[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0718358A - High strength aluminum alloy fin material for heat exchanger - Google Patents

High strength aluminum alloy fin material for heat exchanger

Info

Publication number
JPH0718358A
JPH0718358A JP18680993A JP18680993A JPH0718358A JP H0718358 A JPH0718358 A JP H0718358A JP 18680993 A JP18680993 A JP 18680993A JP 18680993 A JP18680993 A JP 18680993A JP H0718358 A JPH0718358 A JP H0718358A
Authority
JP
Japan
Prior art keywords
less
brazing
fin material
fin
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18680993A
Other languages
Japanese (ja)
Inventor
Yoshifusa Shiyouji
美房 正路
Shigenori Yamauchi
重徳 山内
Kendou So
建堂 蘇
Kenji Kato
健志 加藤
Yuji Suzuki
祐治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP18680993A priority Critical patent/JPH0718358A/en
Publication of JPH0718358A publication Critical patent/JPH0718358A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

PURPOSE:To produce an aluminum alloy fin material excellent in brazability and excellent in strength after brazing, thermal conductivity and sacrificial anodic effect to enable the thinning of a fin. CONSTITUTION:The compsn. of the fin material is constituted of a one contg. >1.5 to 2.2% Mn, 0.5 to 1.2% Si, 0.1 to 0.6% Fe and 0.5 to 2.0% Zn, in which Mg as impurities is limited to <=0.02%, and the balance Al with inevitable impurities. Cu may be incorporated by <=0.3%, and one or two kinds of <=0.25% Zr and <=0.25% Cr may selectively be added.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱交換器用高強度アル
ミニウム合金フィン材、詳しくは、ラジエータやカーエ
アコンなどのようにフィンと作動流体通路構成材料とが
ろう付けにより接合される熱交換器に用いられるアルミ
ニウム合金フィン材、とくにフッ化物系フラックスろう
付けにおけるろう付け性に優れ、ろう付け後の熱伝導度
と強度が高く、且つ犠牲陽極効果に優れた熱交換器用高
強度アルミニウム合金フィン材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy fin material for a heat exchanger, and more specifically, a heat exchanger such as a radiator or a car air conditioner in which fins and working fluid passage constituent materials are joined by brazing. Aluminum alloy fin material used for aluminum alloy, especially high strength aluminum alloy fin material for heat exchangers, which has excellent brazing properties in fluoride flux brazing, high thermal conductivity and strength after brazing, and excellent sacrificial anode effect Regarding

【0002】[0002]

【従来の技術】自動車のラジエータ、エアコン、インタ
ークーラー、オイルクーラーなどの熱交換器は、Al−
Cu系合金、Al−Mn系合金、Al−Mn−Cu系合
金などからなる作動流体構成材料と、Al−Mn系合金
フィンとをろう付けすることにより組立てられている。
フィン材には、作動流体構成材料を防食するために犠牲
陽極効果が要求されるとともに、ろう付け時の高温加熱
により変形したり、ろうが浸透したりしないように優れ
た耐高温座屈性が要求される。
2. Description of the Related Art Heat exchangers for automobile radiators, air conditioners, intercoolers, oil coolers, etc.
It is assembled by brazing an Al-Mn-based alloy fin with a working fluid constituent material such as a Cu-based alloy, an Al-Mn-based alloy, or an Al-Mn-Cu-based alloy.
The fin material is required to have a sacrificial anode effect in order to prevent corrosion of the working fluid constituent materials, and also has excellent high temperature buckling resistance so that the fin material does not deform due to high temperature heating during brazing or the brazing material does not penetrate. Required.

