けるに際し、上記室内制御ユニット(10)
は下記手順にて、電動膨脹弁(6)の開度制御を行う。
まず、制御回路(F)は、上記室温サーモスタット
(7)の信号を受けて、第4図(イ)のグラフの実線に
示すように、吸込空気温度Taと設定温度Trとの偏差値
(Ta−Tr)の増大に応じて、電動膨脹弁の開度Uをリニ
アに増大させ、各室内ユニット(B)…(E)を連続的
に能力制御する。このとき、上記比較回路(H)におい
て吸込空気温度Taと上記記憶回路(G)より得られる冷
媒の蒸発温度Teとの偏差ΔTeを演算し、飽和回路(I)
は、該偏差ΔTeに応じて上記記憶回路(G)に予め記憶
されている電動膨脹弁(6)の最大開度UmaxとΔTeの関
係式に基づき、電動膨脹弁(6)の最大開度Umaxを決定
する。ここに、第5図(イ)は上記記憶回路(I)に予
め記憶されている最大開度UmaxとΔTeの関係を示し、偏
差ΔTが増大するのに比例して最大開度Umaxが比例する
実線のグラフ、あるいはUmaxがリニアに増大する破線の
グラフの関係式にしたがって、偏差ΔTeに対応する最大
開度Umaxが決定されるようなされている。上記制御回路
(F)は、上記飽和回路(I)の飽和信号Umaxを受け
て、電動膨脹弁(6)の最大開度を第4図(イ)のグラ
フに示す破線Umaxの位置に制限する。
In the flow of the refrigerant, when the refrigerant is subjected to the throttling action by the electric valve (6), the indoor control unit (10)
Controls the opening degree of the electric expansion valve (6) by the following procedure.
First, the control circuit (F) receives the signal from the room temperature thermostat (7) and, as shown by the solid line in the graph of FIG. 4 (a), the deviation value (Ta) between the intake air temperature Ta and the set temperature Tr. (-Tr), the opening U of the electric expansion valve is linearly increased to continuously control the capacity of each indoor unit (B) ... (E). At this time, a deviation ΔTe between the intake air temperature Ta and the refrigerant evaporation temperature Te obtained from the storage circuit (G) is calculated in the comparison circuit (H) to calculate the saturation circuit (I).
Is the maximum opening Umax of the electric expansion valve (6) based on the relational expression of the maximum opening Umax of the electric expansion valve (6) and ΔTe stored in advance in the storage circuit (G) according to the deviation ΔTe. To decide. FIG. 5A shows the relationship between the maximum opening Umax and ΔTe stored in advance in the storage circuit (I). The maximum opening Umax is proportional to the increase in the deviation ΔT. The maximum opening Umax corresponding to the deviation ΔTe is determined according to the relational expression of the solid line graph or the broken line graph in which Umax linearly increases. The control circuit (F) receives the saturation signal Umax of the saturation circuit (I) and limits the maximum opening of the electric expansion valve (6) to the position of the broken line Umax shown in the graph of FIG. .

