JPH07193035A - Method for recovering impurity elements on the surface of a silicon wafer - Google Patents
Method for recovering impurity elements on the surface of a silicon waferInfo
- Publication number
- JPH07193035A JPH07193035A JP33024193A JP33024193A JPH07193035A JP H07193035 A JPH07193035 A JP H07193035A JP 33024193 A JP33024193 A JP 33024193A JP 33024193 A JP33024193 A JP 33024193A JP H07193035 A JPH07193035 A JP H07193035A
- Authority
- JP
- Japan
- Prior art keywords
- silicon wafer
- solution
- impurity element
- hydrofluoric acid
- impurity elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコンウェハー表面
の不純物元素を分析するための、不純物元素の回収方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of recovering an impurity element for analyzing an impurity element on the surface of a silicon wafer.
【0002】[0002]
【従来の技術】半導体デバイスの高集積化が進むにした
がって、基板となるシリコンウェハー表面の清浄度を高
めることが強く望まれている。シリコンウェハー表面に
は、シリコンウェハーや半導体デバイスの製造工程で金
属不純物や微粒子などの汚染物が付着するが、これらは
デバイスの製造歩留りやデバイスの性能において各種の
不都合な問題を引き起こす。なかでも金属不純物がシリ
コンウェハー表面に付着した場合、熱処理工程で熱酸化
膜やシリコンウェハーの内部に拡散し、絶縁破壊電圧や
少数キャリアのライフタイムを低下させる。したがっ
て、このような問題を起こさないようにするためには、
シリコンウェハー表面に付着した極微量の不純物元素を
正確に管理する必要がある。2. Description of the Related Art As the degree of integration of semiconductor devices increases, it is strongly desired to improve the cleanliness of the surface of a silicon wafer which is a substrate. Contaminants such as metal impurities and fine particles adhere to the surface of a silicon wafer during the manufacturing process of silicon wafers and semiconductor devices, but these cause various inconvenient problems in the device production yield and device performance. In particular, when the metal impurities adhere to the surface of the silicon wafer, they diffuse into the thermal oxide film and the inside of the silicon wafer in the heat treatment process, and reduce the dielectric breakdown voltage and the minority carrier lifetime. Therefore, in order to prevent such problems,
It is necessary to accurately control the extremely small amount of impurity element attached to the surface of the silicon wafer.
【0003】シリコンウェハー表面の不純物元素を分析
するための回収方法として、溶解液の液滴をシリコンウ
ェハーの分析領域内を転がしてまんべんなく移動させる
ことにより、不純物元素を溶解する方法が提案されてい
る。この方法は、従来より不純物元素の回収方法として
使用されているフッ酸の蒸気をシリコンウェハーに吹き
付けて不純物を回収する気相分解法に比べて、設備、操
作が簡便であるため処理時間が短くてすみ、しかも溶解
液を少量の液滴として取り扱うので環境汚染の危険性が
少ないなどの利点がある。シリコンウェハー上での液滴
の移動は、フッ酸蒸気分解法においても、分解後、不純
物元素を含む分解物を超純水などの液滴で回収する場合
にも必要となる操作である。As a recovery method for analyzing the impurity element on the surface of the silicon wafer, a method of dissolving the impurity element by rolling the droplets of the solution in the analysis region of the silicon wafer and moving the solution uniformly has been proposed. . Compared with the vapor phase decomposition method in which the vapor of hydrofluoric acid is conventionally used as a method for recovering impurity elements to spray silicon wafers to recover impurities, this method is simpler in equipment and operation and requires less processing time. Moreover, since the dissolved solution is handled as a small amount of droplets, there is an advantage that the risk of environmental pollution is small. The movement of the droplets on the silicon wafer is an operation that is necessary both in the hydrofluoric acid vapor decomposition method and in the case of recovering the decomposed product containing the impurity element by droplets such as ultrapure water after the decomposition.