【0003】フィン材としてJIS 3003、JIS 3203などの
Al−Mn系アルミニウム合金が使用されるのは、Mn
がろう付け時の変形やろうの浸食を防ぐために有効に作
用するためである。Al−Mn系合金フィン材に犠牲陽
極効果を付与するためには、この合金にZn、Sn、I
nなどを添加して電気化学的に卑にする方法(特開昭62
-120455 号公報など) があり、耐高温座屈性( 耐高温サ
グ性) をさらに向上させるためには、Al−Mn系合金
にCr、Ti、Zrなどを含有させる方法(特開昭50-1
18919 号公報) がある。
Al-Mn type aluminum alloys such as JIS 3003 and JIS 3203 are used as fin materials because
This is because it effectively acts to prevent deformation during brazing and erosion of brazing. In order to give a sacrificial anode effect to the Al—Mn alloy fin material, Zn, Sn, I is added to this alloy.
A method of adding n or the like to make it electrochemically base (Japanese Patent Laid-Open No. Sho 62-62)
In order to further improve the high temperature buckling resistance (high temperature sag resistance), there is a method of adding Cr, Ti, Zr, etc. to an Al-Mn alloy (Japanese Patent Laid-Open No. 1
18919 publication).

【0004】しかし、最近では、熱交換器の軽量化、コ
スト低減がますます強く要求され、作動流体通路材料、
フィン材などの熱交換器構成材料をさらに薄肉化するこ
とが必要となってきているが、例えばフィンを薄肉化す
ると伝熱断面積が小さくなるために熱交換性能が低下
し、製品としての熱交換器の強度、耐久性にも問題が生
じるところから、伝熱性能とろう付け後の強度の一層の
改善が望まれている。
However, in recent years, there has been an increasing demand for weight reduction and cost reduction of heat exchangers.
It has become necessary to further reduce the thickness of heat exchanger constituent materials such as fin materials.For example, if the fins are made thinner, the heat transfer cross-sectional area becomes smaller and the heat exchange performance deteriorates. Since problems occur in the strength and durability of the exchanger, further improvement in heat transfer performance and strength after brazing is desired.

【0005】従来のAl−Mn系合金では、ろう付け時
の加熱によりMnが固溶するため、熱伝導度が低下する
という問題点がある。この難点を解決するフィン材とし
て、Mn含有量を0.8 %以下に制限し、Zr0.02〜0.2
%およびSi0.1 〜0.8 %を含むアルミニウム合金が提
案されている。(特開昭63-23260号公報) この合金は改
善された熱伝導度を有するが、Mnが少ないためろう付
け後の強度が十分でなく、熱交換器として使用中にフィ
ン倒れや変形が生じ易く、また電位が十分に卑でないた
めに犠牲陽極効果が小さいという欠点がある。
The conventional Al-Mn-based alloy has a problem that the thermal conductivity is lowered because Mn forms a solid solution by heating during brazing. As a fin material that solves this difficulty, the Mn content is limited to 0.8% or less, and Zr 0.02 to 0.2
% And Si 0.1-0.8% aluminum alloys have been proposed. (Japanese Patent Laid-Open No. 63-23260) Although this alloy has improved thermal conductivity, its strength after brazing is insufficient due to the small amount of Mn, and fin collapse and deformation occur during use as a heat exchanger. There is a drawback that the sacrificial anode effect is small because it is easy and the potential is not sufficiently base.

【0006】Mn0.01〜0.3 %、Zr0.01〜0.4 %の1
種または2種を含有し、Si0.03〜0.3 %、Fe0.05〜
0.6 %を含むフィン用アルミニウム合金も提案されてい
る(特開昭63-45352号公報) が、この合金も電位が十分
卑でないために犠牲陽極効果が小さい。また、熱伝導度
が高い純アルミニウム(JIS 1050,1070など) にZn、S
n、Inを含有させて犠牲陽極効果を付与させたり、C
r、Ti、Zrなどを添加して耐高温座屈性を改善する
試みも行われているが、これらの合金も伝熱性能は優れ
ているもののろう付け後の強度が必ずしも十分でない。
Mn 0.01-0.3%, Zr 0.01-0.4% 1
Containing two or more species, Si0.03-0.3%, Fe0.05-
An aluminum alloy for fins containing 0.6% has been proposed (Japanese Patent Laid-Open No. 63-45352), but this alloy also has a small sacrificial anode effect because the potential is not sufficiently base. In addition, pure aluminum with high thermal conductivity (JIS 1050, 1070, etc.)
Incorporating n and In to give a sacrificial anode effect, C
Attempts have been made to improve the high temperature buckling resistance by adding r, Ti, Zr, etc., but these alloys also have excellent heat transfer performance, but their strength after brazing is not always sufficient.

