[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07193388A - Micro wave and millimeter wave absorber - Google Patents

Micro wave and millimeter wave absorber

Info

Publication number
JPH07193388A
JPH07193388A JP34728293A JP34728293A JPH07193388A JP H07193388 A JPH07193388 A JP H07193388A JP 34728293 A JP34728293 A JP 34728293A JP 34728293 A JP34728293 A JP 34728293A JP H07193388 A JPH07193388 A JP H07193388A
Authority
JP
Japan
Prior art keywords
length
unit
absorber
electromagnetic wave
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34728293A
Other languages
Japanese (ja)
Inventor
Takeshi Ishino
健 石野
Yasuo Hashimoto
康雄 橋本
Takashi Tanaka
隆 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP34728293A priority Critical patent/JPH07193388A/en
Publication of JPH07193388A publication Critical patent/JPH07193388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To improve wave absorption property by forming a wave dark room of an aggregate of a specified unit absorber having a cone-like part. CONSTITUTION:Complex dielectric constant at a frequency 3GHz is expressed by a formula I. An absolute value thereof can be expressed by a formula II. The title absorber is constituted of a dielectric loss material of the absolute value of 2 or more and 9 or less and dielectric dissipation factor tan6 is 0.6 or more. A total length H of a unit absorber is 150mm or more and a length L of a cone part is 100mm or more. The length L of the cone-like part is at least three times as long as a length W of one unit of a bottom part of the unit absorber and the length W of one unit is 100mm or less. When wave absorption characteristic is measured by the above constitution, wave absorption characteristic at 3GHz is 40db or more and wave absorption characteristic can be improved. A wave dark room inside is formed of an aggregate of wedge- like, square cone-like or a circular cone-like unit absorber comprised of a stand part D and a cone-like part E.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電波吸収体、特に電波暗
室用電波吸収体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorber, and more particularly to a radio wave absorber for an anechoic chamber.

【0002】[0002]

【従来の技術】電子機器の評価や各種アンテナの評価等
に電波暗室が利用されているが、電波暗室用の電波吸収
体としては、対応周波数の広帯域性および高い電波吸収
性能を図るため、一般に、外形がくさび形状のもの、も
しくは四角錐形状のものが広く用いられている。
2. Description of the Related Art An anechoic chamber is used for evaluation of electronic devices and various antennas. However, as an electromagnetic wave absorber for an anechoic chamber, it is generally used in order to achieve a wide band of corresponding frequencies and high electromagnetic wave absorption performance. Widely used are wedge-shaped ones or quadrangular pyramid-shaped ones.

【0003】これらの電波暗室および、電波吸収体は電
波が一般に使用されているSHF帯以下の周波数帯域で
主に使用されている。
These anechoic chambers and wave absorbers are mainly used in the frequency band below the SHF band where radio waves are generally used.

【0004】[0004]

【発明が解決しようとする課題】ところで近年レーダや
通信機材等の使用周波数がEHF帯に移行しつつあり、
それに伴い電波吸収体も従来から使用されているSHF
帯以下の周波数領域に加えて、EHF帯においても高い
電波吸収性能が要求されだしている。
By the way, in recent years, the frequencies used in radar and communication equipment are shifting to the EHF band.
Along with that, SHF, which has been used for radio wave absorbers
In addition to the frequency range below the band, high electromagnetic wave absorption performance is also required in the EHF band.

【0005】一方、現状の電波吸収体は一般にSHF帯
以下の周波数を対象として、いかに低周波数から電波吸
収体の長さを短くして高性能化するかに設計の主眼がお
かれており、EHF帯以上の高周波数での吸収性能まで
含めた広帯域な設計は行われていない。そのため、現状
のSHF帯以下で用いられている電波吸収体をそのまま
用いた場合、EHF帯では吸収性能の低下が見られ、S
HF帯で約50dBの電波吸収特性を持つ電波吸収体が
EHF帯では26〜43dB程度に電波吸収特性が低下
していることが報告されている。(信学論(B-II ),J72-
B-II,9, pp.494-498および信学論(B-II ),J73-B-II,2,p
p.124-126 )一方、EHF帯用に設計された電波吸収体
はEHF帯においては良好な吸収特性を示すが、このよ
うな電波吸収体はSHF帯以下の帯域では高性能な電波
吸収特性を有しておらず、周波数3GHzで10から2
0dB程度の電波吸収特性となっている。
On the other hand, current radio wave absorbers are generally designed for frequencies below the SHF band, and how to shorten the length of the radio wave absorber from the low frequency to improve the performance, Broadband design including absorption performance at high frequencies above the EHF band has not been performed. Therefore, when the electromagnetic wave absorber used in the current SHF band or lower is used as it is, the absorption performance is deteriorated in the EHF band.
It has been reported that a radio wave absorber having a radio wave absorption characteristic of about 50 dB in the HF band has a radio wave absorption characteristic reduced to about 26 to 43 dB in the EHF band. (Physics (B-II), J72-
B-II, 9, pp.494-498 and Theological Theory (B-II), J73-B-II, 2, p
p.124-126) On the other hand, electromagnetic wave absorbers designed for the EHF band show good absorption characteristics in the EHF band, but such electromagnetic wave absorbers have high performance in the SHF band and below. 10 to 2 at a frequency of 3 GHz
The electromagnetic wave absorption characteristic is about 0 dB.