【0004】溶解液の組成については、液滴を移動する
方法および気相分解法ともに、一般にフッ酸を含む水溶
液が使用されている。しかし、フッ酸単独では、Cuや
AgなどのSiよりもイオン化傾向の小さい金属は、S
iとの親和力が強いため、分解液に全量を溶解回収する
ことは困難である。Regarding the composition of the solution, an aqueous solution containing hydrofluoric acid is generally used in both the liquid droplet moving method and the vapor phase decomposition method. However, with hydrofluoric acid alone, metals such as Cu and Ag having a smaller ionization tendency than Si are
Since it has a strong affinity with i, it is difficult to dissolve and recover the entire amount in the decomposition liquid.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、短時
間でしかも環境を汚染することなく安全にシリコンウェ
ハー表面の不純物元素を回収することができ、さらにC
uなどのSiよりもイオン化傾向の小さい不純物元素も
高い回収率で回収できる方法を提供することである。An object of the present invention is to be able to recover impurity elements on the surface of a silicon wafer safely in a short time and without polluting the environment.
An object of the present invention is to provide a method capable of recovering an impurity element such as u having a smaller ionization tendency than Si with a high recovery rate.
【0006】[0006]
【課題を解決するための手段】本発明は、フッ酸と過酸
化水素と水、またはこれらと塩酸から成る溶解液の液滴
を、シリコンウェハー上の不純物元素の分析領域内を移
動させ、不純物元素を溶解回収することを特徴とする不
純物の回収方法に関する。According to the present invention, droplets of a solution containing hydrofluoric acid, hydrogen peroxide and water, or a solution of these and hydrochloric acid are moved within an analysis region of an impurity element on a silicon wafer to remove impurities. The present invention relates to a method for recovering impurities, which comprises recovering an element by dissolution.
【0007】本発明の方法が適用されるシリコンウェハ
ーとは、一般に半導体デバイスの製造に供されているも
ので、仕様は特に限定されない。The silicon wafer to which the method of the present invention is applied is generally used for manufacturing semiconductor devices, and its specifications are not particularly limited.
【0008】本発明における溶解液にはフッ酸と過酸化
水素と水、またはこれらと塩酸の混合液が使用される。
この溶解液は、特にSiよりもイオン化傾向の小さいC
uなどの不純物元素の回収に効果が大きいことが、検討
の結果明らかとなった。この溶解液の作用は以下のよう
に推測される。すなわち、溶解液と接触したシリコンウ
ェハーの表面では、過酸化水素水によるシリコン酸化膜
の形成とフッ酸によるエッチングが並行して進行し、表
面に付着した不純物元素はシリコン酸化膜とともに溶解
液に溶解する。塩酸はこれらの不純物元素の溶解液への
溶解性をより高めることにより、シリコンウェハーへの
再付着を抑制していると考えられる。The solution used in the present invention is hydrofluoric acid, hydrogen peroxide and water, or a mixture of these and hydrochloric acid.
This solution is C, which has a smaller ionization tendency than Si.
As a result of the study, it was revealed that the effect of recovering the impurity element such as u is great. The action of this solution is presumed as follows. That is, on the surface of the silicon wafer in contact with the dissolution liquid, the formation of the silicon oxide film by the hydrogen peroxide solution and the etching by the hydrofluoric acid proceed in parallel, and the impurity element attached to the surface is dissolved in the dissolution liquid together with the silicon oxide film. To do. It is considered that hydrochloric acid suppresses redeposition on the silicon wafer by further increasing the solubility of these impurity elements in the solution.
