JPH07236642A - Ultrasonic diagnostic device - Google Patents
Ultrasonic diagnostic deviceInfo
- Publication number
- JPH07236642A JPH07236642A JP3233194A JP3233194A JPH07236642A JP H07236642 A JPH07236642 A JP H07236642A JP 3233194 A JP3233194 A JP 3233194A JP 3233194 A JP3233194 A JP 3233194A JP H07236642 A JPH07236642 A JP H07236642A
- Authority
- JP
- Japan
- Prior art keywords
- width direction
- wave
- array
- data
- subject body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超音波診断装置の診断
画像の画質を向上させる技術に関し、特に超音波ビーム
の送受波の感度を向上させることにより、診断画像の画
質の向上を実現する超音波診断装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for improving the image quality of a diagnostic image of an ultrasonic diagnostic apparatus, and particularly to improving the image quality of a diagnostic image by improving the sensitivity of transmission / reception of an ultrasonic beam. The present invention relates to an ultrasonic diagnostic device.
【0002】[0002]
【従来の技術】超音波診断装置による診断画像は、超音
波振動子から超音波ビームを被検体に送波し、この送波
による被検体からのエコー信号を前記超音波振動子によ
り受波し、この受波信号を信号処理することにより得ら
れる。この診断画像をより鮮明とし、画質をより向上さ
せ、より多くの正確な情報を生体から得たいとする要望
は強い。この診断画像の画質を向上させる方法として、
前記送波、受波の感度を向上させる、又は前記信号処理
の感度を向上させる等の各種方法が検討されている。2. Description of the Related Art A diagnostic image obtained by an ultrasonic diagnostic apparatus transmits an ultrasonic beam from an ultrasonic transducer to a subject, and an echo signal from the subject due to this transmission is received by the ultrasonic transducer. , Can be obtained by processing the received signal. There is a strong demand for making this diagnostic image clearer, improving the image quality, and obtaining more accurate information from the living body. As a method to improve the image quality of this diagnostic image,
Various methods for improving the sensitivity of the wave transmission and the wave reception, or improving the sensitivity of the signal processing have been studied.
【0003】前記送波の感度を向上させる方法として、
凸型音響レンズにより、超音波ビームを集束させ、送波
の強度を向上させる方法が考えられる。この凸型音響レ
ンズにより集束された焦点近傍では、送波の強度が向上
するものの、焦点近傍以外では、送波の強度が低下し、
焦点近傍以外の感度が低下する。このように、凸型音響
レンズは、焦点が一点であるため、診断領域全体の診断
画像を感度良く得ることは、不可能である。As a method of improving the sensitivity of the transmitted wave,
A method is conceivable in which the ultrasonic beam is focused by a convex acoustic lens to improve the strength of the transmitted wave. In the vicinity of the focus focused by this convex acoustic lens, the intensity of the transmitted wave is improved, but in the vicinity of the focus, the intensity of the transmitted wave is reduced,
Sensitivity other than near the focal point decreases. As described above, since the convex acoustic lens has only one focal point, it is impossible to obtain a diagnostic image of the entire diagnostic region with high sensitivity.
【0004】一方、幅方向に所定長を有する超音波振動
子を配列方向に複数配設する振動子アレイにおいて、配
列方向の電子フォーカス法により多点焦点を行う方法が
実用化されている。この電子フォーカス法は、超音波振
動子の送波及び受波を配列方向に、多段でフォーカスさ
せ、送波及び受波の強度を向上させることにより、診断
画像の画質を向上させている。On the other hand, in a transducer array in which a plurality of ultrasonic transducers having a predetermined length in the width direction are arranged in the arrangement direction, a method of performing multi-point focusing by an electronic focusing method in the arrangement direction has been put into practical use. This electronic focusing method improves the image quality of a diagnostic image by focusing the transmitted and received waves of an ultrasonic transducer in the array direction in multiple stages to improve the intensity of the transmitted and received waves.
【0005】前記電子フォーカスを配列方向だけでな
く、幅方向にも行うことにより、送受波の感度を向上さ
せようとする提案がある。この提案では、超音波振動子
を細かく切断し、切断された超音波振動子をマトリック
ス状に配列する。このマトリックス状に配列される超音
波振動子は、送波強度を十分に保ち、かつ位置分解能を
向上させるため、十分小さくする必要がある。この十分
小さく、かつ送波強度を十分とする超音波振動子の実現
は困難のため、実現されていない。There has been a proposal to improve the sensitivity of transmission / reception by performing the electronic focus not only in the arrangement direction but also in the width direction. In this proposal, the ultrasonic transducers are finely cut, and the cut ultrasonic transducers are arranged in a matrix. The ultrasonic transducers arranged in the matrix form need to be sufficiently small in order to sufficiently maintain the transmission strength and improve the position resolution. Since it is difficult to realize an ultrasonic transducer that is sufficiently small and has a sufficient transmission strength, it has not been realized.