【0006】本発明は、SHF帯からEHF帯に至り広
帯域な周波数範囲で高い電波吸収特性を有する電波吸収
体を提供することを目的とする。
An object of the present invention is to provide a radio wave absorber having high radio wave absorption characteristics in a wide frequency range from the SHF band to the EHF band.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の電波吸収体は、錐状部を有する単位吸収体
の集合体で構成され、周波数3GHzでの複素比誘電率
In order to achieve the above object, the radio wave absorber of the present invention comprises an aggregate of unit absorbers having a conical portion, and has a complex relative dielectric constant at a frequency of 3 GHz.

【0008】[0008]

【数3】 [Equation 3]

【0009】の絶対値の大きさMagnitude of absolute value of

【0010】[0010]

【数4】 [Equation 4]

【0011】が2以上、9以下で誘電正接tanδ(=
ε"r/ ε'r)が0.6以上の誘電損失材料で構成され、
前記単位吸収体の全長(H)が150mm以上であり、
錐状部の長さ(L)が100mm以上であり、錐状部の
長さ(L)は、単位吸収体の底部の一単位の長さ(W)
の3倍以上であって、前記一単位の長さ(W)が100
mm以下である。
Is 2 or more and 9 or less, the dielectric loss tangent tan δ (=
ε "r / ε 'r) is composed of 0.6 or more dielectric loss material,
The total length (H) of the unit absorber is 150 mm or more,
The length (L) of the conical portion is 100 mm or more, and the length (L) of the conical portion is one unit length (W) of the bottom of the unit absorbent body.
3 times or more, and the length (W) of the one unit is 100
mm or less.

【0012】また本発明における電波吸収体の基材は、
発泡ポリエチレン、発泡ポリウレタン、発泡ポリスチレ
ン等の有機樹脂の発泡材料等を使用するが、耐久性及び
加工性等の面から発泡ポリエチレンを基材として用いる
のが好ましい。
The base material of the radio wave absorber according to the present invention is
An organic resin foam material such as expanded polyethylene, expanded polyurethane, expanded polystyrene or the like is used, but it is preferable to use expanded polyethylene as a base material in terms of durability and processability.

【0013】[0013]

【作用】対象とする電磁波の下限周波数の波長λに対
し、電波のエネルギーを充分に減衰させるため電波吸収
体の長さを1.5λ以上、および電波の導入部分である
くさび形状もしくは、角錐形状、円錐形状の長さをλ以
上とすることにより入力インピーダンスの変化が滑らか
となり、効率的に電波を吸収し、低周波数領域にて吸収
性能を確保することができる。
[Function] For the wavelength λ of the lower limit frequency of the target electromagnetic wave, the length of the electromagnetic wave absorber is 1.5λ or more in order to sufficiently attenuate the energy of the electromagnetic wave, and the wedge shape or the pyramid shape where the electromagnetic wave is introduced. By setting the length of the conical shape to be λ or more, the change of the input impedance becomes smooth, the radio waves are efficiently absorbed, and the absorption performance can be secured in the low frequency region.

【0014】すなわち、対象とする電磁波の下限周波数
をSHF帯の下限周波数である3GHzとした場合、波
長は100mmなので電波吸収体の長さを150mm以
上、くさび形状もしくは、角錐形状、円錐形状の長さを
100mm以上とすることによりSHF帯の下限周波数
にて高い吸収性能を得ることができる。また、周波数3
GHzでの複素比誘電率の大きさが2未満、且つ誘電正
接が0.6以下の吸収材料で電波吸収体を構成した場
合、十分な電波の減衰が得られないので、周波数3GH
zでの複素比誘電率の大きさが2以上、誘電正接が0.
6以上の吸収材料で電波吸収体を構成することにより良
好な電波吸収特性を得ることができる。
That is, when the lower limit frequency of the target electromagnetic wave is 3 GHz, which is the lower limit frequency of the SHF band, the wavelength is 100 mm, so the length of the electromagnetic wave absorber is 150 mm or more, and the length of the wedge shape, the pyramid shape, or the conical shape. By setting the thickness to 100 mm or more, high absorption performance can be obtained at the lower limit frequency of the SHF band. Also, frequency 3
When the radio wave absorber is made of an absorbing material having a complex relative permittivity at GHz of less than 2 and a dielectric loss tangent of 0.6 or less, sufficient radio wave attenuation cannot be obtained.
The magnitude of complex relative permittivity at z is 2 or more, and the dielectric loss tangent is 0.
By constructing a radio wave absorber with six or more absorbing materials, good radio wave absorption characteristics can be obtained.