【0009】溶解液中の各薬品の濃度範囲に特に制限は
ないが、フッ酸、過酸化水素および塩酸の液中濃度はそ
れぞれ0.5重量%から20重量%の範囲、好ましくは
1重量%から10重量%の範囲が適当である。この範囲
よりも低いと酸化膜のエッチングや不純物元素の溶解に
長時間を要し効率的ではない。一方、この範囲より高い
濃度の液については問題なく使用できるが、取扱い上の
安全性を考慮すれば、前記の濃度範囲の液を使用するの
が好ましい。There is no particular limitation on the concentration range of each chemical in the solution, but the concentration of hydrofluoric acid, hydrogen peroxide and hydrochloric acid in the solution is in the range of 0.5% by weight to 20% by weight, preferably 1% by weight. The range from 10 to 10% by weight is suitable. If it is lower than this range, it takes a long time to etch the oxide film and dissolve the impurity element, which is not efficient. On the other hand, although a liquid having a concentration higher than this range can be used without any problem, it is preferable to use a liquid having the above concentration range in consideration of handling safety.
【0010】本発明で使用されるフッ酸、過酸化水素お
よび塩酸の品質は、その中に含まれる不純物元素でシリ
コンウェハーが汚染される不都合を避けるために極力高
純度であることが望ましく、具体的には電子工業用グレ
ードの薬品を使用することが望ましい。また水について
も、同様の理由から超純水を使用するのが望ましい。The quality of the hydrofluoric acid, hydrogen peroxide and hydrochloric acid used in the present invention is preferably as high as possible in order to avoid the inconvenience of contaminating the silicon wafer with the impurity elements contained therein. It is desirable to use electronic grade chemicals. Also for water, it is desirable to use ultrapure water for the same reason.
【0011】本発明における不純物元素の回収方法の例
を以下に述べる。まずフッ酸、過酸化水素および超純
水、またはこれらと塩酸から成る溶解液を調製する。溶
解液の調製はこれらの薬品を室温で混合し撹はんするだ
けでよい。この溶解液をマイクロピペットで一定量分取
して、測定する対象のシリコンウェハー面に滴下する。
滴下量は100μl〜1 mlが好ましい。これ以下で
は、液量が少ないためシリコンウェハー表面を移動させ
るのに時間がかかり、また移動し残す部分が出ることも
あり信頼性が低下する。一方、これよりも多いと回収さ
れた不純物元素の溶解液中濃度が低くなり、検出感度が
低下する。An example of the method for recovering the impurity element in the present invention will be described below. First, hydrofluoric acid, hydrogen peroxide and ultrapure water, or a solution containing them and hydrochloric acid is prepared. To prepare the solution, it is sufficient to mix these chemicals at room temperature and stir. A fixed amount of this solution is dispensed with a micropipette and dropped on the surface of the silicon wafer to be measured.
The dropping amount is preferably 100 μl to 1 ml. If the amount is less than this, it takes time to move the surface of the silicon wafer due to the small amount of liquid, and there is a part that remains after moving, which lowers reliability. On the other hand, if the amount is larger than this, the concentration of the recovered impurity element in the solution becomes low, and the detection sensitivity decreases.
