[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07218740A - Optical fiber polarization device and measuring instrument using same - Google Patents

Optical fiber polarization device and measuring instrument using same

Info

Publication number
JPH07218740A
JPH07218740A JP5139775A JP13977593A JPH07218740A JP H07218740 A JPH07218740 A JP H07218740A JP 5139775 A JP5139775 A JP 5139775A JP 13977593 A JP13977593 A JP 13977593A JP H07218740 A JPH07218740 A JP H07218740A
Authority
JP
Japan
Prior art keywords
fiber
refractive index
polarization
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5139775A
Other languages
Japanese (ja)
Inventor
Toshihiko Yoshino
俊彦 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5139775A priority Critical patent/JPH07218740A/en
Publication of JPH07218740A publication Critical patent/JPH07218740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Gyroscopes (AREA)

Abstract

PURPOSE:To provide the device which has a high-performance polarizing function or optical fiber transmission or measuring instrument with simple constitution wherein a periodic refractive index distribution is generated in an optical fiber having light induced refraction effect. CONSTITUTION:A periodic refractive index layer 3 is formed in the core 2 of the single-mode fiber which has light induced refractive index variation effect by projecting many interference fringes, which slant by 45 deg. or nearly 45 deg. to the length direction of the fiber and have optical intervals that are an integral multiple of one wavelength in the length direction of the fiber. Consequently, the (s)-polarized component of monochromatic light passing through this refractive index distribution layer is all radiated out of the fiber by interference effect, but the (p)-polarized component is passed as it is, so the polarization device of simple constitution which has a high degree of polarization is obtained.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】この発明は、光ファイバを用いて
光通信や光計測を行う際に用いられるファイバ型偏光装
置に関するものである。 【0002】 【従来の技術】従来より、光ファイバを曲げることによ
って生じる伝送損失の偏光依存性あるいは光ファイバの
断面に金属薄膜をコーテイングすることによってファイ
バ型の偏光子を実現する方法が知られている。 【0003】 【発明が解決しようとする課題】しかし、これらの方法
では非常に長いファイバを必要としたりあるいは作成し
た偏光素子をファイバに挿入しなければならないので、
安定性や挿入損失に問題があり、そのため適用できる用
途に限界があった。 【0004】 【問題を解決するための手段】本発明は、光誘起屈折率
効果によってファイバ内に周期的な屈折率分布を作成す
ることによって、ファイバ内の任意の位置に偏光機能を
創生させるものである。 【0005】 【作用】単一モードファイバに紫外線などの光線で作っ
た干渉縞を照射し、ファイバコア内で光強度に応じた化
学反応を発生させると、コアに干渉縞の明暗に応じて微
弱な屈折率変化が誘起され、周期的屈折率の分布として
記録される。 【0006】周期的な屈折率分布に単色光線を入射した
場合、ブラッグ条件で決まる特定の方向にのみ反射され
る。 【0007】特別な場合として、干渉縞をファイバ軸に
対して角度θ=45°傾けて形成すると、ブラッグ条件
で決まる反射方向はファイバ軸に対して直角方向にな
る。 【0008】一般に、散乱光は入射光に誘起された電気
双極子の放射に基づく。光は横波であるので光線の進行
方向と偏りは直角方向である。従って、入射光線に対し
て直角方向に散乱する光線の偏光は、入射光と散乱光線
を含む平面に対して垂直に偏った偏光成分(s偏光成
分)のみであり、入射光と散乱光線を含む平面に対して
平行に偏った偏光成分(p偏光成分)は含まれない。 【0009】その結果、無偏光の光線が 【0007】に関わる屈折率分布層に入射した場合、s
偏光成分は直角方向に反射するので、ファイバ外に放出
される。しかし、p偏光成分は反射されないでファイバ
内をそのまま直進する。 【0010】これにより、記録された干渉縞は通過する
光線はp偏光成分のみになるので偏光素子の作用をも
つ。 【0011】 【実施例】以下、本発明に関わるファイバ偏光装置とそ
の応用を詳細に説明する。図1(a)は、本発明の一実
施例を示すためのファイバ偏光素子の構成図である。単
一モードファイバ1の、光誘起屈折効果をもつコア2の
内部に干渉縞を投影することによって、周期的な屈折率
分布層3を作成する。干渉縞の明暗に応じて屈折率の山
4と谷5が生成される。図1(b)は、干渉縞の横断方
向aa′に沿う屈折率の空間的な分布の様子を示す。 【0012】図2は、屈折率分布領域における反射部分
波の発生を示す構成図である。ファイバ内を進行する光
線の中、誘起された等屈折面(屈折率の山または谷)3
0a,30b,30c,・・・をp偏光成分31(光波
の電界成分が入射面に平行に偏っている成分)はそのま
ま反射せずに通過する。これに対して、s偏光成分32
(光波の電界成分が入射面に垂直に偏っている成分)
は、隣接する屈折率面で部分反射を生じる。 【0013】発生した多数のs偏光の部分反射波1,
2,3,4,5,6・・・は、互いに干渉するが、干渉
縞の間隔dを√2nd=mλ、ここに、nはファイバコ
アの平均屈折率、mは正の整数、λはファイバを伝わる
光線の真空中波長、としているので、全ての部分波の相
対位相が360°すなわち同位相になるので、各部分波
は互いに強め合いの干渉を生じる(ブラッグ反射)。 【0014】この結果として、s偏光成分は全てファイ
バ外に放射され、透過光はp偏光成分のみとなる。 【0015】図3は、本発明に関わるファイバ偏光装置
を作成するための構成例を示す図である。光誘起屈折率
効果を示すファイバ6として例えばゲルマニウムドープ
石英ファイバを用いる。当該ファイバ6の一部を透明な
容器7に入れ、ファイバの屈折率nに近い屈折率n′を
もつ液体8の中に設置する。容器7の外部から同一光源
から出た2本の干渉性の良い光線9および10を入射さ
せ、ファイバの内部にファイバ軸に対して45°の傾き
をもつ干渉縞11を形成させる。 【0016】光源レーザとしては、例えば、紫外線を出
すエキシマレーザやアルゴンレーザを利用する。光が強
く照射された所(干渉縞の明線)では、光化学反応によ
って物質が変化し屈折率が照射前と違ってくる。これに
対して干渉縞の暗線の所では、化学反応が生じないので
屈折率は照射前と変わらない。 【0017】十分な偏光効果は、十分な本数の干渉縞か
ら得られる。干渉縞の本数は、照射するレーザ光線のビ
ーム幅を大きくすることで自由に調節できる。その場
合、照射2光線のなす角度φは、ファイバコアにおける
干渉縞11がファイバ軸に対して45°に傾くように設
定する。 【0018】干渉縞の光軸に対して正確に45°で無い
場合には、透過光にs偏光成分が僅かに含まれるように
なるので、偏光子としての性能が多少低下するが強い偏
光機能は保証される。 【0019】図4は、本発明に関わる偏光装置を電流セ
ンサに応用した場合の一実施例を示すための構成図であ
る。単一モードファイバ12の適当な距離離れた2箇所
A,Bにおいて、本発明に関わるファイバ偏光装置1
3,14をその偏光面を45°傾けて作成する。ファイ
バに波長λの単色光15を入射すると、最初の偏光子1
3によって直線偏光となった光線の偏光面が、センサフ
ァイバ部16を通過する際に、被測定電流17によって
誘起された磁界Hによるファラデー効果によって通過光
の偏光面は僅かに回転する。そのため、光線が第2の偏
光装置14を通過して、ファイバ外の検出器18に達す
る光19の強度が、電流Iの大きさに比例して変化す
る。これから、電流の計測が可能となる。 【0020】この方式は、従来の外部偏光素子を必要と
するファイバ電流センサと比べて、全ファイバ型の構成
なのでコンパクトで機械的に安定した電流・磁界計測方
式となる。 【0021】図5は、偏波面保存ファイバにおいて高い
偏光度を持つ光線を伝送するための一実施例を示すため
の構成図である。一本の偏波面保存ファイバ20の内部
に本発明に関わる偏光装置21を偏波面保存ファイバと
偏光面と一致させて作成する。このファイバ20に直線
偏光した光線23を偏波面保存ファイバと偏光面と一致
させるて入射すると、通常、ファイバの入り口部24で
偏光に乱れが発生し、そのためファイバ伝送光25の偏
光度が低下する。しかし、この装置21を用いることに
よって偏光の乱れが矯正され、伝送光の偏光度が向上で
きる。 【0022】図6は、本発明に関わる偏光装置をファイ
バジャイロに応用した場合の一実施例を示すための構成
図である。ファイバジャイロでは、光源26から出た光
線を単一モードファイバで構成したリング状干渉計27
に導き、リング内を時計回り光と反時計回り光を走らせ
る。リングが回転すると、両光の間には位相差が発生す
るので干渉の結果、検出器28に達する光量が変化する
ことから、回転速度Ωが検出できる。 【0023】その際ファイバ内を時計回り光と反時計回