【0015】一方、電波の周波数が高くなるに従い、波
長が短くなるため電波の直進性が高まり、くさび形状部
分もしくは、角錐、円錐形状部分間の隙間に電波が直接
入射するが、くさび形状もしくは、角錐形状、円錐形状
の長さとくさび形状もしくは、角錐形状、円錐形状の一
単位の巾の比を3以上とすることによりくさび形状部分
内、角錐形状部分内、円錐形状部分内での電波の多重反
射が増加して電波が効率よく減衰するため高周波数領域
においても良好な電波吸収特性を得ることができる。た
だし、波長に対しくさび形状、角錐形状、円錐形状部分
間の隙間が大きくなりすぎると電波が容易に隙間に入射
し、散乱波が増大するため隙間の巾は100mm以下に
することが望ましい。また、周波数3GHzでの複素比
誘電率の大きさが9以下の吸収材料で電波吸収体を構成
することにより電波吸収体表面での電波の反射を抑え、
電波吸収体表面での電波の反射の増大による電波吸収特
性の低下を防ぐことができる。その結果、広帯域な周波
数範囲で良好な電波吸収特性を得ることができる。
On the other hand, as the frequency of the radio wave becomes higher, the wavelength becomes shorter, so that the straightness of the radio wave is improved and the radio wave is directly incident on the wedge-shaped portion or the gap between the pyramid and the cone-shaped portion. By setting the ratio of the length of the pyramid shape, the cone shape to the wedge shape, or the width of one unit of the pyramid shape and the cone shape to 3 or more, the radio waves are multiplexed in the wedge shape portion, the pyramid shape portion, and the cone shape portion. Since reflection increases and radio waves are efficiently attenuated, good radio wave absorption characteristics can be obtained even in a high frequency region. However, if the gap between the wedge-shaped, pyramidal-shaped, and conical-shaped portions becomes too large with respect to the wavelength, radio waves easily enter the gap and scattered waves increase, so the width of the gap is preferably 100 mm or less. Further, by suppressing the reflection of radio waves on the surface of the radio wave absorber by configuring the radio wave absorber with an absorbing material having a complex relative permittivity of 9 or less at a frequency of 3 GHz,
It is possible to prevent the deterioration of the radio wave absorption characteristics due to the increase of the reflection of radio waves on the surface of the radio wave absorber. As a result, good radio wave absorption characteristics can be obtained in a wide frequency range.

【0016】さらに波長が短くなることにより、波長に
対するくさび形状、角錐形状、円錐形状部分の先端部の
面積の割合が増し、先端部からの電波の反射が吸収特性
の低下をもたらす、そこでくさび形状、角錐形状、円錐
形状部分の先端部の面積を底部の面積の100分の1以
下に抑えることにより良好な吸収特性を得ることができ
る。
As the wavelength is further shortened, the ratio of the area of the tip of the wedge shape, the pyramid shape, or the conical shape to the wavelength is increased, and the reflection of the radio wave from the tip causes the deterioration of the absorption characteristic. Good absorption characteristics can be obtained by suppressing the area of the tip of the pyramid-shaped or conical-shaped portion to 1/100 or less of the area of the bottom.

【0017】[0017]

【実施例】本発明では、電波暗室の壁、天井、又は床を
錐状又はくさび状の誘電体材質から成る単位吸収体の集
合体で覆う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the wall, ceiling, or floor of an anechoic chamber is covered with an aggregate of unit absorbers made of a cone-shaped or wedge-shaped dielectric material.

【0018】単位吸収体は台部Dと錐状部Eを有し、そ
の構造例を図10に示す。(a)は角錐形状で、台部の
一辺の長さはW、電波吸収体の全長がH、錐状部の長さ
がLである。(b)はくさび形状で、台部は長辺の長さ
がLW、短辺の長さがWの直方体、全長H、錐状部の長
さがLである。(c)は円錐状で、台部は直径Wの円
柱、全長H、錐状部の長さがLである。ここで、単位吸
収体の底部の一単位の長さ(W)として、角錐及びくさ
びの場合は台部Dの辺のうち短い方の辺の長さ、円錐の
場合は台部Dの直径を取る。
The unit absorber has a pedestal portion D and a conical portion E, and its structural example is shown in FIG. (A) is a pyramid shape, the length of one side of the base is W, the total length of the radio wave absorber is H, and the length of the pyramidal part is L. (B) has a wedge shape, and the base has a rectangular parallelepiped having a long side length of LW, a short side length of W, a total length H, and a conical portion length L. (C) has a conical shape, and the base has a cylinder with a diameter W, the total length H, and the length of the conical portion L. Here, as one unit length (W) of the bottom of the unit absorber, the length of the shorter one of the sides of the base D in the case of a pyramid and a wedge, and the diameter of the base D in the case of a cone. take.

【0019】錐状体の先端は理論的にはとがっているこ
とが好ましいが、実際にはある面積を持つ。本発明では
図10(d)に示すように、単位吸収体の底部の面積S
0 と先端の面積S1 の比S0 /S1 により先端部の構造
を規定する。
Although it is theoretically preferable that the tip of the pyramid is sharp, it actually has a certain area. In the present invention, as shown in FIG. 10D, the area S of the bottom of the unit absorber is
The 0 and tip ratio S 0 / S 1 of the area S 1 of defining the structure of the tip.