【0012】本発明方法においては、溶解液の液滴をま
んべんなくシリコンウェハー上の分析領域内を転がすあ
るいは滑らすなどの方法により移動させて、不純物元素
を効率よく回収する必要がある。液滴の移動はシリコン
ウェハーを保持した真空ピンセットを手で持って傾けな
がら行ってもよいが、この方法ではシリコンウェハーを
傾け過ぎて液滴をシリコンウェハーから落とすなどの不
都合が生じやすい。したがって作業効率を考えると、シ
リコンウェハーを傾け過ぎても液滴が落ちないようなシ
リコンウェハー保持台を使用するか機械で移動を自動化
した方が望ましい。このような方法としては、公知の方
法が使用できる。たとえば、水平状態のステージにシリ
コンウェハーを搭載し、このステージを磁気で浮上させ
た状態で、水平面内で回転または移動させながらシリコ
ンウェハーに滴下された液滴を液滴保持具で保持させて
シリコンウェハー表面を半径方向に移動させる方法があ
る。(特開平1−302836公報) また、シリコンウェハーを保持台ごと傾けることによ
り、超純水の液滴をシリコンウェハーの面内全域を移動
させる方法がある。(特開平4−3445公報)In the method of the present invention, it is necessary to efficiently collect the impurity element by moving the droplets of the dissolution liquid evenly by a method such as rolling or sliding in the analysis region on the silicon wafer. The movement of the droplet may be performed while holding the vacuum tweezers holding the silicon wafer by hand and inclining it, but this method tends to cause inconveniences such as dropping the droplet from the silicon wafer by inclining the silicon wafer too much. Therefore, from the viewpoint of work efficiency, it is desirable to use a silicon wafer holding stand that prevents drops from dropping even if the silicon wafer is tilted too much or to automate the movement by a machine. As such a method, a known method can be used. For example, a silicon wafer is mounted on a horizontal stage, and while the stage is magnetically levitated, the droplets held on the silicon wafer are held by a droplet holder while rotating or moving in a horizontal plane. There is a method of moving the wafer surface in the radial direction. (Japanese Patent Laid-Open No. 1-302836) In addition, there is a method in which a droplet of ultrapure water is moved over the entire surface of the silicon wafer by inclining the silicon wafer together with the holding table. (JP-A-4-3445)
【0013】溶解液の液滴を移動させるシリコンウェハ
ーの表面温度は室温付近が望ましく、これより高くても
また低くても分析精度は低下する。すなわち、シリコン
ウェハーの表面温度が高いと移動中に分解液の一部が蒸
発し、液中の不純物が濃縮されるため、分析値としては
実際よりも高い数値になる。一方、低温の場合には空気
中の水分が冷やされてシリコンウェハー上に凝縮して溶
解液に加わり、不純物が希釈されるために、分析値は実
際よりも低くなる。The surface temperature of the silicon wafer on which the droplets of the solution are to be moved is preferably around room temperature, and the analysis accuracy will be lowered if the temperature is higher or lower than this. That is, when the surface temperature of the silicon wafer is high, a part of the decomposition liquid is evaporated during movement and the impurities in the liquid are concentrated, so that the analysis value becomes higher than the actual value. On the other hand, when the temperature is low, the water content in the air is cooled, condensed on the silicon wafer and added to the solution, and the impurities are diluted, so that the analysis value becomes lower than the actual value.
【0014】液滴を移動させる回数(所定の分析領域を
まんべんなく一通り液滴を移動させる回数)は、1回だ
けでは不純物元素の溶解が不十分な場合があり得るた
め、最低2回以上必要である。通常は、滴下した溶解液
でシリコンウェハー面内をまんべんなく2回以上走査す
る方法が採られる。The number of times the droplets are moved (the number of times the droplets are moved evenly throughout the predetermined analysis region) may be insufficient to dissolve the impurity element only once. Is. Usually, a method of scanning the surface of the silicon wafer evenly twice or more with the dropped solution is adopted.
【0015】1回の走査時間は、シリコンウェハーに滴
下する溶解液の量で変わるので限定はされないが、たと
えば4インチウェハーに1mlを滴下した場合、移動操
作の精度保持、移動中の溶解液の蒸発の防止等の点か
ら、3分間から10分間が適当である。The scanning time for one time is not limited because it varies depending on the amount of the solution to be dropped on the silicon wafer. For example, when 1 ml is dropped on a 4-inch wafer, the accuracy of the moving operation is maintained and the solution during the moving is kept. From the viewpoint of prevention of evaporation and the like, 3 minutes to 10 minutes is suitable.