次に、暖房運転時には、上記四方切換弁(2)は破線で
示されるように切換わり、冷媒の流れは破線矢印の方向
となって、各室内ユニット(B)…(E)の室内熱交換
器(5)を通過後、上記室内制御ユニット(10)により
開度が制御される上記電動膨張弁(6)にて減圧を受け
るに際し、上記室内制御ユニット(10)は下記手順に
て、電動膨脹弁(6)の開度制御を行う。まず、制御回
路(F)によって第4図(ロ)のグラフの実線に示すよ
うに、開度Uを、(Tr−Ta)の値に応じて最小開度Umin
からリニアに増大させ、各室内ユニット(B)…(E)
を連続的に能力制御する。このとき、上記比較回路
(H)において、上記記憶回路(G)より得られる冷媒
の凝縮温度Tcと吸込空気温度Taとの偏差ΔTcを演算し、
冷房運転時と同様の信号伝達を行って、偏差ΔTcに対応
する最大開度Umaxを決定する。ここに上記記憶回路
(G)には、第5図(ロ)に示すように、偏差ΔTcが増
大するのに比例する実線のグラフ、もしくはリニアに増
大する破線のグラフの関係式が記憶されている。上記制
御回路(F)は、前記飽和回路(I)の飽和信号Umaxを
受けて、電動膨脹弁(6)の最大開度を第4図(ロ)の
グラフに示す破線Umaxの位置に制限する。
Next, during the heating operation, the four-way switching valve (2) is switched as indicated by the broken line, and the flow of the refrigerant is in the direction of the broken line arrow, and the indoor heat exchange of each indoor unit (B) ... (E) is performed. When the electric expansion valve (6) whose opening is controlled by the indoor control unit (10) is subjected to decompression after passing through the device (5), the indoor control unit (10) is operated by the following procedure. The opening degree of the expansion valve (6) is controlled. First, as shown by the solid line in the graph of Fig. 4 (b), the control circuit (F) changes the opening degree U to the minimum opening degree Umin according to the value of (Tr-Ta).
To linearly increase each indoor unit (B) ... (E)
The ability is controlled continuously. At this time, in the comparison circuit (H), a deviation ΔTc between the refrigerant condensing temperature Tc obtained from the storage circuit (G) and the suction air temperature Ta is calculated,
The same signal transmission as in the cooling operation is performed to determine the maximum opening Umax corresponding to the deviation ΔTc. Here, as shown in FIG. 5B, the storage circuit (G) stores a relational expression of a solid line graph proportional to an increase in the deviation ΔTc or a linearly increasing broken line graph. There is. The control circuit (F) receives the saturation signal Umax of the saturation circuit (I) and limits the maximum opening degree of the electric expansion valve (6) to the position of the broken line Umax shown in the graph of FIG. .

上記室内制御ユニット(10)において、上記記憶回路
(G)と、上記比較回路(H)と、上記飽和回路(I)
とで、制御手段(F)により開度制御される電動膨張弁
(6)の最大開度をUmaxに制限する最大開度制限手段
(J)を構成している。
In the indoor control unit (10), the storage circuit (G), the comparison circuit (H), and the saturation circuit (I).
And constitute maximum opening limiting means (J) for limiting the maximum opening of the electric expansion valve (6) whose opening is controlled by the control means (F) to Umax.

なお、上記インバータ(1a)は、室外制御ユニット
(9)からの指令信号によって温度条件や室内ユニット
(B)…(E)の実働台数の変化に応じて、系の冷媒蒸
発温度が一定に保持されるように上記圧縮機(1)の能
力制御を行っている。また、第2図において、(15)は
室外ユニット(A)に配置される室外電動膨張弁で、冷
房運転時にはほぼ全開となり、冷媒をゆるやかに減圧
し、暖房運転時には絞られて、冷媒を室外熱交換器にて
気化させるように室外制御ユニット(9)により開度制
御されている。
The inverter (1a) keeps the refrigerant evaporation temperature of the system constant according to a change in the temperature condition and the actual number of indoor units (B) ... (E) in response to a command signal from the outdoor control unit (9). As described above, the capacity control of the compressor (1) is performed. Further, in FIG. 2, (15) is an outdoor electric expansion valve arranged in the outdoor unit (A), which is almost fully opened during the cooling operation, gradually depressurizes the refrigerant, and is squeezed during the heating operation to exhaust the refrigerant outside the room. The opening degree is controlled by the outdoor control unit (9) so as to be vaporized by the heat exchanger.

以上のように、電動膨張弁(6)の開度を吸込空気温度
Taと室温サーモスタット(7)の設定温度Trとの偏差
(Ta〜Tr)に応じて制御し、上記室内ユニット(B)…
(E)を連続的に能力制御するに際し、上記制限手段
(J)によって、電動膨脹弁(6)の開度Uを最大開度
Umaxに制限し、冷房運転時には、偏差(Ta−Tr)が大き
い場合に電動膨張弁(6)の開度Uが大きくなりすぎて
湿り運転となるのを有効に防止する。暖房運転時には、
偏差(Tr〜Ta)の大きい場合に上記電動膨張弁(6)の
開度Uが過大となって、ガス管と液管の圧力差が過小に
なるのを有効に防止する。
As described above, the opening degree of the electric expansion valve (6) is set to the intake air temperature.
The indoor unit (B) is controlled according to the deviation (Ta to Tr) between Ta and the set temperature Tr of the room temperature thermostat (7).
When continuously controlling the capacity of (E), the opening U of the electric expansion valve (6) is set to the maximum opening by the limiting means (J).
When the deviation (Ta-Tr) is large during the cooling operation, the opening U of the electric expansion valve (6) is prevented from becoming too large during the cooling operation to effectively prevent the wet operation. During heating operation,
When the deviation (Tr to Ta) is large, it is possible to effectively prevent the opening U of the electric expansion valve (6) from becoming too large and the pressure difference between the gas pipe and the liquid pipe from becoming too small.