【0020】本発明で用いる単位吸収体は、誘電体で、
周波数3GHzでの複素比誘電率の絶対値は2以上で9
以下であり、複素比誘電率の虚部の実部に対する比であ
る誘電正接tanδの値は0.6以上である。
The unit absorber used in the present invention is a dielectric,
The absolute value of complex relative permittivity at a frequency of 3 GHz is 2 or more and 9
The value of the dielectric loss tangent tan δ, which is the ratio of the complex relative permittivity to the real part of the imaginary part, is 0.6 or more.

【0021】図11は、3GHzで測定した複素比誘電
率の絶対値(横軸)と反射減衰量(縦軸)の関係を示
し、上記絶対値がほぼ2以上の時、反射減衰量が30d
B以上となることがわかる。なお図11でtanδ=
0.6である。
FIG. 11 shows the relationship between the absolute value (horizontal axis) of the complex relative permittivity measured at 3 GHz and the return loss (vertical axis). When the absolute value is approximately 2 or more, the return loss is 30 d.
It turns out that it becomes B or more. In FIG. 11, tan δ =
It is 0.6.

【0022】複素比誘電率の絶対値の上限値は単位吸収
体の製造条件で規定される。吸収体は例えば発泡ポリエ
チレン等の有機樹脂を用い、例えばカーボンを混合して
誘電率を調節する。カーボンの混合率を上げて誘電率を
大きくすると成形が困難になるので、実用的には9以下
で使用する。
The upper limit of the absolute value of the complex relative dielectric constant is specified by the manufacturing conditions of the unit absorber. An organic resin such as expanded polyethylene is used as the absorber, and carbon is mixed to adjust the dielectric constant. If the mixing ratio of carbon is increased to increase the dielectric constant, molding becomes difficult. Therefore, practically, use 9 or less.

【0023】図12は誘電正接tanδと反射減衰量の
測定結果を示し、tanδの値がほぼ0.6以上のと
き、反射減衰量が30dB以上になることがわかる。
FIG. 12 shows the measurement results of the dielectric loss tangent tan δ and the return loss, and it can be seen that the return loss becomes 30 dB or more when the value of tan δ is about 0.6 or more.

【0024】次に、単位吸収体の寸法の関係について述
べる。
Next, the dimensional relationship of the unit absorber will be described.

【0025】(実施例1)周波数3GHzでの複素比誘
電率
(Example 1) Complex relative permittivity at a frequency of 3 GHz

【0026】[0026]

【数5】 [Equation 5]

【0027】が[0027]

【0028】[0028]

【数6】 [Equation 6]

【0029】の電波吸収材料を用い、電波吸収体の長さ
150mm、四角錐形状部分の長さ100mm、四角錐
の一単位の幅30mmで電波吸収体を製作し、周波数2
〜10GHzで電波吸収特性を測定した。電波吸収特性
測定結果を図1に示す。3GHzでの電波吸収特性が4
0dB以上であり良好な吸収特性を得ている。
Using the electromagnetic wave absorbing material (1), an electromagnetic wave absorber having a length of 150 mm, a quadrangular pyramid-shaped portion having a length of 100 mm, and a quadrangular pyramid having a width of 30 mm is manufactured.
The electromagnetic wave absorption characteristics were measured at 10 GHz. The measurement result of the radio wave absorption characteristics is shown in FIG. The electromagnetic wave absorption characteristic at 3 GHz is 4
It is 0 dB or more, and good absorption characteristics are obtained.

【0030】(実施例2)周波数3GHzでの複素比誘
電率
(Example 2) Complex relative permittivity at a frequency of 3 GHz

【0031】[0031]

【数7】 [Equation 7]

【0032】が[0032]

【0033】[0033]

【数8】 [Equation 8]

【0034】の電波吸収材料を用い、電波吸収体の長さ
150mm、四角錐形状部分の長さ100mm、四角錐
の一単位の幅30mm、50mm、100mmで電波吸
収体を製作し、周波数100GHzで電波吸収特性を測
定した。四角錐の一単位の幅と電波吸収特性の関係を図
2に示す。四角錐の一単位の幅と四角錐の長さの比が3
以上となっている四角錐の幅30mmのときにおいて電
波吸収特性が50dB以上となっており、良好な吸収特
性を示している。
Using the electromagnetic wave absorbing material (1), an electromagnetic wave absorber having a length of 150 mm, a quadrangular pyramid shaped portion of 100 mm, and a unit width of quadrangular pyramid of 30 mm, 50 mm, and 100 mm is manufactured, and the frequency is 100 GHz. Radio wave absorption characteristics were measured. FIG. 2 shows the relationship between the width of one unit of the quadrangular pyramid and the electromagnetic wave absorption characteristics. The ratio of the width of one unit of the pyramid to the length of the pyramid is 3
When the width of the quadrangular pyramid is 30 mm as described above, the radio wave absorption characteristic is 50 dB or more, which shows a good absorption characteristic.