【0016】溶解液を移動して不純物元素を溶解後、マ
イクロピペットで溶解液を全量吸引して清浄なテフロン
容器に移し替えた後、この液を原子吸光分析計あるいは
プラズマ発光分光質量分析計で不純物元素の濃度を測定
する。本発明方法によって回収しうる不純物元素として
は、Fe,Ni,Zn,Cu,Al等の金属元素があげ
られる。After moving the dissolving solution to dissolve the impurity element, the whole amount of the dissolving solution is sucked with a micropipette and transferred to a clean Teflon container, and this solution is analyzed by an atomic absorption spectrometer or a plasma emission spectroscopic mass spectrometer. Measure the concentration of impurity elements. Impurity elements that can be recovered by the method of the present invention include metallic elements such as Fe, Ni, Zn, Cu, and Al.
【0017】[0017]
【発明の効果】本発明の不純物元素の回収方法によれ
ば、短時間でしかも環境を汚染することなく安全にシリ
コンウェハー表面の不純物元素を回収することができ、
さらにCuなどのSiよりもイオン化傾向の小さい不純
物元素も高い回収率で回収できる。このため半導体デバ
イスの製造プロセスにおけるシリコンウェハーの汚染管
理に極めて有用である。According to the method for recovering the impurity element of the present invention, the impurity element on the surface of the silicon wafer can be recovered safely in a short time without polluting the environment.
Further, an impurity element such as Cu having a smaller ionization tendency than Si can be recovered at a high recovery rate. Therefore, it is extremely useful for controlling contamination of silicon wafers in the semiconductor device manufacturing process.
【0018】[0018]
【実施例】以下、本発明を実施例でさらに詳細を説明す
るが、本発明はこれら実施例によって何ら限定されるも
のではない。実施例では、面方位(100)、比抵抗3
〜6Ω・cmのn型シリコンウェハーを使用し、また不
純物元素の汚染源には原子吸光分析用標準液を使用し
た。シリコンウェハーから回収された不純物元素の定量
は原子吸光分析により行った。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the example, the plane orientation (100) and the specific resistance 3
An n-type silicon wafer of ˜6 Ω · cm was used, and a standard solution for atomic absorption spectrometry was used as a contamination source of impurity elements. The quantification of the impurity element recovered from the silicon wafer was performed by atomic absorption spectrometry.
【0019】実施例1 シリコンウェハーを1 重量%のフッ酸水溶液で洗浄した
後、Cuを添加した超純水を一定量マイクロピペットに
分取し、シリコンウェハー上に少量ずつ全面にまんべん
なく滴下した。その後シリコンウェハーをホットプレー
ト上でゆっくりと加熱して水分を蒸発させることによ
り、シリコンウェハー上のCu濃度が2.2×1012原
子/cm2 のCu汚染シリコンウェハーを作製し、これ
を図に示すようなフッ素樹脂製のウェハー保持台に測定
面を上にして保持させた。次にフッ酸、過酸化水素およ
び超純水を混合してそれぞれの濃度が5重量%の溶解液
を調製し、この液1mlをマイクロピペットに分取し、
汚染したシリコンウェハーのほぼ中央部に滴下した。そ
して室温下で、シリコンウェハーをウェハー保持台ごと
傾けて溶解液の液滴を転がし、5分間で2回全面を移動
した後、この液を再びマイクロピペットで全量回収し
た。原子吸光分析により回収した溶解液中のCu分析を
したところ、シリコンウェハーへの付着量換算で2.1
×1012原子/cm2 となり、回収率は98%であっ
た。Example 1 A silicon wafer was washed with a 1% by weight aqueous solution of hydrofluoric acid, and a certain amount of Cu-added ultrapure water was dispensed into a micropipette and evenly dropped on the entire surface of the silicon wafer evenly. After that, the silicon wafer is slowly heated on a hot plate to evaporate the water, thereby producing a Cu-contaminated silicon wafer having a Cu concentration of 2.2 × 10 12 atoms / cm 2 on the silicon wafer. The wafer was held on a fluororesin wafer holder as shown with the measurement surface facing upward. Next, hydrofluoric acid, hydrogen peroxide and ultrapure water were mixed to prepare a solution having a concentration of 5% by weight, and 1 ml of this solution was dispensed into a micropipette.