また、上記実施例では、装置に付属する室温サーモスタ
ット(7)を利用して制御しており、特別なセンサー類
を多数必要とする過熱度を制御パラメータとする従来法
に比べ、安価に装置を構成できる。このとき、上記制限
手段(J)により設定される最大開度Umaxは、吸込空気
温度Taによって定まるようになされているので、過熱度
や過冷却度を測定するのと異なり、急激な変動がなく、
ハンチングを生ぜしめずに安定した制御を行うことがで
きる。
Further, in the above embodiment, the room temperature thermostat (7) attached to the apparatus is used for control, and the apparatus can be manufactured at a lower cost than the conventional method in which a superheat degree that requires many special sensors is used as a control parameter. Can be configured. At this time, since the maximum opening Umax set by the limiting means (J) is determined by the intake air temperature Ta, there is no abrupt change unlike the measurement of the degree of superheat or the degree of subcooling. ,
Stable control can be performed without causing hunting.

上記実施例においては、冷媒の蒸発温度Teおよび凝縮温
度Tcを一定として予め設定した値を各室内制御ユニット
(10)に記憶させたが、実際の系には、TeおよびTcの変
動が存在し得るので、実測のTeおよびTcを用いて、上記
ΔTe,ΔTcを算出し、Umaxを制御すれば、より細やかな
制御が可能である。その方法として、実測値をそのまま
用いる方法(連続法)と、予め数種のモードを設定し実
測値に応じて選別する方法(モード法)がある。また、
特に冷房運転時には、ΔTeが同じであっても、系の実際
の凝縮温度Tcが変動すれば、室内熱交換器(5)の冷媒
流量も微小変動するので、Tcとして実測値を用いて、第
6図(イ)に示すように、Umax−ΔTe特性線の勾配を変
化させた数種のモード,,を設定し、実測したTc
によってどのモードを用いるかを決定する(モード法)
か、あるいは、第7図(ロ)に示すように、Umax−ΔTe
特性線の勾配を、上限値と下限値の間で変化させる
(係数法)かによって、補正すれば、より正確な制御を
行うことができる。
In the above example, the values set in advance while the evaporation temperature Te and the condensation temperature Tc of the refrigerant were set constant were stored in each indoor control unit (10), but there are variations in Te and Tc in the actual system. Therefore, if the measured Te and Tc are used to calculate ΔTe and ΔTc, and Umax is controlled, finer control is possible. As a method therefor, there are a method of directly using the measured value (continuous method) and a method of setting several kinds of modes in advance and selecting according to the measured value (mode method). Also,
Especially during cooling operation, even if ΔTe is the same, if the actual condensation temperature Tc of the system fluctuates, the refrigerant flow rate of the indoor heat exchanger (5) also fluctuates slightly. As shown in FIG. 6 (a), several modes in which the gradient of the Umax-ΔTe characteristic line was changed were set, and the measured Tc
Determines which mode to use (mode method)
Or, as shown in Fig. 7 (b), Umax-ΔTe
If the gradient of the characteristic line is changed between the upper limit value and the lower limit value (coefficient method), it is possible to perform more accurate control by correcting the gradient.