【0035】(実施例3)周波数3GHzでの複素比誘
電率
(Example 3) Complex relative permittivity at a frequency of 3 GHz

【0036】[0036]

【数9】 [Equation 9]

【0037】が[0037]

【0038】[0038]

【数10】 [Equation 10]

【0039】の電波吸収材料を用い、電波吸収体の長さ
150mm、くさび形状部分の長さ100mm、くさび
の一単位の幅30mm、50mm、100mmで電波吸
収体を製作し、周波数100GHzで電波吸収特性を測
定した。くさびの一単位の幅と電波吸収特性の関係を図
3に示す。くさびの一単位の幅とくさびの長さの比が3
以上となっているくさびの幅30mmのときにおいて電
波吸収特性が50dB以上となっており、良好な吸収特
性を示している。
Using the electromagnetic wave absorbing material (1), an electromagnetic wave absorber having a length of 150 mm, a wedge-shaped portion of 100 mm, a wedge unit width of 30 mm, 50 mm, and 100 mm is manufactured, and the electromagnetic wave is absorbed at a frequency of 100 GHz. The properties were measured. The relationship between the width of one unit of the wedge and the electromagnetic wave absorption characteristics is shown in FIG. The ratio of the width of one unit of wedge to the length of wedge is 3
When the width of the wedge is 30 mm as described above, the radio wave absorption characteristic is 50 dB or more, which shows a good absorption characteristic.

【0040】(実施例4)周波数3GHzでの複素比誘
電率
(Example 4) Complex relative permittivity at a frequency of 3 GHz

【0041】[0041]

【数11】 [Equation 11]

【0042】がIs

【0043】[0043]

【数12】 [Equation 12]

【0044】の電波吸収材料を用い、電波吸収体の長さ
500mm、四角錐形状部分の長さ450mm、四角錐
の一単位の幅100mm、150mm、200mm、3
00mmで電波吸収体を製作し、周波数100GHzで
電波吸収特性を測定した。四角錐の一単位の幅と電波吸
収特性の関係を図4に示す。四角錐の一単位の幅が10
0mmのときにおいて電波吸収特性が50dB以上とな
っており、良好な吸収特性を示している。
Using the radio wave absorbing material of, the length of the radio wave absorber is 500 mm, the length of the quadrangular pyramid portion is 450 mm, the width of one unit of the quadrangular pyramid is 100 mm, 150 mm, 200 mm, 3
A radio wave absorber was manufactured with a length of 00 mm, and the radio wave absorption characteristics were measured at a frequency of 100 GHz. FIG. 4 shows the relationship between the width of one unit of the quadrangular pyramid and the electromagnetic wave absorption characteristics. The width of one unit of square pyramid is 10
When it is 0 mm, the electromagnetic wave absorption characteristic is 50 dB or more, indicating a good absorption characteristic.

【0045】(実施例5)周波数3GHzでの複素比誘
電率
(Embodiment 5) Complex relative permittivity at a frequency of 3 GHz

【0046】[0046]

【数13】 [Equation 13]

【0047】がIs

【0048】[0048]

【数14】 [Equation 14]

【0049】の電波吸収材料を用い、電波吸収体の長さ
300mm、四角錐形状部分の長さ250mm、四角錐
の底部の一単位の幅100mm、四角錐の先端部の一単
位の幅1mm、5mm、10mm、20mmで電波吸収
体を製作し、周波数100GHzで電波吸収特性を測定
した。四角錐の先端部と底部の面積比と電波吸収特性の
関係を図9に示す。四角錐の先端部と底部の面積比が
0.01のときにおいて電波吸収特性が50dB以上と
なっており、良好な吸収特性を示している。
Using the electromagnetic wave absorbing material of, the length of the electromagnetic wave absorber is 300 mm, the length of the quadrangular pyramid is 250 mm, the width of one unit of the bottom of the quadrangular pyramid is 100 mm, and the width of one unit of the tip of the quadrangular pyramid is 1 mm, Radio wave absorbers were manufactured with 5 mm, 10 mm, and 20 mm, and the radio wave absorption characteristics were measured at a frequency of 100 GHz. FIG. 9 shows the relationship between the area ratio between the tip and the bottom of the quadrangular pyramid and the electromagnetic wave absorption characteristics. When the area ratio of the tip part to the bottom part of the quadrangular pyramid is 0.01, the radio wave absorption characteristic is 50 dB or more, which shows a good absorption characteristic.

【0050】(比較例1)周波数3GHzでの複素比誘
電率
(Comparative Example 1) Complex relative permittivity at a frequency of 3 GHz

【0051】[0051]

【数15】 [Equation 15]

【0052】がIs

【0053】[0053]

【数16】 [Equation 16]

【0054】の電波吸収材料を用い、電波吸収体の長さ
100mm、四角錐形状部分の長さ100mm、四角錐
の一単位の幅30mmで電波吸収体を製作し、周波数2
〜10GHzで電波吸収特性を測定した。電波吸収特性
測定結果を図5に示す。3GHzでの電波吸収特性が1
0dB程度であり、実施例1と比較して電波吸収特性が
大きく低下している。
Using the electromagnetic wave absorbing material of, the electromagnetic wave absorber having a length of 100 mm, a quadrangular pyramid shaped portion of 100 mm in length, and a width of 30 mm of one unit of the quadrangular pyramid is manufactured, and a frequency of 2
The electromagnetic wave absorption characteristics were measured at 10 GHz. The measurement result of the radio wave absorption characteristics is shown in FIG. Electromagnetic wave absorption characteristic at 3 GHz is 1
It is about 0 dB, and the radio wave absorption characteristics are greatly reduced as compared with the first embodiment.