り光が同じ偏光でないと測定誤差が発生する。そのた
め、偏光子が必要となり、通常は長いファイバ偏光子を
用いるが、偏光度が不十分で大型になる。そこで、偏光
子として、本発明に関わる偏光装置29を用いることに
より、コンパクトかつ高精度の回転センサが構成でき
る。 【発明の効果】本発明によると、光ファイバの内部に、
極めて簡単な構成によって、偏光機能が創生できる。こ
のような偏光装置は、従来のファイバ技術では実現され
ていないことであり、新しいデバイスとして、光通信や
光計測技術として幅広い応用範囲をもつ。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber type polarization device used when performing optical communication or optical measurement using an optical fiber. [0002] Conventionally, there is known a method of realizing a fiber-type polarizer by polarization dependency of transmission loss caused by bending an optical fiber or by coating a metal thin film on a cross section of the optical fiber. There is. However, these methods require a very long fiber or require a polarizing element to be inserted into the fiber.
There was a problem with stability and insertion loss, so there was a limit to the applicable applications. The present invention creates a polarization function at an arbitrary position in a fiber by creating a periodic refractive index distribution in the fiber by a photo-induced refractive index effect. It is a thing. When a single-mode fiber is irradiated with interference fringes formed by light rays such as ultraviolet rays to cause a chemical reaction in the fiber core according to the light intensity, the core is weakened depending on the brightness of the interference fringes. Different refractive index changes are induced and recorded as a periodic refractive index distribution. When a monochromatic ray is incident on a periodic refractive index distribution, it is reflected only in a specific direction determined by the Bragg condition. As a special case, if the interference fringes are formed with an angle θ = 45 ° with respect to the fiber axis, the reflection direction determined by the Bragg condition becomes a direction perpendicular to the fiber axis. Generally, scattered light is based on the emission of electric dipoles induced by incident light. Since light is a transverse wave, the traveling direction and deviation of the light rays are at right angles. Therefore, the polarization of the light scattered in the direction perpendicular to the incident light is only the polarized component (s-polarized component) that is polarized perpendicular to the plane including the incident light and the scattered light, and includes the incident light and the scattered light. A polarization component (p-polarization component) that is polarized parallel to the plane is not included. As a result, when an unpolarized light beam is incident on the gradient index layer relating to
The polarized component is reflected at right angles and is emitted out of the fiber. However, the p-polarized component is not reflected and goes straight through the fiber. As a result, the recorded interference fringes act as a polarizing element because the light rays passing through are only p-polarized light components. The fiber polarizing device and its application according to the present invention will be described in detail below. FIG. 1A is a configuration diagram of a fiber polarizing element for showing an embodiment of the present invention. The periodic refractive index distribution layer 3 is created by projecting interference fringes inside the core 2 having the photoinduced refraction effect of the single mode fiber 1. Refractive index peaks 4 and valleys 5 are generated according to the lightness and darkness of the interference fringes. FIG. 1B shows the spatial distribution of the refractive index along the transverse direction aa ′ of the interference fringes. FIG. 2 is a configuration diagram showing the generation of reflected partial waves in the refractive index distribution region. Induced iso-refractive surface (refractive index peaks or valleys) in the ray traveling in the fiber 3
The p-polarized component 31 (the component in which the electric field component of the light wave is biased parallel to the incident surface) passes through 0a, 30b, 30c, ... Without being reflected. On the other hand, the s-polarized component 32
(Component in which the electric field component of the light wave is biased perpendicular to the incident surface)
Causes partial reflection at the adjacent refractive index surface. A large number of s-polarized partially reflected waves 1,