第7図は冷媒の蒸発温度Teおよび凝縮温度Tcを実測し、
上記実施例に述べた各室内ユニット(B)…(E)を電
動膨脹弁(6)にて連続的に能力制御するための基本構
成を示す図であって、圧縮機(1)、インバータ(1
a)、四方切換弁(2)、室外熱交換器(3)、室外ユ
ニット用電動膨張弁(4)、室内熱交換器(5)、およ
び室内ユニット用電動膨張弁(6)は上記実施例と同様
に冷媒配管(8)にて接続された構成をなしている。ま
た室内ユニット(B)…(E)の空気吸込口付近には上
記実施例と同様に室温サーモスタット(7)が備えられ
ている。第7図において、(Pe)および(Pc)は、それ
ぞれ圧縮機(1)に備えられた低圧側圧力センサーおよ
び高圧側圧力センサーであって、いずれも圧力信号を電
気信号に変換して室外制御ユニット(9′)に電気配線
にて接続されている。第8図は室外制御ユニット(9)
と室内制御ユニット(10)の基本的な信号伝達経路を示
すブロック図である。上記室外ユニット(9′)は、上
記低圧側圧力センサー(Pe)および高圧側圧力センサー
(Pc)の信号を受けて、温度信号あるいはモード信号に
変換する変換回路(k)を備えている。室内制御ユニッ
ト(10)には、上記実施例と同様に制御手段としての制
御回路(F)と、比較回路(H)と、飽和回路(I)
と、記憶回路(G′)とが備えられている。ここに、変
換回路(K)からの信号伝達経路は、連続法にて実測値
TeあるいはTcを用いるときは第8図の実線の如く、モー
ド法による実測値TeあるいはTc、あるいは係数法による
実測値Tcを用いるときは、第8図の破線の如く、構成を
変えるべきものであり、第8図は基本的な構成を示すも
のである。また記憶回路(G′)はモード法を利用する
場合に、変換回路(K)のモード信号に応じて選択すべ
きTeあるいはTcの値を上記比較回路(H)に伝えるとと
もに、第7図(イ)あるいは(ロ)のグラフに示すUmax
とΔTeの関係式を記憶していて、変換回路(K)からの
Tcのモード信号あるいは係数信号に応じて選択すべきUm
axとΔTeの関係式を上記飽和回路(I)に伝えるよう組
合せに応じて構成される。なお、記憶回路(G′)は、
設定値TeあるいはTcを用いるときには上記実施例と同様
の内部構成を有している。上記比較回路(H)、記憶回
路(G′)、および飽和回路(I)によって電動膨張弁
(6)の最大開度制限手段(J′)を構成している。
In FIG. 7, the evaporation temperature Te and the condensation temperature Tc of the refrigerant are measured,
It is a figure which shows the basic composition for continuously controlling the capacity of each indoor unit (B) ... (E) described in the said Example by the electric expansion valve (6), Comprising: A compressor (1), an inverter ( 1
a), the four-way switching valve (2), the outdoor heat exchanger (3), the outdoor unit electric expansion valve (4), the indoor heat exchanger (5), and the indoor unit electric expansion valve (6) are the same as those in the above embodiment. Similarly to the above, the refrigerant pipe (8) is connected. Further, a room temperature thermostat (7) is provided in the vicinity of the air suction port of the indoor units (B) ... (E) as in the above embodiment. In FIG. 7, (Pe) and (Pc) are a low-pressure side pressure sensor and a high-pressure side pressure sensor, respectively, provided in the compressor (1), both of which convert a pressure signal into an electric signal to perform outdoor control. It is connected to the unit (9 ') by electric wiring. Figure 8 shows the outdoor control unit (9)
FIG. 3 is a block diagram showing a basic signal transmission path of an indoor control unit (10). The outdoor unit (9 ') includes a conversion circuit (k) that receives signals from the low pressure side pressure sensor (Pe) and the high pressure side pressure sensor (Pc) and converts them into a temperature signal or a mode signal. The indoor control unit (10) includes a control circuit (F) as control means, a comparison circuit (H), and a saturation circuit (I) as in the above embodiment.
And a memory circuit (G '). Here, the signal transmission path from the conversion circuit (K) is the measured value by the continuous method.
When using Te or Tc, the configuration should be changed as shown by the solid line in FIG. 8, and when using the measured value Te or Tc by the mode method or measured value Tc by the coefficient method, as shown by the broken line in FIG. Yes, FIG. 8 shows a basic configuration. When the storage circuit (G ') uses the mode method, it transmits the value of Te or Tc to be selected according to the mode signal of the conversion circuit (K) to the comparison circuit (H), and FIG. Umax shown in graph b) or b)
And the relational expression of ΔTe are stored in the conversion circuit (K).
Um to be selected according to the mode signal or coefficient signal of Tc
According to the combination, the relational expression of ax and ΔTe is transmitted to the saturation circuit (I). The memory circuit (G ') is
When the set value Te or Tc is used, the internal configuration is the same as that of the above embodiment. The comparison circuit (H), the storage circuit (G '), and the saturation circuit (I) constitute a maximum opening limiting means (J') of the electric expansion valve (6).

なお、第7図において、インバータ(1a)および室外ユ
ニット(A)に配置される室外電動弁(15)の機能は上
記実施例と同様である。
In FIG. 7, the functions of the inverter (1a) and the outdoor electric valve (15) arranged in the outdoor unit (A) are the same as those in the above embodiment.