【0006】これに対し、深さ方向に連続して感度を得
る「石井、佐々木:“開口合成超音波探傷法に関する基
礎検討”、非破壊検査、Vol.35、No.4、P3
26、(1985)」等による開口合成法の提案があ
る。この開口合成法は超音波ビームを集束させず、逆に
超音波ビームを深さ方向に連続的に拡散させ、開口範囲
において、前記振動子アレイの各超音波振動子で送受波
を順次行い、被検体からのエコー信号の受波を整相加算
することにより、感度を向上させる方法である。この開
口合成法では、前記振動子アレイの配列方向の長さであ
る開口をできるだけ広くし、この開口の全領域におい
て、各超音波振動子からの送受波を行う必要があり、各
超音波振動子の超音波ビームの開口角をできるだけ広く
する必要がある。この開口合成法により配列方向に連続
して感度を得ることを実現しているが、電子フォーカス
法以上の感度を得るには至っていない。On the other hand, "Ishii, Sasaki:" Basic study on synthetic aperture ultrasonic flaw detection method "", non-destructive inspection, Vol. 35, No. 4, P3, which obtains sensitivity continuously in the depth direction.
26, (1985) ”and the like, there is a proposal of an aperture synthesis method. In this aperture synthesis method, the ultrasonic beam is not focused, on the contrary, the ultrasonic beam is continuously diffused in the depth direction, and in the aperture range, transmission and reception are sequentially performed by each ultrasonic transducer of the transducer array, This is a method of improving sensitivity by phasing addition of the received echo signals from the subject. In this aperture synthesis method, it is necessary to make the aperture, which is the length in the array direction of the transducer array, as wide as possible, and to transmit and receive waves from each ultrasonic transducer in the entire area of this aperture. It is necessary to make the aperture angle of the ultrasonic beam of the child as wide as possible. Although it has been possible to continuously obtain sensitivity in the array direction by this aperture synthesis method, it has not reached the sensitivity higher than that of the electronic focusing method.
【0007】[0007]
【発明が解決しようとする課題】上記のように、超音波
ビームの配列方向を集束させる電子フォーカス法を用い
た超音波診断装置が実用化され、診断画像が得られてい
る。しかし、診断画像をより鮮明とし、画質をより向上
させ、より多くの正確な情報を生体から得たいとする強
い要望がある。このため、診断画像の感度を向上させる
方法として、配列方向及び幅方向に電子フォーカスする
方法の提案があるが、超音波振動子を十分小さく、かつ
送波強度を十分とすることは困難のため、実現されてい
ない。また、開口合成法により配列方向に連続して感度
を得ることを実現しているが、電子フォーカス法以上の
感度を得るには至っていない。As described above, an ultrasonic diagnostic apparatus using the electronic focus method for focusing the array direction of ultrasonic beams has been put into practical use and diagnostic images have been obtained. However, there is a strong desire to make diagnostic images clearer, improve image quality, and obtain more accurate information from the living body. Therefore, as a method of improving the sensitivity of the diagnostic image, there is a proposal of a method of electronically focusing in the array direction and the width direction, but it is difficult to make the ultrasonic transducer sufficiently small and the transmission strength sufficient. , Not realized. Further, although it has been possible to continuously obtain sensitivity in the array direction by the aperture synthesis method, it has not reached the sensitivity higher than that of the electronic focusing method.
【0008】本発明は、上記のような問題点を解決する
ためになされたもので、超音波ビームの送受波の感度を
向上させ、診断画像の画質を向上させる超音波診断装置
の実現を目的とする。The present invention has been made to solve the above problems, and an object thereof is to realize an ultrasonic diagnostic apparatus which improves the sensitivity of transmission and reception of an ultrasonic beam and improves the quality of diagnostic images. And
【0009】[0009]
【課題を解決するための手段】幅方向に所定長を有する
超音波振動子を配列方向に複数配設する振動子アレイを
備える超音波診断装置において、前記幅方向に前記振動
子アレイを機械的に揺動させるアレイ揺動手段と、前記
各超音波振動子の焦点距離を短距離とし、この各超音波
振動子の送波を幅方向にフォーカスさせる近傍フォーカ
ス手段と、前記振動子アレイの送受波を配列方向に電子
フォーカスさせる電子フォーカス手段と、前記アレイ揺
動手段により前記振動子アレイを揺動させつつ、前記近
傍フォーカス手段及び前記電子フォーカス手段を用い被
検体に送波を放射する送波手段と、前記振動子アレイの
揺動位置毎に被検体からの反射波を受波し、この複数の
受波の位相を同期させた後加算する整相加算手段とを備
える。In an ultrasonic diagnostic apparatus including a transducer array in which a plurality of ultrasonic transducers having a predetermined length in the width direction are arranged in the arrangement direction, the transducer array is mechanically arranged in the width direction. Array oscillating means for oscillating the ultrasonic transducers, proximity focusing means for focusing the transmission of each ultrasonic transducer in the width direction with a short focal distance of each ultrasonic transducer, and transmission / reception of the transducer array. Electronic focusing means for electronically focusing waves in the array direction, and wave transmission for radiating a wave to the subject using the proximity focusing means and the electronic focusing means while oscillating the transducer array by the array oscillating means And a phasing addition unit that receives reflected waves from the subject for each swing position of the transducer array, synchronizes the phases of the plurality of received waves, and then adds them.