2, 3, 4, 5, 6 ... Interfere with each other, but the interval d of the interference fringes is √2nd = mλ, where n is the average refractive index of the fiber core, m is a positive integer, and λ is Since the wavelength of the light beam propagating through the fiber is defined as the wavelength in vacuum, the relative phases of all partial waves are 360 °, that is, the same phase, and therefore each partial wave causes mutual constructive interference (Bragg reflection). As a result, all the s-polarized light components are radiated out of the fiber, and the transmitted light has only the p-polarized light components. FIG. 3 is a diagram showing an example of the construction for producing the fiber polarizing device according to the present invention. For example, a germanium-doped quartz fiber is used as the fiber 6 exhibiting the photo-induced refractive index effect. A part of the fiber 6 is put in a transparent container 7 and placed in a liquid 8 having a refractive index n ′ close to the refractive index n of the fiber. Two light beams 9 and 10 having good coherence emitted from the same light source are made incident from the outside of the container 7, and an interference fringe 11 having an inclination of 45 ° with respect to the fiber axis is formed inside the fiber. As the light source laser, for example, an excimer laser emitting an ultraviolet ray or an argon laser is used. In the place where light is strongly irradiated (bright line of interference fringe), the substance changes due to photochemical reaction and the refractive index becomes different from that before irradiation. On the other hand, at the dark line of the interference fringe, no chemical reaction occurs, so the refractive index is the same as before irradiation. A sufficient polarization effect can be obtained from a sufficient number of interference fringes. The number of interference fringes can be freely adjusted by increasing the beam width of the laser beam to be irradiated. In that case, the angle φ formed by the two irradiation rays is set so that the interference fringes 11 in the fiber core are inclined at 45 ° with respect to the fiber axis. When the angle is not exactly 45 ° with respect to the optical axis of the interference fringe, the transmitted light contains a small amount of the s-polarized component, so that the performance as a polarizer is somewhat deteriorated, but a strong polarization function is obtained. Is guaranteed. FIG. 4 is a block diagram showing an embodiment in which the polarizing device according to the present invention is applied to a current sensor. The fiber polarization device 1 according to the present invention is provided at two locations A and B, which are separated by an appropriate distance from the single mode fiber 12.
3 and 14 are prepared by inclining their polarization planes by 45 °. When a monochromatic light 15 of wavelength λ is incident on the fiber, the first polarizer 1
When the polarization plane of the light beam linearly polarized by 3 passes through the sensor fiber portion 16, the polarization plane of the passing light is slightly rotated by the Faraday effect due to the magnetic field H induced by the measured current 17. Therefore, the intensity of the light 19 which passes through the second polarization device 14 and reaches the detector 18 outside the fiber changes in proportion to the magnitude of the current I. From now on, the current can be measured. This method is a compact and mechanically stable current / magnetic field measuring method because it is an all-fiber type structure as compared with the conventional fiber current sensor which requires an external polarization element. FIG. 5 is a block diagram showing an embodiment for transmitting a light beam having a high degree of polarization in a polarization maintaining fiber. A polarization device 21 according to the present invention is formed inside one polarization maintaining fiber 20 so as to match the polarization maintaining fiber and the polarization plane. When a linearly polarized light ray 23 is incident on the fiber 20 so as to match the polarization plane-maintaining fiber and the polarization plane, the polarization is usually disturbed at the entrance 24 of the fiber, and the polarization degree of the fiber transmission light 25 is reduced. . However, by using this device 21, the disorder of polarization is corrected, and the degree of polarization of transmitted light can be improved. FIG. 6 is a block diagram showing an embodiment in which the polarizing device according to the present invention is applied to a fiber gyro. In the fiber gyro, a ring-shaped interferometer 27 in which a light beam emitted from a light source 26 is composed of a single mode fiber is used.
, And run clockwise and counterclockwise light in the ring. When the ring rotates, a phase difference occurs between the two lights, and as a result of the interference, the amount of light reaching the detector 28 changes, so that the rotation speed Ω can be detected. At this time, a measurement error occurs unless the clockwise light and the counterclockwise light have the same polarization in the fiber. Therefore, a polarizer is required, and a long fiber polarizer is usually used, but the degree of polarization is insufficient and the size becomes large. Therefore, by using the polarizing device 29 according to the present invention as a polarizer, a compact and highly accurate rotation sensor can be configured. According to the present invention, inside the optical fiber,
The polarization function can be created with an extremely simple structure. Such a polarization device has not been realized by the conventional fiber technology, and has a wide application range as a new device such as optical communication and optical measurement technology.