第9図(イ)〜(チ)は、冷房運転時に実測値Teあるい
はTcを用いて電動膨張弁(6)の最大開度Umax制御を行
う場合のモード法あるいは連続法による種々の組合せ例
を示す信号伝達経路のブロック図で、(9)は室外制御
ユニット、(K)は該室外制御ユニット(9)に内蔵さ
れる変換回路、(10)は室内制御ユニット、(J′)は
該室内制御ユニット(10)に内蔵される最大開度制限手
段であり、該最大開度制限手段(J′)は室温サーモス
タット(7)からの信号Taと、上記変換回路(K)から
の実測値TeあるいはTcに関する信号とを受けて、あるい
は予め記憶している設定値Te又はTcを用いて電動膨張弁
(6)の最大開度Umaxを制限している(ここで制御手段
(F)は省略されている)。
FIGS. 9 (a) to 9 (h) show various combinations of the mode method or the continuous method when the maximum opening Umax of the electric expansion valve (6) is controlled by using the measured value Te or Tc during the cooling operation. In the block diagram of the signal transmission path shown, (9) is an outdoor control unit, (K) is a conversion circuit incorporated in the outdoor control unit (9), (10) is an indoor control unit, and (J ') is the indoor unit. The maximum opening limiting means (J ') built in the control unit (10) is a signal Ta from the room temperature thermostat (7) and a measured value Te from the conversion circuit (K). Alternatively, the maximum opening Umax of the electric expansion valve (6) is limited by receiving a signal relating to Tc or using a preset value Te or Tc stored in advance (the control means (F) is omitted here). ing).

上記TcとTeとの組合せとして、第9図(イ)は設定値Te
と実測値Tc(モード法)を用いたとき、第9図(ロ)は
設定値(Te)と実測値Tc(係数法)を用いたとき、第9
図(ハ)は実測値Te(連続法)と設定値Tcを用いたと
き、第9図(ニ)は実測値Te(連続法)と実測値Tc(モ
ード法)を用いたとき、第9図(ホ)は実測値Te(連続
法)と実測値Tc(係数法)を用いたとき、第9図(ハ)
は実測値Tc(モード法)と設定値Tcを用いたとき、第9
図(ト)は実測値Te(モード法)と実測値Tc(モード
法)を用いたとき、第9図(チ)は実測値Te(モード
法)と実測値Tc(係数法)を用いたときの信号伝達経路
を示す。
As a combination of the above Tc and Te, the set value Te is shown in FIG.
Fig. 9 (b) shows that when the set value (Te) and the measured value Tc (coefficient method) are used,
Figure (c) shows the measured value Te (continuous method) and the set value Tc, and Figure 9 (d) shows the measured value Te (continuous method) and the measured value Tc (mode method). Figure (e) shows the measured value Te (continuous method) and the measured value Tc (coefficient method).
Is the 9th value when the measured value Tc (mode method) and the set value Tc are used.
The figure (g) uses the measured value Te (mode method) and the measured value Tc (mode method), and the figure 9 (h) uses the measured value Te (mode method) and the measured value Tc (coefficient method). The signal transmission path at the time is shown.

それらの組み合せのいずれを用いるかは、適用される空
気調和機の能力、室内ユニット台数、要求される制御の
精度によって選択される。特に連続法あるいは係数法に
よる実測値を用いるときには、確実に安定した制御を行
うことができるが、それ程の精度が要求されないときに
は、モード法による実測値を用いる法がより簡便で、し
かも十分細やかな制御を行うことができ、実用的な方法
である。
Which of those combinations is used is selected according to the capacity of the air conditioner to be applied, the number of indoor units, and the required control accuracy. Especially when using the measured values by the continuous method or the coefficient method, stable control can be performed reliably, but when such accuracy is not required, the method using the measured values by the mode method is simpler and more detailed. It is a practical method that can be controlled.

第10図(イ)および(ロ)は、暖房時に、実測値Tcを用
いて電動膨張弁(6)の最大開度Umax制御を行う場合
の、連続法およびモード法による例をそれぞれ示す信号
伝達経路のブロック図で、第9図と同様の構成がなされ
ている。
FIGS. 10 (a) and 10 (b) are signal transmissions showing examples by the continuous method and the mode method, respectively, when the maximum opening Umax of the electric expansion valve (6) is controlled using the measured value Tc during heating. The block diagram of the route has the same configuration as that of FIG.