【0010】[0010]
【作用】本発明において、焦点距離を短距離として幅方
向にフォーカスさせ、この焦点より遠距離において超音
波ビームを幅方向に拡散させ、かつ幅方向に機械的に揺
動させつつ、配列方向に電子フォーカスしながら被検体
に超音波ビームを送波し、各揺動位置で被検体からのエ
コー信号を受波し、この受波の位相を同期させ、これを
整相加算したデータを診断画像用データとして得られ
る。In the present invention, the focal length is set to a short distance to focus in the width direction, and at a distance from this focus, the ultrasonic beam is diffused in the width direction and mechanically oscillated in the width direction while being aligned in the arrangement direction. An ultrasonic beam is transmitted to the subject while electronically focusing, echo signals from the subject are received at each swing position, the phases of the received waves are synchronized, and the data obtained by phasing and adding the received signals is used as a diagnostic image. It is obtained as data for use.
【0011】[0011]
【実施例】本実施例は、振動子アレイの揺動方向につい
て、開口合成法を適用するに際して、超音波拡散用の音
響レンズを用いて、送波される超音波をあえて拡散させ
ることを特徴とする。また、拡散用音響レンズとして曲
率の大きい凸レンズを用い、開口合成の利点を得られに
くい振動子近傍においては音響パワーを向上させ、一
方、振動子遠方については出来る限り多くの揺動位置か
らの送波を利用して開口合成を効率的に行なうことを特
徴とする。EXAMPLE This example is characterized in that when the aperture synthesis method is applied in the oscillation direction of the transducer array, the ultrasonic wave to be transmitted is intentionally diffused by using an acoustic lens for ultrasonic wave diffusion. And In addition, a convex lens with a large curvature is used as the diffusion acoustic lens to improve the acoustic power in the vicinity of the oscillator where it is difficult to obtain the advantages of aperture synthesis, while transmitting far from the oscillator from as many oscillation positions as possible. It is characterized in that aperture synthesis is efficiently performed using waves.
【0012】以下、図を用いて本発明の実施例を説明す
る。図1に振動子アレイを幅方向に機械的に揺動させつ
つ、送受波を行う原理図を示す。図1(a)は、振動子
アレイを幅方向の軌道W上を点A、B、Cと順に機械的
に揺動させつつ、超音波ビームを振動子アレイから被検
体に送波し、この送波による被検体からの反射波を受波
する場合を示す。An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a principle diagram of transmitting and receiving waves while mechanically oscillating the transducer array in the width direction. In FIG. 1A, an ultrasonic beam is transmitted from a transducer array to a subject while mechanically oscillating the transducer array on a track W in the width direction in the order of points A, B, and C. The case where the reflected wave from the subject by the transmitted wave is received is shown.
【0013】この点A、B、Cから被検体Pまでの距離
AP、BP、CPをLA 、LB 、LC とし、音速をcと
すれば、送受波による超音波ビームの各点A、B、Cか
ら被検体までの往復時間tA 、tB 、tC は、各々tA
=2LA /c、tB =2LB/c、tC =2LC /cで
あり、各々の点A、B、Cでは反射ビームの送信から受
信までの時間が異なる。この各点での送受波の時間差を
含む受波信号を図1(b)に示す。この超音波ビームの
送受波に要する時間と超音波振動子の位置とは、図1
(b)に示されるように1対1に対応し、前記時間差に
よる位相の同期をとり整相加算することにより、軌道W
の揺動範囲を開口として実現する。If the distances AP, BP, CP from the points A, B, C to the subject P are L A , L B , L C and the speed of sound is c, each point A of the ultrasonic beam due to transmission and reception will be described. , B, C to the subject t A , t B , t C are respectively t A
= 2L A / c, t B = 2L B / c, t C = 2L C / c, and the points A, B, and C have different times from transmission to reception of the reflected beam. FIG. 1B shows a received signal including the time difference between transmission and reception at each point. The time required for transmitting and receiving the ultrasonic beam and the position of the ultrasonic transducer are shown in FIG.
As shown in (b), there is a one-to-one correspondence, and the orbit W
The swing range of is realized as an opening.