【0055】(比較例2)周波数3GHzでの複素比誘
電率
(Comparative Example 2) Complex relative permittivity at a frequency of 3 GHz

【0056】[0056]

【数17】 [Equation 17]

【0057】がIs

【0058】[0058]

【数18】 [Equation 18]

【0059】の電波吸収材料を用い、電波吸収体の長さ
150mm、四角錐形状部分の長さ50mm、四角錐の
一単位の幅30mmで電波吸収体を製作し、周波数2〜
10GHzで電波吸収特性を測定した。電波吸収特性測
定結果を図6に示す。3GHzでの電波吸収特性が30
dB程度であり、実施例1と比較して電波吸収特性が低
下している。
Using the electromagnetic wave absorbing material of, the electromagnetic wave absorber is manufactured with a length of the electromagnetic wave absorber of 150 mm, a length of the quadrangular pyramid portion of 50 mm, and a width of 30 mm of one unit of the quadrangular pyramid.
The electromagnetic wave absorption characteristics were measured at 10 GHz. The measurement result of the radio wave absorption characteristics is shown in FIG. The electromagnetic wave absorption characteristic at 3 GHz is 30
It is about dB, and the radio wave absorption characteristic is lower than that of the first embodiment.

【0060】(比較例3)周波数3GHzでの複素比誘
電率
(Comparative Example 3) Complex relative permittivity at a frequency of 3 GHz

【0061】[0061]

【数19】 [Formula 19]

【0062】がIs

【0063】[0063]

【数20】 [Equation 20]

【0064】の電波吸収材料を用い、電波吸収体の長さ
150mm、四角錐形状部分の長さ100mm、四角錐
の一単位の幅30mmで電波吸収体を製作し、周波数2
〜10GHzで電波吸収特性を測定した。電波吸収特性
測定結果を図7に示す。3GHzでの電波吸収特性が2
0dB程度であり、実施例1と比較して電波吸収特性が
低下している。
Using the electromagnetic wave absorbing material (1), an electromagnetic wave absorber having a length of 150 mm, a quadrangular pyramid-shaped portion having a length of 100 mm, and a quadrangular pyramid having a width of 30 mm was manufactured.
The electromagnetic wave absorption characteristics were measured at 10 GHz. The measurement result of the radio wave absorption characteristics is shown in FIG. The electromagnetic wave absorption characteristic at 3 GHz is 2
It is about 0 dB, and the electromagnetic wave absorption characteristic is lower than that of the first embodiment.

【0065】(比較例4)周波数3GHzでの複素比誘
電率
(Comparative Example 4) Complex relative permittivity at a frequency of 3 GHz

【0066】[0066]

【数21】 [Equation 21]

【0067】がIs

【0068】[0068]

【数22】 [Equation 22]

【0069】の電波吸収材料を用い、電波吸収体の長さ
150mm、四角錐形状部分の長さ100mm、四角錐
の一単位の幅30mm、50mm、100mmで電波吸
収体を製作し、周波数100GHzで電波吸収特性を測
定した。四角錐の一単位の幅と電波吸収特性の関係を図
8に示す。四角錐の一単位の幅と四角錐の長さの比が3
以上となっている四角錐の幅30mmのときにおいて電
波吸収特性が50dB以下となっており、実施例2と比
較して電波吸収特性が低下している。
Using the electromagnetic wave absorbing material of, the electromagnetic wave absorber was manufactured with a length of the electromagnetic wave absorber of 150 mm, a length of the quadrangular pyramid portion of 100 mm, and a width of one unit of the quadrangular pyramid of 30 mm, 50 mm, and 100 mm, and a frequency of 100 GHz. Radio wave absorption characteristics were measured. FIG. 8 shows the relationship between the width of one unit of the quadrangular pyramid and the radio wave absorption characteristics. The ratio of the width of one unit of the pyramid to the length of the pyramid is 3
When the width of the quadrangular pyramid is 30 mm, the radio wave absorption characteristic is 50 dB or less, which is lower than that of the second embodiment.

【0070】[0070]

【発明の効果】以上のように本発明の電波吸収体はSH
F帯からEHF帯に渡り良好な電波吸収特性が得られる
ため、本発明の電波吸収体を電波暗室に用いることによ
り、1つの電波暗室でSHF帯からEHF帯の対応が可
能となる。
As described above, the electromagnetic wave absorber of the present invention is SH
Since a good electromagnetic wave absorption characteristic can be obtained from the F band to the EHF band, by using the electromagnetic wave absorber of the present invention in the anechoic chamber, it is possible to cope with the SHF band to the EHF band in one anechoic chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の2〜10GHzでの電波吸
収特性を示す図である。
FIG. 1 is a diagram showing a radio wave absorption characteristic at 2 to 10 GHz according to a first embodiment of the present invention.