第10図(イ)は実測値Tc(連続法)と設定値Teを用いた
とき、第10図(ロ)は実測値Tc(モード法)と設定値Tc
を用いたときの信号伝達経路を示す。
Fig. 10 (a) shows the measured value Tc (continuous method) and the set value Te, and Fig. 10 (b) shows the measured value Tc (mode method) and the set value Tc.
The signal transmission path when using is shown.

第10図(イ)の組合せ例では、簡便にしかも上記実施例
よりも細やかな制御を行っており、第10図(ロ)の組合
せ例では、さらに正確な制御を行っている。
In the combination example of FIG. 10 (a), the control is performed simply and more finely than in the above-described embodiment, and in the combination example of FIG. 10 (b), the control is more accurate.

また、上記実施例では、設定値Teを用いているが、特に
精密な制御を要求される場合には、暖房運転時、電動膨
張弁(6)の共通配管出口での冷媒圧力を圧力センサー
にて測定し温度信号に変換して得られる冷媒圧力相当飽
和温度Teoを用いて系に存在し得る冷媒流量の変動を補
正することができ、上記冷房運転時の場合に述べたよう
なモード法、連続法による種々の組合せで電動膨張弁
(6)の最大開度制御を行うことができる。
Further, although the set value Te is used in the above-described embodiment, when particularly precise control is required, the refrigerant pressure at the common pipe outlet of the electric expansion valve (6) is used as the pressure sensor during heating operation. It is possible to correct the fluctuation of the refrigerant flow rate that may be present in the system by using the refrigerant pressure equivalent saturation temperature Teo obtained by converting it into a temperature signal measured by the mode method as described in the case of the cooling operation, The maximum opening control of the electric expansion valve (6) can be performed by various combinations by the continuous method.

以上に述べた、冷房運転時あるいは暖房運転時におい
て、例えば第9図(ハ)あるいは第10図(イ)に示すよ
うな連続法にて実測値TeあるいはTcを用いる代りに、第
11図に示すように、UmaxをTaの値から直接読み出させる
式を予め第8図の記憶回路(G′)に設定しておき、実
測値TeあるいはTcに応じたモード番号を変換回路(K)
から受けて選択した関係式を飽和回路(I)に伝えるよ
うにすれば、飽和回路(I)は直接Taの値を受けてUmax
を決定できるので、比較回路(H′)を省略できる。
Instead of using the measured value Te or Tc in the continuous method as shown in FIG. 9 (c) or FIG. 10 (a) during the cooling operation or the heating operation described above,
As shown in FIG. 11, a formula for directly reading Umax from the value of Ta is set in advance in the memory circuit (G ′) of FIG. 8, and the mode number corresponding to the actually measured value Te or Tc is converted into the conversion circuit ( K)
If the relational expression selected from the above is transmitted to the saturation circuit (I), the saturation circuit (I) directly receives the value of Ta and Umax
Therefore, the comparison circuit (H ') can be omitted.

また、冷媒の配管長が特に長いとき実際の冷媒の蒸発温
度Teoは、上記圧力センサー(Pe)によって測定した値T
eよりも圧力損失の分だけ高くなっている。このときに
は、インバータの周波数から補正値ΔTeを決定し、Teo
(=Te+ΔTe)を上記Teの代りに用いて正確な制御を行
うことができる。
When the refrigerant pipe length is particularly long, the actual refrigerant evaporation temperature Teo is the value T measured by the pressure sensor (Pe).
It is higher than e by the pressure loss. At this time, the correction value ΔTe is determined from the frequency of the inverter, and Teo
(= Te + ΔTe) can be used instead of Te to perform accurate control.