【0014】図2に上記を実現するためのブロック図を
示す。図2において、送信回路部22により、振動子ア
レイ駆動部21を制御し、振動子アレイの送波を配列方
向に電子走査し、焦点距離方向に多段フォーカスする電
子フォーカス手段により被検体に超音波ビームを送波す
る。この被検体からの反射波であるエコー信号を前記振
動子アレイにより受波し、この受波を配列方向の焦点合
成処理部23により各電子走査位置と多段フォーカス位
置とを組み合わせ合成処理した各焦点位置のデータをA
/D変換部24において、デジタル信号に変換後、エコ
ーデータメモリ部25に格納する。FIG. 2 shows a block diagram for realizing the above. In FIG. 2, the transmission circuit unit 22 controls the transducer array drive unit 21, electronically scans the transmission waves of the transducer array in the array direction, and ultrasonically scans the subject with electronic focusing means for multi-stage focusing in the focal length direction. Transmit the beam. An echo signal, which is a reflected wave from the subject, is received by the transducer array, and the received waves are combined and processed by the focus combining processing unit 23 in the array direction to combine and focus each electronic scan position and each focus. Position data is A
The signal is converted into a digital signal in the / D converter 24 and then stored in the echo data memory 25.
【0015】また、図1(b)で示したように、前記振
動子アレイの幅方向の各揺動位置と送受波の遅れ時間と
は1対1に対応し、この対応を関係づけるデータ、及び
式を揺動制御データメモリ部28に予め格納させてお
く。Further, as shown in FIG. 1B, each swing position in the width direction of the transducer array and the delay time of transmission / reception have a one-to-one correspondence, and data relating this correspondence, And the equation are stored in the swing control data memory unit 28 in advance.
【0016】また、前記振動子アレイ駆動部21により
前記振動子アレイの幅方向の全揺動位置の各揺動位置毎
に、順次前記エコーデータメモリ部25の所定アドレス
への格納を行う。その後、幅方向の整相加算部26によ
り、エコーデータメモリ部25のデータと揺動制御デー
タメモリ部28とを対応させ揺動位置毎の送受波の遅れ
時間による位相差を同期させることにより、前記送受波
の遅れ時間をキャンセルさせ、全揺動位置において電子
フォーカス手段により送波し、被検体からの受波データ
を整相加算する。以上により、揺動範囲を開口とする、
電子フォーカス手段によるデータが得られるため、開口
が超音波振動子の幅長から揺動領域まで広がり受波感度
が向上する。この幅方向の整相加算部26の出力結果を
D/A変換部29において、アナログ信号に変換後、C
RT表示部20に画像表示する。Further, the transducer array driving section 21 sequentially stores the respective swing positions in the width direction of the transducer array at predetermined swing addresses in the echo data memory section 25. After that, the phasing addition unit 26 in the width direction associates the data of the echo data memory unit 25 with the oscillation control data memory unit 28 to synchronize the phase difference due to the delay time of the wave transmission / reception for each oscillation position, The delay time of the wave transmission / reception is canceled, the wave is transmitted by the electronic focusing means at all swing positions, and the wave reception data from the subject is phased and added. From the above, the swing range is defined as an opening,
Since the data obtained by the electronic focusing means is obtained, the aperture is expanded from the width length of the ultrasonic transducer to the swing region, and the wave receiving sensitivity is improved. The output result of the phasing addition unit 26 in the width direction is converted into an analog signal in the D / A conversion unit 29, and then C
An image is displayed on the RT display unit 20.
【0017】前記振動子アレイ駆動部21の構成を図3
に示す。振動子アレイ駆動部21は、幅方向31にエン
コーダ35を設けたモータ34により、機械的に振動子
アレイ30を揺動させるアレイ揺動手段と、前記振動子
アレイ30からの送波を配列方向32に電子走査させつ
つ、焦点距離方向33に多段フォーカスさせる電子フォ
ーカス手段と、前記振動子アレイ30を前記幅方向31
に揺動させつつ、前記電子フォーカス手段により送波を
被検体に放射する送波手段と、前記振動子アレイ30の
揺動位置毎に被検体からの反射波を受波する手段を備え
る。この複数の受波は、図2の幅方向の整相加算部26
により位相を同期させた後、整相加算を行う。FIG. 3 shows the structure of the vibrator array drive section 21.
Shown in. The transducer array driving unit 21 includes an array swinging unit that mechanically swings the transducer array 30 by a motor 34 having an encoder 35 provided in the width direction 31, and an array direction for transmitting waves from the transducer array 30. An electronic focusing means for focusing in multiple stages in the focal length direction 33 while electronically scanning 32, and the transducer array 30 in the width direction 31.
The electronic focusing means includes a transmitting means for radiating a transmitted wave to the subject while swinging the same, and a means for receiving a reflected wave from the subject for each swing position of the transducer array 30. The plurality of waves are received by the phasing addition unit 26 in the width direction of FIG.
After synchronizing the phases with, the phasing addition is performed.