It was dripped at almost the center of the contaminated silicon wafer. Then, at room temperature, the silicon wafer was tilted together with the wafer holding table to roll the droplets of the solution, and the solution was moved over the entire surface twice for 5 minutes, and then the entire amount of this solution was collected again with a micropipette. Analysis of Cu in the solution recovered by atomic absorption spectrometry showed that it was 2.1 in terms of the amount attached to the silicon wafer.
The concentration was × 10 12 atoms / cm 2 , and the recovery rate was 98%.
【0020】実施例2 実施例1と同じCu濃度のCu汚染させたシリコンウェ
ハーを作製し、フッ酸および過酸化水素が各5重量%の
フッ酸と過酸化水素と超純水から成る溶解液100μl
を、汚染したシリコンウェハー上に滴下し、実施例1と
同じ要領でCuを回収した。回収した溶解液を原子吸光
分析したところ、分解液中のCu濃度はシリコンウェハ
ー付着量換算で2.0×1012原子/cm2 となり、回
収率は90%であった。Example 2 A Cu-contaminated silicon wafer having the same Cu concentration as in Example 1 was prepared, and a solution containing 5% by weight of hydrofluoric acid and hydrogen peroxide, hydrogen peroxide, and ultrapure water. 100 μl
Was dropped onto a contaminated silicon wafer, and Cu was recovered in the same manner as in Example 1. Atomic absorption spectrometric analysis of the recovered solution revealed that the Cu concentration in the decomposed solution was 2.0 × 10 12 atoms / cm 2 in terms of silicon wafer attachment amount, and the recovery rate was 90%.
【0021】比較例 実施例1と同じCu濃度のCu汚染させたシリコンウェ
ハーを作製し、5重量%のフッ酸と超純水からなる溶解
液100μlを、汚染したシリコンウェハー上に滴下
し、実施例1と同じ要領でCuを回収した。回収した溶
解液を原子吸光分析したところ、溶解液中のCu濃度は
シリコンウェハー付着量換算で1.2×1012原子/c
m2 となり、回収率は55%であった。Comparative Example A Cu-contaminated silicon wafer having the same Cu concentration as in Example 1 was prepared, and 100 μl of a solution containing 5 wt% hydrofluoric acid and ultrapure water was dropped onto the contaminated silicon wafer. Cu was recovered in the same manner as in Example 1. Atomic absorption analysis of the recovered solution revealed that the Cu concentration in the solution was 1.2 × 10 12 atoms / c in terms of silicon wafer attachment amount.
m 2 and the recovery rate was 55%.
【図1】本発明の実施例で使用したフッ素樹脂製シリコ
ンウェハーの保持台の縦断面図である。FIG. 1 is a vertical sectional view of a holding base for a fluororesin silicon wafer used in an example of the present invention.
1…フッ素樹脂製シリコンウェハー保持台 2…シリコンウェハー 3…溶解液 1 ... Fluororesin silicon wafer holder 2 ... Silicon wafer 3 ... Solution
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成6年4月21日[Submission date] April 21, 1994
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0016[Correction target item name] 0016
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0016】溶解液を移動して不純物元素を溶解後、マ
イクロピペットで溶解液を全量吸引して清浄なテフロン
容器に移し替えた後、この液を原子吸光分析計あるいは
誘導結合プラズマ質量分析計で不純物元素の濃度を測定
する。本発明方法によって回収しうる不純物元素として
は、Fe,Ni,Zn,Cu,Al等の金属元素があげ
られる。After moving the dissolution liquid to dissolve the impurity element, the whole amount of the dissolution liquid is sucked with a micropipette and transferred to a clean Teflon container, and this liquid is then analyzed by an atomic absorption spectrometer or
The concentration of the impurity element is measured with an inductively coupled plasma mass spectrometer. Impurity elements that can be recovered by the method of the present invention include metallic elements such as Fe, Ni, Zn, Cu, and Al.