(発明の効果) 以上説明したように、本発明によれば、空気調和装置の
室内ユニットの電動膨張弁による能力制御において、急
激な変動のない吸込空気温度と、冷媒の蒸発温度あるい
は凝縮温度との温度差を用いて、電動膨張弁の開度制御
時の最大開度を制限するようにしたので、冷房運転時に
は、室内ユニットの実働台数や温度条件の変化に伴う湿
り運転をハンチングのない安定した状態で有効に防止す
ることができる。また暖房運転時には、ガス管と液管の
圧力差が小さくなるのを有効に防止できるので、分岐管
後の配管長差、高低差等の設定に余裕をもつことができ
る。
(Effects of the Invention) As described above, according to the present invention, in the capacity control by the electric expansion valve of the indoor unit of the air conditioner, the suction air temperature without a sudden change and the evaporation temperature or the condensation temperature of the refrigerant are set. Since the maximum opening during the opening control of the electric expansion valve is limited by using the temperature difference of the above, during the cooling operation, the wet operation accompanying the changes in the actual number of indoor units and temperature conditions can be stabilized without hunting. It can be effectively prevented in the state. Further, during the heating operation, it is possible to effectively prevent the pressure difference between the gas pipe and the liquid pipe from becoming small, so that there is a margin in setting the pipe length difference after the branch pipe, the height difference, and the like.

更に、使用するセンサーの数を少なくすることができ、
コストダウンをはかることができる。
Furthermore, the number of sensors used can be reduced,
The cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
〜第11図は本発明の実施例を示し、第2図はその冷媒系
統配管図、第3図は上記実施例の信号経路を示すブロッ
ク図、第4図(イ)および(ロ)はそれぞれ冷暖房運転
時における電動膨張弁(6)の開度Uと偏差(Ta〜Tr)
の関係を示すグラフ、第5図(イ)は最大開度UmaxとΔ
Teの関係を示すグラフ、第5図(ロ)はUmaxとΔTcの関
係を示すグラフ、第6図(イ)および(ロ)は冷房時に
それぞれモード法および係数法を用いるときのUmaxとΔ
Teの関係を示すグラフ、第7図は、実測値TeあるいはTc
を用いるときの全体構成を示す冷媒系統図、第8図はそ
の時の信号伝達経路を示すブロック図である。第9図
(イ)〜(チ)および第10図(イ)および(ロ)は実測
値TeあるいはTcを各種方法で用いるときの信号伝達経路
の組合せ例を示す概略ブロック図で、第9図(イ)〜
(チ)は冷房時、第10図(イ)および(ロ)は暖房運転
時のものである。第11図は、UmaxとTaの関係を別法によ
り求めるグラフである。 (1)…圧縮機、(3)…室外熱交換器、(5)…室内
熱交換器、(6)…電動膨張弁、(A)…室外ユニッ
ト、(B),(E)…室内ユニット、(F)…制御手
段、(J)…最大開度制限手段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 11 show an embodiment of the present invention, FIG. 2 is a refrigerant system piping diagram thereof, FIG. 3 is a block diagram showing a signal path of the above embodiment, FIGS. 4 (a) and 4 (b). ) Are deviations (Ta to Tr) of the opening U of the electric expansion valve (6) during the heating and cooling operation, respectively.
Fig. 5 (a) is a graph showing the relationship between the maximum opening Umax and Δ
Fig. 5 (b) is a graph showing the relationship between Te, Fig. 5 (b) is a graph showing the relationship between Umax and ΔTc, and Fig. 6 (a) and (b) are Umax and Δ when the mode method and the coefficient method are used during cooling, respectively.
Fig. 7 is a graph showing the relationship between Te and the measured values Te or Tc.
FIG. 8 is a refrigerant system diagram showing an overall configuration when using the, and FIG. 8 is a block diagram showing a signal transmission path at that time. 9 (a) to (h) and FIGS. 10 (a) and (b) are schematic block diagrams showing examples of combinations of signal transmission paths when the measured value Te or Tc is used in various methods. (I)~
(H) is during cooling, and FIGS. 10 (A) and (B) are during heating operation. FIG. 11 is a graph for obtaining the relationship between Umax and Ta by another method. (1) ... Compressor, (3) ... Outdoor heat exchanger, (5) ... Indoor heat exchanger, (6) ... Electric expansion valve, (A) ... Outdoor unit, (B), (E) ... Indoor unit , (F) ... Control means, (J) ... Maximum opening limit means.