【0018】また、前記幅方向に凸型音響レンズを用い
た場合、送波の焦点近傍の強度を向上させ、焦点近傍の
診断画像の感度を向上させられるが、焦点近傍以外の感
度を劣化させることを、従来例で説明した。しかし、超
音波ビームを集束させる領域は、超音波振動子から焦点
までの間であり、焦点から遠距離の位置では超音波ビー
ムが拡散される。ここで、もし焦点距離を診断領域の最
短深さ方向の距離に比べ十分短い凸型音響レンズを用い
るならば、診断領域において、焦点距離方向においても
一点焦点とはならない。このように、診断領域の最短深
さ方向の距離に比べ十分短い焦点距離の凸型音響レンズ
を幅方向に対して用い、超音波ビームを焦点から遠距離
の位置で幅方向に対して拡散させることにより、受波感
度を向上させる方法が考えられる。Further, when the convex acoustic lens is used in the width direction, the intensity of the transmitted wave near the focus can be improved and the sensitivity of the diagnostic image near the focus can be improved, but the sensitivity other than near the focus is deteriorated. This has been described in the conventional example. However, the region where the ultrasonic beam is focused is between the ultrasonic transducer and the focal point, and the ultrasonic beam is diffused at a position far from the focal point. Here, if a convex acoustic lens whose focal length is sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is used, the one-point focus is not obtained in the focal length direction in the diagnostic region. In this way, the convex acoustic lens having a focal length sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is used in the width direction, and the ultrasonic beam is diffused in the width direction at a position far from the focus. Therefore, a method of improving the receiving sensitivity can be considered.
【0019】この焦点距離を、診断領域の最短深さ方向
の距離に比べ十分短くした凸型音響レンズを幅方向に用
いた場合の受波感度のシュミレーション結果を図4、5
に示す。また、焦点距離を従来と同等とした凸型音響レ
ンズを幅方向に用いた場合の受波感度のシュミレーショ
ン結果を図6、7に示す。Simulation results of the wave receiving sensitivity when a convex acoustic lens having a focal length sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is used in the width direction are shown in FIGS.
Shown in. 6 and 7 show simulation results of wave receiving sensitivity when a convex acoustic lens having a focal length equivalent to that of the conventional one is used in the width direction.
【0020】この図4〜7によるシュミレーションの条
件は、超音波ビームの送波周波数を3.5MHz、超音
波振動子の幅長を10mm、配列方向の長さを無限長、
配列方向の配設数を1個、幅方向の揺動半径を80mm
とし、被検体を水面とした時の深さ方向に対する幅方向
の受波感度である。ここで、X[mm]は幅方向の距
離、Y[mm]は被検体の深さ方向の距離、Z[任意単
位]は受波感度を示し、X、Yの単位長をそれぞれ、
0.3、5mmとする。The simulation conditions shown in FIGS. 4 to 7 are as follows: the transmission frequency of the ultrasonic beam is 3.5 MHz, the width of the ultrasonic transducer is 10 mm, and the length in the array direction is infinite.
The number of arrangement in the arrangement direction is 1, and the swinging radius in the width direction is 80 mm
And the receiving sensitivity in the width direction with respect to the depth direction when the subject is the water surface. Here, X [mm] is a distance in the width direction, Y [mm] is a distance in the depth direction of the subject, Z [arbitrary unit] is the wave receiving sensitivity, and the unit lengths of X and Y are respectively:
0.3 and 5 mm.
【0021】図4、5は、凸型音響レンズの幅方向の焦
点距離を20mmとし、図6、7は、凸型音響レンズの
幅方向の焦点距離を80mmとし、さらに図4、6は幅
方向の揺動を行わない場合、図5、7は幅方向の揺動を
行った場合のシュミレーション結果である。4 and 5 have a focal length in the width direction of the convex acoustic lens of 20 mm, FIGS. 6 and 7 have a focal length of 80 mm in the width direction of the convex acoustic lens, and FIGS. 5 and 7 show simulation results when swinging in the width direction is performed without swinging in the direction.
【0022】初めに、幅方向に揺動を行わない場合のシ
ュミレーション結果を検討する。焦点距離が80mmで
ある図6は、深さ方向に対しては、ほぼ全域で受波があ
る程度絞られているが、焦点近傍以外の領域では、感度
が下がり、かつ振動子近傍での音場が乱れている。一
方、焦点距離が20mmである図4では、振動子近傍の
感度は上がり、それ以外では感度が低下しているもの
の、音場が一様に広がり、音場の乱れを生じていない。First, a simulation result in the case of not swinging in the width direction will be examined. In FIG. 6 in which the focal length is 80 mm, the received wave is narrowed to some extent in the depth direction, but the sensitivity is reduced in the area other than the vicinity of the focus and the sound field near the transducer is reduced. Is disturbed. On the other hand, in FIG. 4 in which the focal length is 20 mm, the sensitivity in the vicinity of the transducer is increased and the sensitivity is reduced in other cases, but the sound field is uniformly spread and the sound field is not disturbed.