【図2】本発明の実施例2の100GHzでの電波吸収
特性を示す図である。
FIG. 2 is a diagram showing a radio wave absorption characteristic at 100 GHz according to a second embodiment of the present invention.

【図3】本発明の実施例3の100GHzでの電波吸収
特性を示す図である。
FIG. 3 is a diagram showing a radio wave absorption characteristic at 100 GHz according to a third embodiment of the present invention.

【図4】本発明の実施例4の100GHzでの電波吸収
特性を示す図である。
FIG. 4 is a diagram showing a radio wave absorption characteristic at 100 GHz according to a fourth embodiment of the present invention.

【図5】本発明の比較例1の2〜10GHzでの電波吸
収特性を示す図である。
FIG. 5 is a diagram showing radio wave absorption characteristics at 2 to 10 GHz of Comparative Example 1 of the present invention.

【図6】本発明の比較例2の2〜10GHzでの電波吸
収特性を示す図である。
FIG. 6 is a diagram showing radio wave absorption characteristics at 2 to 10 GHz of Comparative Example 2 of the present invention.

【図7】本発明の比較例3の2〜10GHzでの電波吸
収特性を示す図である。
FIG. 7 is a diagram showing radio wave absorption characteristics at 2 to 10 GHz of Comparative Example 3 of the present invention.

【図8】本発明の比較例4の100GHzでの電波吸収
特性を示す図である。
FIG. 8 is a diagram showing radio wave absorption characteristics at 100 GHz of Comparative Example 4 of the present invention.

【図9】本発明の実施例5の100GHzでの電波吸収
特性を示す図である。
FIG. 9 is a diagram showing a radio wave absorption characteristic at 100 GHz according to a fifth embodiment of the present invention.

【図10】単位吸収体の構造例を示す。FIG. 10 shows a structural example of a unit absorber.

【図11】複素比誘電率の絶対値と反射減衰量の関係を
示す。
FIG. 11 shows the relationship between the absolute value of the complex relative permittivity and the return loss.

【図12】誘電正接と反射減衰量の関係を示す。FIG. 12 shows the relationship between dielectric loss tangent and return loss.

【符号の説明】[Explanation of symbols]

D 台部 E 錐部 D stand E cone

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 錐状部を有する単位吸収体の集合体で
構成され、周波数3GHzでの複素比誘電率 【数1】 の絶対値の大きさ 【数2】 が2以上、9以下で誘電正接tanδ(=ε"r/ ε'r
が0.6以上の誘電損失材料で構成され、 前記単位吸収体の全長(H)が150mm以上であり、
錐状部の長さ(L)が100mm以上であり、錐状部の
長さ(L)は、単位吸収体の底部の一単位の長さ(W)
の3倍以上であって、前記一単位の長さ(W)が100
mm以下であることを特徴とする電波吸収体。
1. A complex relative dielectric constant at a frequency of 3 GHz, which is composed of an aggregate of unit absorbers having a conical portion. The magnitude of the absolute value of But 2 or more, 9 or less with a dielectric loss tangent tanδ (= ε "r / ε 'r)
Is made of a dielectric loss material of 0.6 or more, and the total length (H) of the unit absorber is 150 mm or more,
The length (L) of the conical portion is 100 mm or more, and the length (L) of the conical portion is one unit length (W) of the bottom of the unit absorbent body.
3 times or more, and the length (W) of the one unit is 100
A radio wave absorber characterized by being less than or equal to mm.
【請求項2】 前記錐状部がくさび形状、角錐形状、及
び円錐形状から選択されるひとつであり、その先端部の
面積がくさび形状、角錐形状、または円錐形状の底面部
の面積に対し100分の1以下であることを特徴とする
請求項1に記載の電波吸収体。
2. The pyramidal portion is one selected from a wedge shape, a pyramid shape, and a conical shape, and an area of a tip portion thereof is 100 with respect to an area of a wedge shape, a pyramid shape, or a conical bottom surface portion. The electromagnetic wave absorber according to claim 1, wherein the electromagnetic wave absorber is one-third or less.
JP34728293A 1993-12-27 1993-12-27 Micro wave and millimeter wave absorber Pending JPH07193388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34728293A JPH07193388A (en) 1993-12-27 1993-12-27 Micro wave and millimeter wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34728293A JPH07193388A (en) 1993-12-27 1993-12-27 Micro wave and millimeter wave absorber

Publications (1)

Publication Number Publication Date
JPH07193388A true JPH07193388A (en) 1995-07-28

Family

ID=18389162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34728293A Pending JPH07193388A (en) 1993-12-27 1993-12-27 Micro wave and millimeter wave absorber

Country Status (1)