フロントページの続き (56)参考文献 特開 昭62−258969(JP,A) 特開 昭60−108633(JP,A) 特開 昭49−19442(JP,A) 特開 昭60−108632(JP,A) 特開 昭58−156164(JP,A)Continuation of the front page (56) Reference JP 62-258969 (JP, A) JP 60-108633 (JP, A) JP 49-19442 (JP, A) JP 60-108632 (JP , A) JP-A-58-156164 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】圧縮機(1)と室外熱交換器(3)とを内
蔵した1台の室外ユニット(A)に対し、室内熱交換器
(5)を内蔵した複数台の室内ユニット(B),…
(E)を並列に接続した空気調和装置において、上記各
室内ユニット(B),(E)…の高圧液冷媒分岐管にそ
れぞれ配設された電動膨張弁(6)と、上記各室内ユニ
ット(B),…(E)の吸込空気温度(Ta)とその設定
温度(Tr)との偏差に応じて対応する電動膨脹弁(6)
の開度(U)を制御する制御手段(F)と、上記各室内
ユニット(B),…(E)の吸込空気温度(Ta)と室内
熱交換器(5)の冷媒蒸発温度(Te)又は冷媒凝縮温度
(Tc)との偏差に基づいて上記制御手段(F)による電
動膨脹弁(6)の最大開度(Umax)を制限する最大開度
制限手段(J)とを備えたことを特徴とする空気調和装
置。
1. A plurality of indoor units (B) having an indoor heat exchanger (5) for one outdoor unit (A) having a compressor (1) and an outdoor heat exchanger (3). ), ...
In the air conditioner in which (E) are connected in parallel, the electric expansion valves (6) respectively arranged in the high pressure liquid refrigerant branch pipes of the indoor units (B), (E) ... B), ... (E) Electric expansion valve (6) corresponding to the deviation between the intake air temperature (Ta) and its set temperature (Tr)
Means (F) for controlling the opening degree (U), the intake air temperature (Ta) of the indoor units (B), ... (E) and the refrigerant evaporation temperature (Te) of the indoor heat exchanger (5). Alternatively, a maximum opening limiting means (J) for limiting the maximum opening (Umax) of the electric expansion valve (6) by the control means (F) based on the deviation from the refrigerant condensing temperature (Tc) is provided. A characteristic air conditioner.
JP61132218A 1986-06-06 1986-06-06 Air conditioner Expired - Lifetime JPH0723794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132218A JPH0723794B2 (en) 1986-06-06 1986-06-06 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132218A JPH0723794B2 (en) 1986-06-06 1986-06-06 Air conditioner

Publications (2)

Publication Number Publication Date
JPS6396438A JPS6396438A (en) 1988-04-27
JPH0723794B2 true JPH0723794B2 (en) 1995-03-15

Family

ID=15076147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132218A Expired - Lifetime JPH0723794B2 (en) 1986-06-06 1986-06-06 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0723794B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464850A (en) * 1990-07-05 1992-02-28 Matsushita Electric Ind Co Ltd Multi-chamber type air conditioner
JP2875665B2 (en) * 1991-01-10 1999-03-31 三菱電機株式会社 Air conditioner
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JP5602556B2 (en) * 2010-09-22 2014-10-08 株式会社Nttファシリティーズ Air conditioner indoor unit blowout temperature control method

Also Published As

Publication number Publication date
JPS6396438A (en) 1988-04-27

Similar Documents

Publication Publication Date Title
US4771610A (en) Multiroom air conditioner
US4571951A (en) Electronic control for expansion valve in refrigeration system
US5214918A (en) Refrigerator and method for indicating refrigerant amount
US5809794A (en) Feed forward control of expansion valve
US6711911B1 (en) Expansion valve control
US4248055A (en) Hot gas bypass control for centrifugal liquid chillers
US4333317A (en) Superheat controller
CN107407494B (en) Air conditioner
US5782103A (en) Control arrangement for the superheat temperature of at least one evaporation of a refrigeration system
EP1856458B1 (en) Control of a refrigeration circuit with an internal heat exchanger
US20240230191A9 (en) Air conditioner and control method thereof
JPH0723794B2 (en) Air conditioner
JPH0575938B2 (en)
JP3275669B2 (en) Multi-room air conditioning system
JP2504997Y2 (en) Air conditioner
JPH0799287B2 (en) Air conditioner
JPS63290354A (en) Heat pump type air conditioner
JP2692894B2 (en) Air conditioner
JPH0156351B2 (en)
JP2904354B2 (en) Air conditioner
JPS6212218Y2 (en)
CN219415274U (en) Outdoor unit and air conditioning system
US12044451B2 (en) System and method for superheat regulation and efficiency improvement
JPS60108633A (en) Air conditioner with many separate indoor units
JPH01300164A (en) Heat pump

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term