【0023】次に、幅方向の揺動を行う場合のシュミレ
ーション結果を検討する。焦点距離が80mmである図
7は、前記揺動を行わない場合の図6に比べ、深さ方向
のほぼ全域で感度が向上しているものの、図6におい
て、振動子近傍で乱れていた音場は、幅方向の揺動によ
り、受波が幅方向に重なり合い、幅方向の中央部で、一
段と音場の乱れが拡大されている。一方、焦点距離が2
0mmである図5では、前記揺動を行わない場合の図4
において、音場の乱れは生じていないものの、振動子近
傍以外では感度が低下していた、これが図5では、音場
の乱れを生じさせないままで、被検体の深さ方向のほぼ
全域で感度を上昇させている。Next, the simulation result when swinging in the width direction will be examined. In FIG. 7 in which the focal length is 80 mm, the sensitivity is improved in almost the entire depth direction as compared with FIG. 6 in the case where the rocking is not performed, but in FIG. In the field, the received waves are overlapped in the width direction due to the oscillation in the width direction, and the disturbance of the sound field is further expanded at the central portion in the width direction. On the other hand, the focal length is 2
In FIG. 5, which is 0 mm, FIG.
In Fig. 5, although the sound field was not disturbed, the sensitivity was deteriorated except in the vicinity of the transducer. This means that in Fig. 5, the sensitivity is not affected in the sound field and the sensitivity is almost over the entire depth direction. Is rising.
【0024】以上のように、焦点距離が診断領域の最短
深さ方向の距離に比べ十分短い凸型音響レンズを用い、
診断領域において超音波ビームを幅方向に対し拡散さ
せ、かつ幅方向に機械的に揺動させ、受波を開口合成す
ることにより、深さ方向に連続的に受波感度を向上させ
ることが示された。As described above, the convex acoustic lens whose focal length is sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is used,
In the diagnostic area, ultrasonic waves are diffused in the width direction, mechanically oscillated in the width direction, and the received waves are aperture-synthesized to continuously improve the receiving sensitivity in the depth direction. Was done.
【0025】なお、上記において、幅方向の揺動とし
て、円弧状を揺動する場合を示したが、幅方向に直線上
に揺動させても同様の効果がある。また、幅方向に送波
を拡散させる方法として、焦点距離を診断領域の最短深
さ方向の距離に比べ十分短い凸型音響レンズを用いる場
合を示したが、凹型音響レンズにより超音波ビームを幅
方向に対し拡散させても同様の効果がある。すなわち、
超音波拡散用の音響レンズを用いればよい。In the above description, the case of swinging in an arc shape as the swing in the width direction is shown, but the same effect can be obtained by swinging in a straight line in the width direction. Also, as a method of diffusing the transmitted wave in the width direction, the case where a convex acoustic lens whose focal length is sufficiently shorter than the distance in the shortest depth direction of the diagnostic region is used is shown. The same effect can be obtained by diffusing in the direction. That is,
An acoustic lens for ultrasonic diffusion may be used.
【0026】[0026]
【発明の効果】以上説明したように、本発明において、
整相加算したデータを診断画像用データとすることによ
り、幅方向に開口合成を行い、幅方向の受波感度を深さ
方向に連続的に向上させ、かつ配列方向に電子フォーカ
スを行い、配列方向の送受波の強度を向上させる。この
ように配列方向に電子フォーカスさせつつ、幅方向に開
口合成することにより、送受波強度を電子フォーカス法
と同等とし、かつ受波感度を電子フォーカス法以上とす
ることにより診断画像の画質を向上させる超音波診断装
置の提供を可能とする。As described above, in the present invention,
By using the data obtained by phasing and addition as diagnostic image data, aperture synthesis is performed in the width direction, the receiving sensitivity in the width direction is continuously improved in the depth direction, and electronic focusing is performed in the array direction. Improve the strength of transmitted and received waves in the direction. By electronically focusing in the array direction and combining apertures in the width direction in this way, the transmitted / received wave intensity is made equal to that of the electronic focus method, and the wave receiving sensitivity is made higher than that of the electronic focus method to improve the image quality of the diagnostic image. It is possible to provide an ultrasonic diagnostic apparatus for the above.
【図1】本発明の一実施例に係る振動子アレイを幅方向
に揺動させつつ、送受波を行う原理図である。FIG. 1 is a principle diagram of transmitting and receiving a wave while swinging a transducer array according to an embodiment of the present invention in a width direction.
【図2】本発明の一実施例に係る振動子アレイを幅方向
に揺動させつつ、送受波を行うブロック構成図である。FIG. 2 is a block configuration diagram for transmitting and receiving a wave while swinging the transducer array according to the embodiment of the present invention in the width direction.
【図3】本発明の一実施例に係る振動子アレイ駆動部の
構成図である。FIG. 3 is a configuration diagram of a transducer array driving unit according to an embodiment of the present invention.