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0019[Correction target item name] 0019
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0019】実施例1 シリコンウェハーを1 重量%のフッ酸水溶液で洗浄した
後、Cuを添加した超純水を一定量マイクロピペットに
分取し、シリコンウェハー上に少量ずつ全面にまんべん
なく滴下した。その後シリコンウェハーをホットプレー
ト上でゆっくりと加熱して水分を蒸発させることによ
り、シリコンウェハー上のCu濃度が2.2×1012原
子/cm2 のCu汚染シリコンウェハーを作製し、これ
を図に示すようなフッ素樹脂製のウェハー保持台に測定
面を上にして保持させた。次にフッ酸、過酸化水素、塩
酸および超純水を混合してそれぞれの濃度が5重量%の
溶解液を調製し、この液100μlをマイクロピペット
に分取し、汚染したシリコンウェハーのほぼ中央部に滴
下した。そして室温下で、シリコンウェハーをウェハー
保持台ごと傾けて溶解液の液滴を転がし、5分間で2回
全面を移動した後、この液を再びマイクロピペットで全
量回収した。原子吸光分析により回収した溶解液中のC
u分析をしたところ、シリコンウェハーへの付着量換算
で2.1×10 12原子/cm2 となり、回収率は98%
であった。Example 1 A silicon wafer was washed with a 1% by weight aqueous solution of hydrofluoric acid.
After that, a certain amount of Cu-added ultrapure water was put into a micropipette.
Collect and spread evenly over the entire surface of the silicon wafer little by little.
Dropped without. Then hot play the silicon wafer
By slowly heating it on the
The Cu concentration on the silicon wafer is 2.2 × 1012original
Child / cm2Cu-contaminated silicon wafer of
On a wafer holder made of fluororesin as shown in the figure
It was held face-up. Next, hydrofluoric acid and hydrogen peroxide,salt
acidAnd ultrapure water are mixed so that each concentration is 5% by weight.
Prepare a solution and use this solution100 μlA micro pipette
And drop it on the center of the contaminated silicon wafer.
Defeated Then, at room temperature, the silicon wafer
Tilt the holding table to roll the droplets of the solution, and then twice in 5 minutes
After moving the entire surface, use a micropipette to remove this liquid again.
The amount was recovered. C in the solution recovered by atomic absorption spectrometry
When u analysis is performed, the amount of adhesion to the silicon wafer is converted
2.1 x 10 12Atom / cm2And the recovery rate is 98%
Met.
Claims (2)
液滴を、シリコンウェハー表面上の不純物元素の分析領
域内を移動させ、不純物元素を溶解回収することを特徴
とする不純物元素の回収方法。1. An impurity element characterized in that a droplet of a solution containing hydrofluoric acid, hydrogen peroxide and water is moved in an impurity element analysis region on the surface of a silicon wafer to dissolve and recover the impurity element. Recovery method.