【0007】ろう付け後の強度を改善したフィン材とし
て、Al−Mn−Si−Mg−Fe系合金にIn、Zn
を添加したアルミニウム合金やGa、Snなどを添加し
たアルミニウム合金も開発されており(特開平2-248704
号公報、特開平3-20436 号公報) 、ある程度の薄肉化は
可能であるが、フィン材に対する最近の薄肉化の要求を
十分満足させるまでには至っていない。また、近年、無
公害、低コストの観点から注目され、普及しつつあるフ
ッ化物系フラックスを用いるろう付けを適用する場合、
Mgを含有する合金材はろう付け性が劣るため、フィン
接合率が低下し、熱交換器としての伝熱特性に問題が生
じるという難点もある。
As a fin material having improved strength after brazing, Al, Mn, Si, Mg, and Fe based alloys containing In and Zn are used.
Aluminum alloys with addition of Ga and Sn, and aluminum alloys with addition of Ga, Sn, etc. have also been developed (JP-A-2-248704).
Japanese Patent Laid-Open No. 3-20436), it is possible to reduce the wall thickness to some extent, but it has not yet fully satisfied the recent demand for thinning the fin material. Further, in recent years, in the case of applying brazing using a fluoride-based flux, which has been attracting attention from the viewpoint of pollution-free and low cost, and is becoming popular,
Since the alloy material containing Mg is inferior in brazing property, there is a drawback that the fin bonding rate is lowered and a problem occurs in heat transfer characteristics as a heat exchanger.

【0008】[0008]

【発明が解決しようとする課題】本発明は、熱交換器用
フィン材に対する薄肉化の要求を満足させるアルミニウ
ム合金フィン材を開発するために、強度特性、伝熱性
能、犠牲陽極効果およびろう付け性に対する合金成分の
影響、合金成分の組合せの効果について多角的に検討し
た結果としてなされたものであり、その目的は、ろう付
け後において高い強度と熱伝導度を有し、犠牲陽極効果
に優れ、ろう付け性とくにフッ化物系フラックスを用い
るろう付けにおけるろう付け性が良好な熱交換器用高強
度アルミニウム合金フィン材を提供することにある。
DISCLOSURE OF THE INVENTION The present invention aims to develop an aluminum alloy fin material satisfying the requirements for thinning the fin material for heat exchangers, in order to develop strength characteristics, heat transfer performance, sacrificial anode effect and brazing property. It was made as a result of a multi-faceted examination of the effects of alloying components on, the effect of the combination of alloying components, the purpose of which is to have high strength and thermal conductivity after brazing, excellent sacrificial anode effect, It is an object of the present invention to provide a high-strength aluminum alloy fin material for a heat exchanger, which has good brazing property, particularly in brazing using a fluoride-based flux.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の熱交換器用高強度アルミニウム合金フィン
材は、Mn1.5 %(質量%、以下同じ)を越え2.2 %以
下、Si0.5 〜1.2 %、Fe0.1 〜0.6 %、Zn0.5 〜
2.0 %を含有し、不純物としてMgを0.02%以下に制限
し、残部Alと不可避的不純物からなることを発明構成
上の基本的特徴とし、Mn1.5 %を越え2.2 %以下、S
i0.5 〜1.2 %、Fe0.1 〜0.6 %、Zn0.5 〜2.0 %
を含有し、さらにZr0.25%以下、Cr0.25%以下の1
種または2種を含み、不純物としてMgを0.02%以下に
制限し、残部Alと不可避的不純物からなることを発明
構成上の第2の特徴とし、Mn1.5 %を越え2.2 %以
下、Si0.5 〜1.2 %、Fe0.1 〜0.6 %、Zn0.5 〜
2.0 %、Cu0.3 %以下を含有し、不純物としてMgを
0.02%以下に制限し、残部Alと不可避的不純物からな
ること、およびMn1.5 %を越え2.2 %以下、Si0.5
〜1.2 %、Fe0.1 〜0.6 %、Zn0.5 〜2.0 %、Cu
0.3 %以下を含有し、さらにZr0.25%以下、Cr0.25
%以下の1種または2種を含み、不純物としてMgを0.
02%以下に制限し、残部Alと不可避的不純物からなる
ことをそれぞれ発明構成上の第3および第4の特徴とす
る。
A high-strength aluminum alloy fin material for a heat exchanger according to the present invention for achieving the above-mentioned object has a Mn content of more than 1.5% (mass%, the same applies hereinafter) and 2.2% or less. 5 to 1.2%, Fe0.1 to 0.6%, Zn0.5 to
The basic feature of the present invention is that it contains 2.0%, Mg is limited to 0.02% or less as an impurity, and the balance is Al and inevitable impurities. Mn is more than 1.5% and 2.2% or less.
i0.5-1.2%, Fe0.1-0.6%, Zn0.5-2.0%
1% of Zr 0.25% or less and Cr 0.25% or less
The second feature of the present invention is that the Mg content is limited to 0.02% or less, and the balance is Al and unavoidable impurities. 5 to 1.2%, Fe0.1 to 0.6%, Zn0.5 to
2.0%, Cu less than 0.3%, Mg as an impurity
It is limited to 0.02% or less, the balance consists of Al and unavoidable impurities, and more than Mn1.5% and 2.2% or less, Si0.5
~ 1.2%, Fe0.1-0.6%, Zn0.5-2.0%, Cu
0.3% or less, Zr0.25% or less, Cr0.25
% Or less, and contains Mg as an impurity of 0.1.
The second and third features of the invention are that the content is limited to 02% or less and the balance is Al and inevitable impurities.