【図4】焦点距離20mm、揺動なしの場合の超音波振
動子の受波の感度分布のシュミレーション結果を示す図
である。FIG. 4 is a diagram showing a simulation result of a sensitivity distribution of received waves of the ultrasonic transducer when the focal length is 20 mm and there is no oscillation.
【図5】本発明の一実施例に係る、焦点距離20mm、
揺動ありの場合の超音波振動子の受波の感度分布のシュ
ミレーション結果を示す図である。FIG. 5 is a focal length of 20 mm according to an embodiment of the present invention,
It is a figure which shows the simulation result of the sensitivity distribution of the received wave of an ultrasonic transducer | vibrator in the case of an oscillation.
【図6】焦点距離80mm、揺動なしの場合の超音波振
動子の受波の感度分布のシュミレーション結果を示す図
である。FIG. 6 is a diagram showing a simulation result of a sensitivity distribution of received waves of the ultrasonic transducer when the focal length is 80 mm and there is no oscillation.
【図7】焦点距離80mm、揺動ありの場合の超音波振
動子の受波の感度分布のシュミレーション結果を示す図
である。FIG. 7 is a diagram showing a simulation result of a sensitivity distribution of received waves of the ultrasonic transducer when the focal length is 80 mm and there is swinging.
21 振動子アレイ駆動部 23 配列方向の焦点合成処理部 25 エコーデータメモリ部 26 幅方向の整相加算部 27 揺動制御部 28 揺動制御データメモリ部 30 振動子アレイ 31 配列方向 32 幅方向 33 焦点距離方向 34 モータ 35 エンコーダ 21 Transducer Array Drive Unit 23 Array Focus Focus Processing Unit 25 Echo Data Memory Unit 26 Width Direction Phasing Addition Unit 27 Oscillation Control Unit 28 Oscillation Control Data Memory Unit 30 Oscillator Array 31 Array Direction 32 Width Direction 33 Focal length direction 34 Motor 35 Encoder
Claims (1)
配列方向に複数配設する振動子アレイを備える超音波診
断装置において、 前記幅方向に前記振動子アレイを機械的に揺動させるア
レイ揺動手段と、 前記各超音波振動子の焦点距離を短距離とし、この超音
波振動子の送波を幅方向にフォーカスさせる近傍フォー
カス手段と、 前記振動子アレイの送受波を配列方向に電子フォーカス
させる電子フォーカス手段と、 前記アレイ揺動手段により前記振動子アレイを揺動させ
つつ、前記近傍フォーカス手段及び前記電子フォーカス
手段を用い被検体に送波を放射する送波手段と、 前記振動子アレイの揺動位置毎に被検体からの反射波を
受波し、この複数の受波の位相を同期させた後加算する
整相加算手段と、 を備えることを特徴とする超音波診断装置。1. An ultrasonic diagnostic apparatus comprising a transducer array in which a plurality of ultrasonic transducers having a predetermined length in the width direction are arranged in the arrangement direction, wherein the transducer array is mechanically oscillated in the width direction. Array oscillating means, proximity focusing means for focusing the ultrasonic transducers in the width direction by making the focal length of each of the ultrasonic transducers a short distance, and transmitting and receiving waves of the transducer array in the array direction. Electronic focusing means for electronically focusing, wave sending means for oscillating the transducer array by the array oscillating means, and radiating a wave to a subject using the near field focusing means and the electronic focusing means; An ultrasonic diagnostic apparatus comprising: a phasing addition unit that receives reflected waves from the subject for each swing position of the child array, synchronizes the phases of the plurality of received waves, and then adds them. Disconnection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6032331A JP2723464B2 (en) | 1994-03-02 | 1994-03-02 | Ultrasound diagnostic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6032331A JP2723464B2 (en) | 1994-03-02 | 1994-03-02 | Ultrasound diagnostic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07236642A true JPH07236642A (en) | 1995-09-12 |
JP2723464B2 JP2723464B2 (en) | 1998-03-09 |
Family
ID=12355968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6032331A Expired - Fee Related JP2723464B2 (en) | 1994-03-02 | 1994-03-02 | Ultrasound diagnostic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2723464B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009028366A (en) * | 2007-07-27 | 2009-02-12 | Toshiba Corp | Ultrasonic diagnostic apparatus |
JP2010527015A (en) * | 2007-05-15 | 2010-08-05 | シーメンス アクチエンゲゼルシヤフト | Nondestructive material inspection method and apparatus for inspection object using ultrasonic wave |
JP2012040174A (en) * | 2010-08-19 | 2012-03-01 | Canon Inc | Subject information acquisition device |
JP2012061141A (en) * | 2010-09-16 | 2012-03-29 | Canon Inc | Apparatus and method for acquiring subject information |
JP2014050729A (en) * | 2013-10-15 | 2014-03-20 | Canon Inc | Device |