解液の液滴を、シリコンウェハー表面上の不純物元素の
分析領域内を移動させ、不純物元素を溶解回収すること
を特徴とする不純物元素の回収方法。2. A droplet of a solution containing hydrofluoric acid, hydrogen peroxide, hydrochloric acid, and water is moved within an impurity element analysis region on the surface of a silicon wafer to dissolve and recover the impurity element. Method of recovering impurity elements.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33024193A JPH07193035A (en) | 1993-12-27 | 1993-12-27 | Method for recovering impurity elements on the surface of a silicon wafer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33024193A JPH07193035A (en) | 1993-12-27 | 1993-12-27 | Method for recovering impurity elements on the surface of a silicon wafer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07193035A true JPH07193035A (en) | 1995-07-28 |
Family
ID=18230442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33024193A Pending JPH07193035A (en) | 1993-12-27 | 1993-12-27 | Method for recovering impurity elements on the surface of a silicon wafer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07193035A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6245650B1 (en) | 1999-01-28 | 2001-06-12 | Nec Corporation | Process for production of semiconductor device |
US6432836B1 (en) * | 1998-09-17 | 2002-08-13 | Nec Corporation | Cleaning method for semiconductor substrate and cleaning solution |
US6444010B1 (en) | 1999-11-11 | 2002-09-03 | Nec Corporation | Platinum group impurity recovery liquid and method for recovering platinum group impurity |
KR20150077095A (en) * | 2013-12-27 | 2015-07-07 | 주식회사 엘지실트론 | Method for Fabricating Standard Wafer |
CN119643681A (en) * | 2025-02-17 | 2025-03-18 | 杭州积海半导体有限公司 | Method for testing noble metal content on wafer surface |
-
1993
- 1993-12-27 JP JP33024193A patent/JPH07193035A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6432836B1 (en) * | 1998-09-17 | 2002-08-13 | Nec Corporation | Cleaning method for semiconductor substrate and cleaning solution |
US6245650B1 (en) | 1999-01-28 | 2001-06-12 | Nec Corporation | Process for production of semiconductor device |
US6444010B1 (en) | 1999-11-11 | 2002-09-03 | Nec Corporation | Platinum group impurity recovery liquid and method for recovering platinum group impurity |
KR20150077095A (en) * | 2013-12-27 | 2015-07-07 | 주식회사 엘지실트론 | Method for Fabricating Standard Wafer |
CN119643681A (en) * | 2025-02-17 | 2025-03-18 | 杭州积海半导体有限公司 | Method for testing noble metal content on wafer surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6108367B1 (en) | Silicon substrate analyzer | |
US11742230B2 (en) | Contaminant detection tools including nebulizer and related methods | |
JPH07193035A (en) | Method for recovering impurity elements on the surface of a silicon wafer | |
JP2005265718A (en) | Analytical method for impurity | |
JP2002368052A (en) | Method for desorbing silicon and method for analyzing impurities in silicon wafer | |
JP4755746B2 (en) | Method for measuring impurities on semiconductor wafer surface and impurity recovery apparatus therefor | |
JP5413342B2 (en) | Silicon wafer surface layer etching method and silicon wafer metal contamination analysis method | |
JP4078980B2 (en) | Method for analyzing metal impurities on silicon substrate surface | |
WO2019181104A1 (en) | Method for etching boron-doped p-type silicon wafer, method for assessing contamination with metal, and production method | |
US7348188B2 (en) | Method for analyzing metal element on surface of wafer | |
JP2950310B2 (en) | Method for analyzing metal impurities on semiconductor substrate surface and substrate | |
JP2843600B2 (en) | Method for measuring the amount of impurities on the wafer surface | |
CN111989565B (en) | Analysis method of silicon substrate | |
JP2001077158A (en) | Analyzing method of metallic contamination on surface of silicon wafer | |
JP2009294091A (en) | Analyzing method of contaminant in silicon wafer | |
JP4000027B2 (en) | Semiconductor sample impurity analysis method and semiconductor sample impurity concentration apparatus | |
US7399635B2 (en) | Impurity measuring method for Ge substrates | |
JPH10332554A (en) | Surface impurity measurement method | |
JP4760458B2 (en) | Method for analyzing metal contamination of semiconductor wafer storage container | |
JPH1137992A (en) | Method for analyzing surface layer of silicon wafer | |
JP2000332072A (en) | Surface analysis method of semiconductor substrate | |
JP2772035B2 (en) | Method for measuring the amount of impurities on the wafer surface | |
JPH06213805A (en) | Etching method for ultra trace metal analysis of silicon wafer surface | |
JPH0539532A (en) | Cu recovery method for semiconductor wafer surface | |
JPH0792064A (en) | Method and device for preparing analytical sample |