【図面の簡単な説明】 【図1】本発明に関わるファイバ偏光装置の実施例を示
す構成図である。 【図2】本発明に関わるファイバ偏光装置の原理を説明
するための構成図である。 【図3】本発明に関わるファイバ偏光装置を作成するた
めの光学系の実施例を示す構成図である。 【図4】本発明に関わるファイバ偏光装置をファイバ磁
界センサに応用する実施例を示す構成図である。 【図5】本発明に関わるファイバ偏光装置を光伝送に応
用するための実施例を示す構成図である。 【図6】本発明に関わるファイバ偏光装置をファイバジ
ャイロに応用する実施例を示す構成図である。 【符号の説明】 1 ファイバ 2 ファイバコア 3 屈折率分布層 4 高屈折率面 5 低屈折率面 6 ファイバ 7 透明容器 8 屈折率マッチイング液体 9 光線1 10 光線2 11 干渉縞 12 ファイバ 13 屈折率分布層1 14 屈折率分布層2 15 入射光 16 センサ部 17 電流 18 検出器 19 出射光 20 ファイバ 21 屈折率分布層 22 レンズ 23 入射光線 24 ファイバ入り口部 25 ファイバ伝送光 26 光源 27 ファイバリング干渉計 28 検出器 29 ファイバ偏光装置 30a、30b、30c 等屈折率面 31 p偏光成分 32 s偏光成分
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration diagram showing an embodiment of a fiber polarization device according to the present invention. FIG. 2 is a configuration diagram for explaining the principle of a fiber polarization device according to the present invention. FIG. 3 is a configuration diagram showing an embodiment of an optical system for producing a fiber polarizing device according to the present invention. FIG. 4 is a configuration diagram showing an embodiment in which the fiber polarization device according to the present invention is applied to a fiber magnetic field sensor. FIG. 5 is a configuration diagram showing an embodiment for applying the fiber polarizing device according to the present invention to optical transmission. FIG. 6 is a configuration diagram showing an embodiment in which the fiber polarization device according to the present invention is applied to a fiber gyro. [Explanation of reference numerals] 1 fiber 2 fiber core 3 gradient index layer 4 high refractive index surface 5 low refractive index surface 6 fiber 7 transparent container 8 refractive index matching liquid 9 light ray 1 10 light ray 2 11 interference fringe 12 fiber 13 refractive index Distribution layer 1 14 Refractive index distribution layer 2 15 Incident light 16 Sensor section 17 Current 18 Detector 19 Exit light 20 Fiber 21 Refractive index distribution layer 22 Lens 23 Incident light ray 24 Fiber entrance 25 Fiber transmission light 26 Light source 27 Fiber ring interferometer 28 Detector 29 Fiber Polarizers 30a, 30b, 30c Isorefractive Index Surface 31 p Polarized Component 32 s Polarized Component