US9116225B2 (en) | 2009-05-25 | 2015-08-25 | Canon Kabushiki Kaisha | Measuring apparatus |
JP2016104279A (en) * | 2016-02-29 | 2016-06-09 | キヤノン株式会社 | Subject information acquisition apparatus and subject information acquisition method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58183148A (en) * | 1982-04-19 | 1983-10-26 | 株式会社東芝 | Ultrasonic diagnostic apparatus |
JPS6431047A (en) * | 1987-07-28 | 1989-02-01 | Fuji Electric Co Ltd | Composite ultrasonic probe of ultrasonic diagnostic apparatus |
JPH0443957A (en) * | 1990-06-11 | 1992-02-13 | Hitachi Ltd | Ultrasonic image pickup system |
JPH05344975A (en) * | 1992-06-15 | 1993-12-27 | Toshiba Corp | Ultrasonic wave diagnosing system |
-
1994
- 1994-03-02 JP JP6032331A patent/JP2723464B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58183148A (en) * | 1982-04-19 | 1983-10-26 | 株式会社東芝 | Ultrasonic diagnostic apparatus |
JPS6431047A (en) * | 1987-07-28 | 1989-02-01 | Fuji Electric Co Ltd | Composite ultrasonic probe of ultrasonic diagnostic apparatus |
JPH0443957A (en) * | 1990-06-11 | 1992-02-13 | Hitachi Ltd | Ultrasonic image pickup system |
JPH05344975A (en) * | 1992-06-15 | 1993-12-27 | Toshiba Corp | Ultrasonic wave diagnosing system |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010527015A (en) * | 2007-05-15 | 2010-08-05 | シーメンス アクチエンゲゼルシヤフト | Nondestructive material inspection method and apparatus for inspection object using ultrasonic wave |
JP2009028366A (en) * | 2007-07-27 | 2009-02-12 | Toshiba Corp | Ultrasonic diagnostic apparatus |
US8241218B2 (en) | 2007-07-27 | 2012-08-14 | Kabushiki Kaisha Toshiba | Ultrasonic diagnostic apparatus |
US9116225B2 (en) | 2009-05-25 | 2015-08-25 | Canon Kabushiki Kaisha | Measuring apparatus |
JP2012040174A (en) * | 2010-08-19 | 2012-03-01 | Canon Inc | Subject information acquisition device |
JP2012061141A (en) * | 2010-09-16 | 2012-03-29 | Canon Inc | Apparatus and method for acquiring subject information |
US9146305B2 (en) | 2010-09-16 | 2015-09-29 | Canon Kabushiki Kaisha | Subject information acquiring apparatus and subject information acquiring method |
JP2014050729A (en) * | 2013-10-15 | 2014-03-20 | Canon Inc | Device |
JP2016104279A (en) * | 2016-02-29 | 2016-06-09 | キヤノン株式会社 | Subject information acquisition apparatus and subject information acquisition method |
Also Published As
Publication number | Publication date |
---|---|
JP2723464B2 (en) | 1998-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6790182B2 (en) | Ultrasound system and ultrasound diagnostic apparatus for imaging scatterers in a medium | |
JPH06125908A (en) | Ultrasonic diagnostic device | |
US5901708A (en) | Method and apparatus for forming ultrasonic three-dimensional images using cross array | |
JP3290092B2 (en) | Ultrasound diagnostic equipment | |
US5024093A (en) | Fan-shape scanning ultrasonic flaw detecting apparatus | |
JP2723464B2 (en) | Ultrasound diagnostic equipment | |
JP2000325344A (en) | Ultrasonic diagnostic apparatus | |
JPH06114056A (en) | Ultrasonic diagnostic apparatus | |
JPH10179579A (en) | Utrasonograph | |
JPH02147052A (en) | Electronic scanning type ultrasonic diagnosing device | |
JPH08266540A (en) | Ultrasonic diagnostic system | |
JPH06339479A (en) | Ultrasonic diagnostic device | |
JPH0862196A (en) | Ultrasonic diagnostic apparatus | |
JPS60242365A (en) | Ultrasonic inspecting device | |
JPH02228952A (en) | Ultrasonic diagnostic apparatus | |
JPH0678922A (en) | Ultrasonic diagnostic device | |
JP4154043B2 (en) | Ultrasonic imaging device | |
JPS59115027A (en) | Ultrasonic diagnostic apparatus | |
JPH0292344A (en) | Ultrasonic probe and ultrasonic diagnostic apparatus equipped with same probe | |
JPH07265305A (en) | Ultrasonic diagnostic apparatus | |
JPH07120244A (en) | Visualizing method in supersonic photographing device | |
JP2569024B2 (en) | Ultrasound diagnostic equipment | |
JP2515804B2 (en) | Fan-type scanning ultrasonic flaw detector | |
JPH0479943A (en) | Ultrasonic diagnosing device | |
JPH06237931A (en) | Imaging method in ultrasonic image pickup device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101128 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |