[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07198636A - Device for evaluating quality of fruit - Google Patents

Device for evaluating quality of fruit

Info

Publication number
JPH07198636A
JPH07198636A JP35214693A JP35214693A JPH07198636A JP H07198636 A JPH07198636 A JP H07198636A JP 35214693 A JP35214693 A JP 35214693A JP 35214693 A JP35214693 A JP 35214693A JP H07198636 A JPH07198636 A JP H07198636A
Authority
JP
Japan
Prior art keywords
fruit
spin
relaxation time
magnetic field
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35214693A
Other languages
Japanese (ja)
Inventor
Soichi Yamamoto
惣一 山本
Hirotake Kamei
裕孟 亀井
Takeaki Ogata
健明 尾形
Tsuneyoshi Goto
恒義 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Manufacturing Co Ltd
Original Assignee
Yamamoto Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Manufacturing Co Ltd filed Critical Yamamoto Manufacturing Co Ltd
Priority to JP35214693A priority Critical patent/JPH07198636A/en
Publication of JPH07198636A publication Critical patent/JPH07198636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PURPOSE:To nondestructively evaluate the total quality of a fruit. CONSTITUTION:An exciting coil 16 for applying a pulse-like high frequency magnetic field to a fruit, and a detecting coil 18 for detecting a resonant signal caused by the application of the magnetic field are arranged between magnets 10 for generating a static magnetic field. A spin-lattice relaxation time T1 is computed from a detection signal delivered from the detecting coil 18, and a spin-spin relaxation time T2 and a variation in a magnetic resonant spectrum are computed. Further, a grade of the fruit which can be determined by a sugar content and a ripeness degree, is computed from the spin-lattice relaxation time T1, the spin-spin relaxation time T2 and the variation in the magnetic spectrum. Thus, the fruit is sorted in accordance with the grade.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は果実の品質評価装置に係
り、特に、果実の熟度や特定成分によって定まる品質
を、果実を破壊せずに短時間に、果物の内部全体的に亘
って評価すると共に、果実選別装置に好適な果実の品質
評価装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fruit quality evaluation apparatus, and more particularly, to a quality determined by the ripeness of a fruit or a specific component, over the entire inside of the fruit in a short time without destroying the fruit. The present invention relates to a fruit quality evaluation device suitable for evaluation and suitable for a fruit selection device.

【0002】[0002]

【従来の技術】一般に、果実の品質評価のうち特定成分
のうち糖質の測定には、近赤外線の反射と吸収とを対象
とした分光法が用いられている。この方法で、果実を破
壊せずに測定すると表皮から数mmまでの深さの成分を測
定するとができる。
2. Description of the Related Art Generally, in the evaluation of fruit quality, sugar is measured as a specific component, and a spectroscopic method for reflection and absorption of near infrared rays is used. By this method, it is possible to measure a component at a depth of up to several mm from the epidermis when measuring the fruit without destroying it.

【0003】また、特定成分のうち糖質については、上
記のような方法で測定され選果装置に利用されている。
Further, among the specific components, sugars are measured by the above-mentioned method and used in a fruit selecting device.

【0004】熟度については明確な測定方法が確立して
いないため、色の変化、硬さの変化を測定して指標とし
ている。
Since a clear measuring method for maturity has not been established, changes in color and hardness are measured and used as indices.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
品質評価方法では、表皮から数mmまでの深さの成分しか
測定できないので、果実全体の品質を評価できない、と
いう問題がある。
However, the conventional quality evaluation method has a problem in that the quality of the whole fruit cannot be evaluated because only the components having a depth of several mm from the epidermis can be measured.

【0006】本発明は上記問題点を解決するために成さ
れたもので、果物を破壊することなく果実全体の品質を
評価することができる果物の品質評価装置を提供するこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a fruit quality evaluation apparatus capable of evaluating the quality of the whole fruit without destroying the fruit.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に請求項1の発明は、静磁場を発生する磁石と、特定原
子核に共鳴する周波数の高周波を発生する高周波発生器
と、前記高周波に基づいてパルス状の高周波磁場を試料
果実に印加すると共に磁場印加により発生する共鳴信号
を検出するコイルと、前記コイルの検出出力に基づいて
試料果実の品質を評価する品質評価手段と、を含んで構
成したものである。
In order to achieve the above object, the invention of claim 1 provides a magnet for generating a static magnetic field, a high frequency generator for generating a high frequency of a frequency resonant with a specific atomic nucleus, and the high frequency. A coil that applies a pulsed high-frequency magnetic field to the sample fruit based on the coil and detects a resonance signal generated by the magnetic field application, and a quality evaluation unit that evaluates the quality of the sample fruit based on the detection output of the coil. It is composed.

【0008】また、請求項2の発明は請求項1の発明の
品質評価測定手段によって、磁気共鳴のスピン−格子緩
和時間、スピン−スピン緩和時間及び磁気共鳴スペクト
ルの変化に基づいて試料果実の品質を評価するようにし
たものである。
According to the invention of claim 2, the quality of the sample fruit is measured by the quality evaluation measuring means of the invention of claim 1 based on changes in the spin-lattice relaxation time of the magnetic resonance, the spin-spin relaxation time and the magnetic resonance spectrum. Is to be evaluated.

【0009】[0009]

【作用】本発明では、試料果実に静磁場を印加すると共
にパルス状の高周波磁場を印加し、コイルによりパルス
状の高周波磁場印加により発生する共鳴信号を検出す
る。そして、コイルの検出出力に基づいて試料果実の品
質を評価する。この試料果実の品質評価は、磁気共鳴の
スピン−格子緩和時間、スピン−スピン緩和時間及び磁
気共鳴スペクトルの変化に基づいて行うと効果的であ
る。
In the present invention, the static magnetic field is applied to the sample fruit and the pulsed high frequency magnetic field is applied, and the resonance signal generated by the application of the pulsed high frequency magnetic field is detected by the coil. Then, the quality of the sample fruit is evaluated based on the detection output of the coil. It is effective to evaluate the quality of this sample fruit based on changes in spin-lattice relaxation time of magnetic resonance, spin-spin relaxation time, and magnetic resonance spectrum.

【0010】このように本発明は、磁気共鳴によって果
物の品質を評価しているため、果物を破壊することなく
果実全体の品質を評価することができる。
As described above, according to the present invention, since the quality of fruits is evaluated by magnetic resonance, the quality of the whole fruits can be evaluated without destroying the fruits.

【0011】[0011]

【実施例】以下図面を参照して本発明の一実施例を詳細
に説明する。本実施例は本発明の果実の品質評価装置を
果実の選別装置に適用したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. In this embodiment, the fruit quality evaluation device of the present invention is applied to a fruit selection device.

【0012】本実施例の果実の選別装置は、図1及び図
2に示すように、静磁場を発生する一対の磁石10を備
えている。この磁石10としては、常電導磁石、超電導
磁石、永久磁石のいずれかを用いることができる。磁石
10間には、磁石10によって発生された静磁場に直交
する方向に試料果実を搬送する搬送コンベア12が配置
されている。この搬送コンベア12には試料果実を保持
するたの保持具14が、搬送コンベア12の長さ方向に
沿って所定間隔隔てて多数個配置されている。
The fruit sorting apparatus of this embodiment, as shown in FIGS. 1 and 2, comprises a pair of magnets 10 for generating a static magnetic field. As the magnet 10, any one of a normal conducting magnet, a superconducting magnet, and a permanent magnet can be used. A transfer conveyor 12 that transfers sample fruits in a direction orthogonal to the static magnetic field generated by the magnets 10 is arranged between the magnets 10. A large number of holders 14 for holding sample fruits are arranged on the conveyor 12 along the length direction of the conveyor 12 at predetermined intervals.

【0013】静磁場内の試料果実搬送方向下流側には、
パルス状の高周波磁場を静磁場と直交する方向に発生す
るための一対の励起コイル16が配置されており、この
励起コイル16の間には、内部を搬送コンベア12に保
持された試料果実が通過可能に受信コイル18が配置さ
れている。
On the downstream side of the sample fruit conveyance direction in the static magnetic field,
A pair of excitation coils 16 for generating a pulsed high-frequency magnetic field in a direction orthogonal to the static magnetic field are arranged, and between the excitation coils 16, the sample fruit held inside by the conveyor 12 passes. The receiving coil 18 is arranged as possible.

【0014】また、特定原子核であるプロトンに共鳴す
る周波数の高周波を発生する高周波発振器20が設けら
れており、この高周波発振器20はゲート回路22及び
電力増幅器24を介して励起コイル16に接続されてい
る。
Further, there is provided a high frequency oscillator 20 which generates a high frequency of a frequency that resonates with protons which are specific atomic nuclei. The high frequency oscillator 20 is connected to the excitation coil 16 via a gate circuit 22 and a power amplifier 24. There is.

【0015】受信コイル18は、信号増幅器26及びA
/D変換器28を介してCPUを含むコンピュータ等で
構成された演算装置30に接続されている。また、この
演算装置30は、パルス発生器32を介してゲート回路
22に接続されると共に、表示器34に接続され、また
試料果実の供給を制御するCPUを含むコンピュータ等
で構成された試料果実供給制御装置36に接続されてい
る。
The receiving coil 18 includes a signal amplifier 26 and A
It is connected via a / D converter 28 to an arithmetic unit 30 composed of a computer or the like including a CPU. Further, the arithmetic unit 30 is connected to the gate circuit 22 via the pulse generator 32, is connected to the display 34, and is a sample fruit including a computer including a CPU for controlling the supply of the sample fruit. It is connected to the supply control device 36.

【0016】この試料果実供給制御装置36には、試料
果実の位置を制御する試料果実位置制御器38、試料果
実の搬送を制御する試料果実搬送制御器40及び品質に
応じて試料果実を選別する試料果実選別制御器42が接
続されている。
The sample fruit supply control device 36 selects a sample fruit position controller 38 for controlling the position of the sample fruit, a sample fruit transfer controller 40 for controlling the transfer of the sample fruit, and the sample fruit according to the quality. A sample fruit selection controller 42 is connected.

【0017】上記演算装置30には、以下で説明する測
定ルーチンのプログラムが記憶され、また試料果実供給
制御装置36には以下で説明する選別ルーチンのプログ
ラムが予め記憶されている。
The arithmetic unit 30 stores a program of a measurement routine described below, and the sample fruit supply control unit 36 stores a program of a selection routine described below in advance.

【0018】以下本実施例の作用について説明する。ま
ず、図3に基づいて、測定ルーチンについて説明する。
試料果実は、試料果実搬送制御器40によって制御され
る搬送コンベア12によって搬送され、静磁場中を通過
することにより静磁場が印加され、試料果実位置制御器
38によって励起コイル16間の規定位置に位置決めさ
れている。
The operation of this embodiment will be described below. First, the measurement routine will be described with reference to FIG.
The sample fruit is transported by the transport conveyor 12 controlled by the sample fruit transport controller 40, a static magnetic field is applied by passing through the static magnetic field, and the sample fruit position controller 38 causes the sample fruit to move to a predetermined position between the excitation coils 16. It is positioned.

【0019】ステップ100において、試料果実供給制
御装置36から測定開始要求信号が入力されたか否か判
断し、測定開始要求信号が入力されたときにはステップ
102においてパルス発生器32を制御して一定周期で
一定幅のパルスを発生する。これにより、ゲート回路2
2が一定周期でパルス幅に相当する所定時間ずつ開かれ
て高周波が電力増幅器24を介して励起コイル16に印
加され、パルス状の高周波磁場が試料果実に一定周期で
印加される。
In step 100, it is determined whether or not a measurement start request signal is input from the sample fruit supply control device 36, and when the measurement start request signal is input, the pulse generator 32 is controlled in step 102 to set a fixed cycle. Generates a pulse of constant width. As a result, the gate circuit 2
2 is opened for a predetermined period of time corresponding to the pulse width in a constant cycle, a high frequency is applied to the excitation coil 16 via the power amplifier 24, and a pulsed high frequency magnetic field is applied to the sample fruit in a constant cycle.

【0020】パルス状の高周波磁場の印加後ステップ1
04において受信コイル18に発生する誘導電流を信号
増幅器26を介してA/D変換器28に取込み、A/D
変換を行う。次のステップ106ではパルス信号のパル
ス幅に相当する所定時間経過したか判断し、所定時間経
過したと判断されたときには、ステップ108において
所定回数、パルス発生とA/D変換とを実行したか否か
判断し、肯定判断のときはステップ108に進む。これ
によって、所定個のパルスが一定周期で発生されて、パ
ルス状高周波磁場が一定周期で印加されたときの共鳴信
号がパルス状高周波磁場の印加毎に検出される。
Step 1 after application of pulsed high frequency magnetic field
At 04, the induced current generated in the receiving coil 18 is taken into the A / D converter 28 via the signal amplifier 26,
Do the conversion. In the next step 106, it is determined whether or not a predetermined time corresponding to the pulse width of the pulse signal has elapsed. If it is determined that the predetermined time has elapsed, then in step 108 it is determined whether pulse generation and A / D conversion have been performed a predetermined number of times. If yes, the process proceeds to step 108. As a result, a predetermined number of pulses are generated in a constant cycle, and a resonance signal when the pulsed high frequency magnetic field is applied in a constant cycle is detected every time the pulsed high frequency magnetic field is applied.

【0021】次のステップ110では共鳴信号の自由誘
導減衰(Free Induction Decay:
FID)からスピン−格子緩和時間T1、スピン−スピ
ン緩和時間T2を求め、FIDをフーリエ変換して周波
数分析し、磁気共鳴スペクトルの変化データ(スペクト
ルの本数、強度)を求める。ステップ112でこれらの
求めたデータを試料果実供給制御装置36に送信する。
In the next step 110, a free induction decay of the resonance signal (Free Induction Decay:
The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are obtained from (FID), the FID is subjected to Fourier transform and frequency analysis is performed, and change data (number of spectra, intensity) of the magnetic resonance spectrum is obtained. In step 112, the obtained data are transmitted to the sample fruit supply control device 36.

【0022】このように、本実施例では静磁場内の試料
果実搬送方向下流側に測定位置が設けられているので、
パルス状の高周波磁場を試料果実に印加する前に、試料
果実に静磁場が印加される。このため、試料果実の巨視
的磁化が大きくなり、スピン−格子緩和時間T1及びス
ピン−スピン緩和時間T2以上の時間試料果実に静磁場
が印加されることになり、これによって測定時間を短縮
することができる。
As described above, in this embodiment, since the measurement position is provided on the downstream side in the direction of transporting the sample fruit in the static magnetic field,
A static magnetic field is applied to the sample fruit before applying the pulsed high-frequency magnetic field to the sample fruit. Therefore, the macroscopic magnetization of the sample fruit becomes large, and the static magnetic field is applied to the sample fruit for a time period of the spin-lattice relaxation time T1 and the spin-spin relaxation time T2 or more, thereby shortening the measurement time. You can

【0023】次に選別ルーチンを図4に基づいて説明す
る。ステップ120において運転スイッチがオンされた
と判断されると、ステップ122において試料果実搬送
制御器40を作動させてステップ124で規定位置(測
定位置)に試料果実が到達したと判断されるまで試料果
実を測定部方向へ搬送する。測定位置に試料果実が到達
した時点で一旦試料果実搬送制御器40を停止させ、ス
テップ126において測定開始要求信号を演算装置30
に送信する。これによって、上記で説明した測定ルーチ
ンによってスピン−格子緩和時間T1、スピン−スピン
緩和時間T2及び磁気共鳴スペクトルの変化データが演
算されて送信され、ステップ128において受信され
る。
Next, the selection routine will be described with reference to FIG. When it is determined that the operation switch is turned on in step 120, the sample fruit transport controller 40 is operated in step 122, and the sample fruit is removed until it is determined in step 124 that the sample fruit has reached the specified position (measurement position). Convey to the measuring section. When the sample fruit reaches the measurement position, the sample fruit transport controller 40 is temporarily stopped, and in step 126, a measurement start request signal is sent to the arithmetic unit 30.
Send to. Thereby, the spin-lattice relaxation time T1, the spin-spin relaxation time T2, and the magnetic resonance spectrum change data are calculated and transmitted by the measurement routine described above, and are received in step 128.

【0024】ステップ130では受信したスピン−格子
緩和時間T1、スピン−スピン緩和時間T2及び磁気共
鳴スペクトルの変化に基づいて以下の式に従って階級を
演算する。 F=F1 (T1)+F2 (T2)+F3 (A1 )+・・・ +Fn (An-2 ) ・・・(1) なお、上記式においてF1 (T1)はスピン−格子緩和
時間T1の関数、F2(T2)はスピン−スピン緩和時
間T2の関数、F3 (A1 )、F4 (A4 )、・・・F
n (An-2 )は所定のスペクトル強度(振幅)の関数で
あり、これらの関数は果実の品種や産地等に応じて定め
る。
In step 130, a class is calculated according to the following equation based on the changes in the received spin-lattice relaxation time T1, spin-spin relaxation time T2 and magnetic resonance spectrum. F = F 1 (T1) + F 2 (T2) + F 3 (A 1 ) + ... + F n (A n-2 ) ... (1) In the above formula, F 1 (T1) is a spin-lattice. F 2 (T 2 ) is a function of the relaxation time T 1 , and F 3 (A 1 ), F 4 (A 4 ), ... F are functions of the spin-spin relaxation time T 2.
n (A n-2 ) is a function of a predetermined spectral intensity (amplitude), and these functions are determined depending on the fruit variety, production area, and the like.

【0025】熟度を試料果実内部の水分の果肉中におけ
る結合の強さとの相関値と定義すると、この相関値は、
磁気共鳴スペクトルのスピン−格子緩和時間T1やスピ
ン−スピン緩和時間T2と相関があり、このスピン−格
子緩和時間T1やスピン−スピン緩和時間T2から熟度
を演算することができる。図5は西洋ナシ(商品名:ラ
・フランス)について、追熟日数(日数が経過すると試
料果実内部の水分の果肉中における結合が弱くなる)と
スピン−格子緩和時間T1との関係を調べたものであ
り、追熟日数が経過するに従ってスピン−格子緩和時間
T1が長くなっている。また、図6に示すように、糖質
水溶液濃度が高くなるとスピン−格子緩和時間T1が短
くなっている。
When the maturity is defined as the correlation value with the bond strength of the water inside the sample fruit in the pulp, this correlation value is
There is a correlation with the spin-lattice relaxation time T1 and the spin-spin relaxation time T2 of the magnetic resonance spectrum, and the maturity can be calculated from the spin-lattice relaxation time T1 and the spin-spin relaxation time T2. FIG. 5 shows the relationship between the ripening days (the binding of water inside the sample fruit in the pulp becomes weaker) and the spin-lattice relaxation time T1 for pears (trade name: La France). The spin-lattice relaxation time T1 becomes longer as the number of days of additional ripening elapses. Further, as shown in FIG. 6, the spin-lattice relaxation time T1 becomes shorter as the concentration of the sugar aqueous solution becomes higher.

【0026】更に、図7に示すように、スピン−スピン
緩和時間T2は影響は小さいが糖度が高くなるに従って
短くなり、熟度が高くなるに従って長くなる。
Further, as shown in FIG. 7, the spin-spin relaxation time T2 has a small influence but becomes shorter as the sugar content becomes higher, and becomes longer as the maturity becomes higher.

【0027】従って、上記の(1)式から階級を演算す
ることができ、この階級の値と予め定められた複数の閾
値とを比較することにより、次の表に示すように、果実
をA級、B級、C級・・・等に選別する。
Therefore, the class can be calculated from the above equation (1), and by comparing the value of this class with a plurality of predetermined threshold values, the fruit A can be calculated as shown in the following table. Class, B, C ...

【0028】[0028]

【表1】 [Table 1]

【0029】この選別された階級や制御の流れはステッ
プ132において表示器34に表示される。
The selected class and control flow are displayed on the display 34 in step 132.

【0030】次のステップ134において試料果実が選
別されるように、選別ゲートを制御し階級に応じて果実
が選別されるように制御する。
In the next step 134, the sorting gate is controlled so that the sample fruits are sorted, and the fruits are sorted according to the class.

【0031】以上説明したように本実施例によれば、磁
気共鳴を利用しているため、加熱処理、化学処理または
破壊をすることなく、果実全体の熟度や特定成分から果
実の品質を評価し、品質に応じて果実を選別することが
できる、という効果が得られる。
As described above, according to this embodiment, since the magnetic resonance is utilized, the quality of the fruit is evaluated from the ripeness of the whole fruit and the specific component without heat treatment, chemical treatment or destruction. However, the effect that fruits can be selected according to quality is obtained.

【0032】なお、上記では励起コイルと受信コイルと
の2つのコイルを用いる例について説明したが、本発明
はこれに限定されるものではなく、1つのコイルを用い
てパルス状の高周波磁場を印加すると共に共鳴信号を検
出するようにしてもよい。
Although an example using two coils, an excitation coil and a receiving coil, has been described above, the present invention is not limited to this, and one coil is used to apply a pulsed high-frequency magnetic field. Alternatively, the resonance signal may be detected.

【0033】また、上記では本発明を果実の選別装置に
適用した例について説明したが、果物の品質の評価のみ
を行う評価装置にも適用することができる。
In the above description, an example in which the present invention is applied to a fruit selection device has been described, but the present invention can also be applied to an evaluation device that only evaluates fruit quality.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、磁
気共鳴を利用しているため、加熱処理、化学処理または
破壊をすることなく、果実全体の品質を評価することが
できる、という効果が得られる。
As described above, according to the present invention, since the magnetic resonance is utilized, the quality of the whole fruit can be evaluated without heat treatment, chemical treatment or destruction. Is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】上記実施例の測定部近傍の側面図である。FIG. 2 is a side view of the vicinity of the measuring unit in the above embodiment.

【図3】上記実施例の測定ルーチンを示す流れ図であ
る。
FIG. 3 is a flowchart showing a measurement routine of the above embodiment.

【図4】上記実施例の選別ルーチンを示す流れ図であ
る。
FIG. 4 is a flowchart showing a selection routine of the above embodiment.

【図5】スピン−格子緩和時間と熟度との関係を示す線
図である。
FIG. 5 is a diagram showing a relationship between spin-lattice relaxation time and maturity.

【図6】糖質水溶液濃度とスピン−格子緩和時間との関
係を示す線図である。
FIG. 6 is a diagram showing the relationship between the concentration of an aqueous sugar solution and the spin-lattice relaxation time.

【図7】糖度、熟度とスピン−スピン緩和時間との関係
を示す線図である。
FIG. 7 is a diagram showing the relationship between sugar content, maturity and spin-spin relaxation time.

【符号の説明】[Explanation of symbols]

10 磁石 12 搬送コンベア 14 保持具 16 励起コイル 18 受信コイル 20 高周波発振器 22 ゲート回路 24 電力増幅器 26 信号増幅器 28 A/D変換器 30 演算装置 DESCRIPTION OF SYMBOLS 10 magnet 12 carrier conveyor 14 holder 16 excitation coil 18 receiving coil 20 high frequency oscillator 22 gate circuit 24 power amplifier 26 signal amplifier 28 A / D converter 30 arithmetic unit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 静磁場を発生する磁石と、 特定原子核に共鳴する周波数の高周波を発生する高周波
発生器と、 前記高周波に基づいてパルス状の高周波磁場を試料果実
に印加すると共に磁場印加により発生する共鳴信号を検
出するコイルと、 前記コイルの検出出力に基づいて試料果実の品質を評価
する品質評価手段と、 を含む果実の品質評価装置。
1. A magnet for generating a static magnetic field, a high-frequency generator for generating a high frequency of a frequency that resonates with specific atomic nuclei, and a pulsed high-frequency magnetic field is applied to the sample fruit based on the high frequency and is generated by applying the magnetic field. A fruit quality evaluation device, comprising: a coil for detecting a resonance signal for performing a quality evaluation;
【請求項2】 前記品質評価測定手段は、磁気共鳴のス
ピン−格子緩和時間、スピン−スピン緩和時間及び磁気
共鳴スペクトルの変化に基づいて試料果実の品質を評価
する請求項1の果実の品質評価装置。
2. The fruit quality evaluation according to claim 1, wherein the quality evaluation measuring means evaluates the quality of the sample fruit based on changes in magnetic resonance spin-lattice relaxation time, spin-spin relaxation time and magnetic resonance spectrum. apparatus.
JP35214693A 1993-12-29 1993-12-29 Device for evaluating quality of fruit Pending JPH07198636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35214693A JPH07198636A (en) 1993-12-29 1993-12-29 Device for evaluating quality of fruit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35214693A JPH07198636A (en) 1993-12-29 1993-12-29 Device for evaluating quality of fruit

Publications (1)

Publication Number Publication Date
JPH07198636A true JPH07198636A (en) 1995-08-01

Family

ID=18422097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35214693A Pending JPH07198636A (en) 1993-12-29 1993-12-29 Device for evaluating quality of fruit

Country Status (1)

Country Link
JP (1) JPH07198636A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880467B2 (en) 2005-06-09 2011-02-01 Aspect Magnet Technologies Ltd. Packed array of MRI/NMR devices and an MRI/NMR method of analyzing adjacent lines of goods simultaneously
WO2013062260A1 (en) * 2011-10-26 2013-05-02 한국표준과학연구원 Method and apparatus for identifying extremely-low-magnetic-field nuclear magnetic resonance material
JP2013240299A (en) * 2012-05-21 2013-12-05 Tokyo Univ Of Agriculture & Technology Harvesting apparatus and harvesting method
CN103954681A (en) * 2014-04-28 2014-07-30 深圳市柳迪科技有限公司 Device and method for testing fruit interior quality
CN106525892A (en) * 2017-01-13 2017-03-22 湖南理工学院 Watermelon maturity detection device and method
WO2017064479A1 (en) * 2015-10-12 2017-04-20 Mm (Uk) Limited A foodstuff item characteristic mri detection system
WO2017121532A1 (en) * 2016-01-14 2017-07-20 Siemens Aktiengesellschaft Device and method for measuring magnetic resonance signals
CN107991337A (en) * 2017-12-11 2018-05-04 四川大学 It is a kind of to be suitable for the drying low-field nuclear magnetic resonance Non-Destructive Testing line with shell fruit
US10345251B2 (en) 2017-02-23 2019-07-09 Aspect Imaging Ltd. Portable NMR device for detecting an oil concentration in water
US11300531B2 (en) 2014-06-25 2022-04-12 Aspect Ai Ltd. Accurate water cut measurement