Country Link
JP (1) JPH07193388A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7471233B2 (en) 2004-05-31 2008-12-30 Tdk Corporation Electromagnetic wave absorber
JP2009177105A (en) * 2008-01-25 2009-08-06 Matsuoka Roofing Inc Electromagnetic wave absorber
US7688246B2 (en) 2005-05-10 2010-03-30 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
JP2014017424A (en) * 2012-07-10 2014-01-30 Riken Corp Wave absorber
JP2015164230A (en) * 2014-01-28 2015-09-10 株式会社リケン Electromagnetic wave absorber
JP2016219725A (en) * 2015-05-26 2016-12-22 東レ株式会社 Radio wave absorber
WO2018180928A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber
WO2019131675A1 (en) * 2017-12-27 2019-07-04 富士フイルム株式会社 Particles of magnetoplumbite-type hexagonal ferrite and method for manufacturing same, and radio wave absorber

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7471233B2 (en) 2004-05-31 2008-12-30 Tdk Corporation Electromagnetic wave absorber
US7688246B2 (en) 2005-05-10 2010-03-30 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
US8063812B2 (en) 2005-05-10 2011-11-22 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
US8072366B2 (en) 2005-05-10 2011-12-06 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
US8279104B2 (en) 2005-05-10 2012-10-02 Fuji Xerox Co., Ltd. Radio wave absorber, electromagnetic field measurement system and radiated immunity system
JP2009177105A (en) * 2008-01-25 2009-08-06 Matsuoka Roofing Inc Electromagnetic wave absorber
JP4602429B2 (en) * 2008-01-25 2010-12-22 松岡瓦産業株式会社 Radio wave absorber
US9276326B2 (en) 2012-07-10 2016-03-01 Kabushiki Kaisha Riken Electromagnetic wave absorber
JP2014017424A (en) * 2012-07-10 2014-01-30 Riken Corp Wave absorber
US20140132439A1 (en) * 2012-07-10 2014-05-15 Kabushiki Kaisha Riken Electromagnetic wave absorber
KR101528667B1 (en) * 2012-07-10 2015-06-15 가부시끼가이샤 리켄 Electromagnetic wave absorber
JP2015164230A (en) * 2014-01-28 2015-09-10 株式会社リケン Electromagnetic wave absorber
JP2016219725A (en) * 2015-05-26 2016-12-22 東レ株式会社 Radio wave absorber
WO2018180928A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber
US10777904B2 (en) 2017-03-30 2020-09-15 Fujifilm Corporation Radio wave absorber and manufacturing method of radio wave absorber
WO2019131675A1 (en) * 2017-12-27 2019-07-04 富士フイルム株式会社 Particles of magnetoplumbite-type hexagonal ferrite and method for manufacturing same, and radio wave absorber
CN111527572A (en) * 2017-12-27 2020-08-11 富士胶片株式会社 Magnetite-type hexagonal ferrite particle, method for producing same, and radio wave absorber
JPWO2019131675A1 (en) * 2017-12-27 2020-11-19 富士フイルム株式会社 Magnetoplanbite type hexagonal ferrite particles, their manufacturing method, and radio wave absorber
US11721461B2 (en) 2017-12-27 2023-08-08 Fujifilm Corporation Particles of magnetoplumbite-type hexagonal ferrite, method for manufacturing the same, and radio wave absorber
CN111527572B (en) * 2017-12-27 2024-03-29 富士胶片株式会社 Magnetoplumbite type hexagonal ferrite particles, method for producing same, and radio wave absorber

Similar Documents

Publication Publication Date Title
US5208599A (en) Serrated electromagnetic absorber
JPH07193388A (en) Micro wave and millimeter wave absorber
KR102012415B1 (en) Broadband electromagnetic wave absorber and method for manufacturing thereof
EP1603192B1 (en) Electromagnetic wave absorber
Cahill et al. Field switching in an enclosure with active FSS screen
KR102213841B1 (en) Electro-magnetic wave absorber and manufacturing method thereof
JP2009088107A (en) Radio wave absorber, its accommodating method, and radio wave dark room
US5892188A (en) Porous ferrite wave absorber
KR100498887B1 (en) Broad-band ferrite electromagnetic wave absorber
JP2016146374A (en) Electromagnetic wave absorber
JP5441211B2 (en) Composite type electromagnetic wave absorber, electromagnetic wave absorbing wall and anechoic chamber using the same
Raspopoulos et al. Frequency selective surfaces on building materials–air gap impact
JPH07302992A (en) Porous ferrite radio-wave absorber
JPH07302993A (en) Porous ferrite radio-wave absorber
JPH07302991A (en) Porous ferrite radio-wave absorber
Hamid et al. Analysis of absorption mechanism in a planar radome absorber
JPH0222130A (en) Nickel-zinc-based ferrite material
Sharif et al. Performance Study of Coconut Coir Pyra-Shape Absorber Design
JP4420253B2 (en) Radio wave absorber and anechoic chamber
Nornikman et al. Modelling simulation stage of pyramidal and wedge microwave absorber design
KR100325918B1 (en) Wide-band ferrite electromagnetic wave absorber
JPH08130388A (en) Porous ferrite radio wave absorber
JP2008066585A (en) Radio-wave absorber and method of manufacturing the same
RU97103691A (en) SUPERWIDE-BAND ELECTROMAGNETIC WAVE DETECTOR
Sun et al. New Dual-Band EMI Metamaterial with Holes for Shielding 5G Electromagnetic Signals

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020924