【0010】本発明の熱交換器用高強度アルミニウム合
金フィン材における合金成分の意義および限定理由につ
いて説明すると、Mnは、Siと共存させることにより
Al−Mn−Si系の化合物を生成して、ろう付け前お
よびろう付け後の合金材の強度を向上し、耐高温座屈性
および成形加工性を改良する。Mnが1.5 %以下では効
果が十分でなく、2.2 %を越えると合金の鋳造時に粗大
な晶出物が生成して板材の製造が困難となり、Mnの固
溶量が増加して熱伝導度が低下する。従って、好ましい
含有範囲は1.5 %を越え2.2 %以下とする。
Explaining the meaning of the alloy components and the reason for limitation in the high strength aluminum alloy fin material for heat exchangers of the present invention, Mn coexists with Si to form an Al-Mn-Si-based compound, which will be a wax. The strength of the alloy material before and after brazing is improved, and the high temperature buckling resistance and the formability are improved. If Mn is less than 1.5%, the effect is not sufficient, and if it exceeds 2.2%, coarse crystallized substances are generated during casting of the alloy, which makes it difficult to manufacture a plate material, and the amount of Mn solid solution increases to increase the thermal conductivity. descend. Therefore, the preferable content range is more than 1.5% and 2.2% or less.

【0011】Siは、Mnと共存してAl−Mn−Si
系の化合物を生成し、強度を向上させるとともに、Mn
の固溶量を減少させて熱伝導度を向上させる。Siの含
有量が0.5 %未満では効果が十分でなく、1.2 %を越え
るとろう付け時にフィン材の溶融が生じるおそれがあ
る。従って、好ましい含有範囲は0.5 〜1.2 %とする。
Feは、Mnの固溶量を減少させて熱伝導度を向上させ
る。含有量が0.1 %未満ではその効果が小さく、0.6 %
を越えると鋳造時にAl−Mn−Fe系の粗大な晶出物
が生成し、板材の加工が困難となる。従って、好ましい
含有範囲は0.1 〜0.6 %とする。
Si coexists with Mn and is Al-Mn-Si.
Generate a compound of the system to improve the strength and Mn
The amount of solid solution is reduced to improve the thermal conductivity. If the Si content is less than 0.5%, the effect is not sufficient, and if it exceeds 1.2%, the fin material may melt during brazing. Therefore, the preferable content range is 0.5 to 1.2%.
Fe reduces the solid solution amount of Mn and improves the thermal conductivity. If the content is less than 0.1%, the effect is small, 0.6%
If it exceeds the range, coarse Al-Mn-Fe-based crystallized substances are generated during casting, and it becomes difficult to process the plate material. Therefore, the preferable content range is 0.1 to 0.6%.