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880467B2 (en) 2005-06-09 2011-02-01 Aspect Magnet Technologies Ltd. Packed array of MRI/NMR devices and an MRI/NMR method of analyzing adjacent lines of goods simultaneously
WO2013062260A1 (en) * 2011-10-26 2013-05-02 한국표준과학연구원 Method and apparatus for identifying extremely-low-magnetic-field nuclear magnetic resonance material
KR101287426B1 (en) * 2011-10-26 2013-07-18 한국표준과학연구원 Target Discrimination Method by using Ultra-Low Field NMR and Ultra-Low Field NMR Target Discrimination Apparatus
US9759793B2 (en) 2011-10-26 2017-09-12 Korea Research Institute Of Standards And Science Object discrimination method using ultra-low magnetic field nuclear magnetic resonance and an object discrimination apparatus of the same
JP2013240299A (en) * 2012-05-21 2013-12-05 Tokyo Univ Of Agriculture & Technology Harvesting apparatus and harvesting method
CN103954681A (en) * 2014-04-28 2014-07-30 深圳市柳迪科技有限公司 Device and method for testing fruit interior quality
US11300531B2 (en) 2014-06-25 2022-04-12 Aspect Ai Ltd. Accurate water cut measurement
WO2017064479A1 (en) * 2015-10-12 2017-04-20 Mm (Uk) Limited A foodstuff item characteristic mri detection system
WO2017121532A1 (en) * 2016-01-14 2017-07-20 Siemens Aktiengesellschaft Device and method for measuring magnetic resonance signals
CN106525892A (en) * 2017-01-13 2017-03-22 湖南理工学院 Watermelon maturity detection device and method
US10345251B2 (en) 2017-02-23 2019-07-09 Aspect Imaging Ltd. Portable NMR device for detecting an oil concentration in water
CN107991337A (en) * 2017-12-11 2018-05-04 四川大学 It is a kind of to be suitable for the drying low-field nuclear magnetic resonance Non-Destructive Testing line with shell fruit

Similar Documents

Publication Publication Date Title
AU699894B2 (en) Detection and sorting of materials
JP3542598B2 (en) Elimination of acoustic ringing signal effects and reduction of thermal effects in explosive detection by NQR
US9575019B2 (en) Detecting hazardous materials in containers utilizing nuclear magnetic resonance based measurements
US3191119A (en) Apparatus for measuring flow using magnetic resoance
JPS60500828A (en) Baggage inspection device and method for explosives detection
RU96100761A (en) METHOD FOR DETECTING THE FIRST MATERIAL IN THE VOLUME OF THE SECOND MATERIAL surrounding THE FIRST MATERIAL AND A DEVICE FOR ITS IMPLEMENTATION
IL101421A (en) Nqr methods and apparatus
US5500591A (en) Methods and apparatus for detecting substances containing nuclei of a first and second kind
EP2177924A1 (en) Nuclear Magnetic Resonance Method for detecting hydrogen peroxide in a liquid sample
JPH07198636A (en) Device for evaluating quality of fruit
KR20060008321A (en) Nmr measuring system for weight and humidity of powders
WO1993011441A1 (en) Improvements in nqr testing
ITTO940709A1 (en) PROCEDURE AND EQUIPMENT FOR TESTING A SAMPLE
Miller et al. NMR imaging of solids with a surface coil
Hills et al. Motional relativity and industrial NMR sensors
US4408161A (en) Computer-controlled, portable spin echo NMR instrument and method of use
IL111955A (en) Methods of and apparatus for detection of quadrupolar nuclei and method of configuring such apparatus
US7355400B2 (en) Pulse sequences for exciting nuclear quadrupole resonance
US20060082367A1 (en) Nuclear magnetic resonance method and apparatus for evaluating a characteristic of a region
JPH07198635A (en) Method of evaluating sugar content of fruit
Sikorsky et al. Integrating superregenerative principles in a compact, power-efficient NMR/NQR spectrometer: A novel approach with pulsed excitation
RU2024855C1 (en) Method of measurement of lattice and impurity contributions into nuclear spin-lattice relaxation
JPS6420833A (en) Magnetic resonance measuring apparatus
JPS58221151A (en) Management apparatus of component of medicine
SU913192A1 (en) Quantitative analysis method