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/09 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication G02F 1/09

Claims (1)

【特許請求の範囲】 【請求項1】 単一モード光ファイバコアに光軸に対し
て傾いた周期的屈折率分布面を、ファイバ軸に沿った光
学的なピッチがファイバを伝搬させる単色光線の1波長
となるごとく作成せしめ、 この周期的屈折率分布によるブラッグ反射を利用して、
偏光作用を起こさせることを特徴とした装置。 【請求項2】 【請求項1】に関わる装置を利用した光伝送および計測
装置
Claim: What is claimed is: 1. A single-mode optical fiber core is provided with a periodic refractive index distribution surface inclined with respect to the optical axis, of a monochromatic light beam which propagates through the fiber at an optical pitch along the fiber axis. Create it as one wavelength, and use Bragg reflection due to this periodic refractive index distribution,
A device characterized by causing a polarization effect. 2. An optical transmission and measurement device using the device according to claim 1.
JP5139775A 1993-05-01 1993-05-01 Optical fiber polarization device and measuring instrument using same Pending JPH07218740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5139775A JPH07218740A (en) 1993-05-01 1993-05-01 Optical fiber polarization device and measuring instrument using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5139775A JPH07218740A (en) 1993-05-01 1993-05-01 Optical fiber polarization device and measuring instrument using same

Publications (1)

Publication Number Publication Date
JPH07218740A true JPH07218740A (en) 1995-08-18

Family

ID=15253132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5139775A Pending JPH07218740A (en) 1993-05-01 1993-05-01 Optical fiber polarization device and measuring instrument using same

Country Status (1)

Country Link
JP (1) JPH07218740A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538392A (en) * 2002-08-02 2005-12-15 フェムトニックス・コーポレーション Microstructuring of optical waveguide devices with femtosecond optical pulses
PL446548A1 (en) * 2023-10-30 2024-06-17 Politechnika Lubelska Meter of the angle of rotation of the polarization plane of light propagating in the environment and method of measuring the rotation of the angle of the polarization plane
PL446546A1 (en) * 2023-10-30 2024-06-17 Politechnika Lubelska Meter of the angle of rotation of the polarization plane of light propagating in optical fiber and method of measuring the angle of rotation of the polarization plane
PL446547A1 (en) * 2023-10-30 2024-10-07 Politechnika Lubelska Positioner and method for positioning the rotation angle of a head mounted on a stationary element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005538392A (en) * 2002-08-02 2005-12-15 フェムトニックス・コーポレーション Microstructuring of optical waveguide devices with femtosecond optical pulses
PL446548A1 (en) * 2023-10-30 2024-06-17 Politechnika Lubelska Meter of the angle of rotation of the polarization plane of light propagating in the environment and method of measuring the rotation of the angle of the polarization plane
PL446546A1 (en) * 2023-10-30 2024-06-17 Politechnika Lubelska Meter of the angle of rotation of the polarization plane of light propagating in optical fiber and method of measuring the angle of rotation of the polarization plane
PL446547A1 (en) * 2023-10-30 2024-10-07 Politechnika Lubelska Positioner and method for positioning the rotation angle of a head mounted on a stationary element
PL246021B1 (en) * 2023-10-30 2024-11-18 Lubelska Polt Method of measuring the angle of rotation of the polarization plane
PL246022B1 (en) * 2023-10-30 2024-11-18 Lubelska Polt Method of measuring the rotation angle of the polarization plane of light propagating in the environment

Similar Documents

Publication Publication Date Title
US4815850A (en) Relative-displacement measurement method
CN102933944B (en) System and method for polarization measurement
JP5448745B2 (en) RFOG with reduced bias error caused by polarization mode
US4529313A (en) Ring interferometer
JPH05142423A (en) Optical device and polarization device
US20060133728A1 (en) Fabrication of structures in an optical substrate
EP0078931B1 (en) Angular rate sensor
JPH07218740A (en) Optical fiber polarization device and measuring instrument using same
JPH04244969A (en) Optical current transformer
JPH0712576A (en) Fiber optic ring interferometer
JPH08233583A (en) Optical fiber coil
US5184010A (en) Spectrum modulation encoding sensor system for remotely detecting a physical magnitude, and operating by reflection
EP0059644B1 (en) Optical gyroscope
Kan'an et al. In-line quarter-wave retarders for the infrared using total refraction and total internal reflection in a prism
Bergh All-fiber gyroscope with optical-Kerr-effect compensation
Blake Two-mode optical fiber devices
JPS59166873A (en) Optical applied voltage and electric field sensor
US20240192420A1 (en) Optical isolator based on volume bragg gratings
KR102545519B1 (en) Reflective Optical System with Minimized Polarization Modulation and Spectroscopic Ellipsometer Provided Therewith
JPS6041732B2 (en) polarization analyzer
JPH09119821A (en) Method and device for measuring parallax of incident angle of ray
JPH0617851B2 (en) Method and apparatus for measuring mode birefringence of birefringent fiber
Arunkumar Ultrasensitive fiber-optic magnetic field sensor
RU2101739C1 (en) Prismatic corner reflector
JPH08320456A (en) Rotating device for orientation of polarization