【0012】Znは、フィン材の電位を卑にし、犠牲陽
極効果を与える。含有量が0.5 %未満ではその効果が十
分でなく、2.0 %を越えると材料の自己腐食性が劣化し
好ましくない。従って、好ましい含有量は0.5 〜2.0 %
とする。Cuは、フィン材の強度を向上させるのに役立
つが、含有量が0.3 %を越えるとフィン材の電位を貴に
し、犠牲陽極効果を損ねるおそれがある。従って、含有
量は0.3 %以下に限定する。ZrおよびCrは、合金材
の耐座屈性の向上に有効に作用するが、いずれも0.25%
を越えるとろう付け後の熱伝導度が低下する。従って、
いずれも0.25%を上限として添加する。
Zn makes the potential of the fin material base and gives a sacrificial anode effect. If the content is less than 0.5%, the effect is not sufficient, and if it exceeds 2.0%, the self-corrosion property of the material deteriorates, which is not preferable. Therefore, the preferred content is 0.5-2.0%
And Cu serves to improve the strength of the fin material, but if the content exceeds 0.3%, the potential of the fin material becomes noble and the sacrificial anode effect may be impaired. Therefore, the content is limited to 0.3% or less. Zr and Cr effectively act to improve the buckling resistance of the alloy material, but both are 0.25%
If it exceeds, the thermal conductivity after brazing decreases. Therefore,
In both cases, the upper limit is 0.25%.

【0013】Mgは、ろう付け性に影響し、含有量が0.
02%を越えるとろう付け性を害するおそれがある。とく
にフッ化物系フラックスろう付けの場合、フラックスの
成分であるフッ素(F)と合金中のMgとが反応し易く
なり、MgF2 などの化合物が生成することに起因して
ろう付け時に有効に作用するフラックスの絶対量が不足
し、ろう付け不良が生じ易くなる。従って、Mgの含有
量は0.02%以下に制限するのが好ましい。
[0013] Mg has an effect on brazing property and its content is 0.
If it exceeds 02%, the brazing property may be impaired. Particularly in the case of fluoride-based flux brazing, fluorine (F), which is a component of the flux, easily reacts with Mg in the alloy, and a compound such as MgF 2 is produced, which effectively acts during brazing. Insufficient amount of flux to be used causes brazing failure. Therefore, it is preferable to limit the content of Mg to 0.02% or less.

【0014】本発明のアルミニウム合金フィン材は、通
常の溶解、鋳造方式に従って鋳塊とし、均質化処理後、
熱間圧延、冷間圧延、中間焼鈍および仕上げ冷間圧延を
経て製造され、通常厚さ0.1mm 以下の板材とする。この
板材は、所定幅にスリッティングした後コルゲート加工
して、ろう材を被覆した3003合金などからなる作動流体
通路用偏平管と交互に積層し、ろう付け接合することに
より熱交換器ユニットとする。
The aluminum alloy fin material of the present invention is formed into an ingot according to a usual melting and casting method, and after homogenization treatment,
It is manufactured through hot rolling, cold rolling, intermediate annealing and finish cold rolling, and usually has a thickness of 0.1 mm or less. This plate material is slit to a predetermined width, then corrugated, and alternately laminated with a flat tube for a working fluid passage made of a brazing material, such as 3003 alloy, and brazed to form a heat exchanger unit. .

【0015】[0015]

【作用】本発明の構成によれば、MnとSiを共存させ
ることによりAl−Mn−Si系化合物を生成させ、F
eを添加することによりMnの固溶量を減少させ、Zn
を含有させることによって材料の電位を卑にし、これら
合金元素の相互作用により、ろう付け後の強度、熱伝導
度を高め、犠牲陽極効果を優れたものとする。また、M
g含有量を制限することによりMgとフラックスの反応
を防ぎ、ろう付けにおいて有効に作用するフラックスの
割合を増やしてフィン接合率を向上させ、伝熱性能、耐
久性の優れた熱交換器とすることができる。
According to the constitution of the present invention, the coexistence of Mn and Si produces an Al-Mn-Si-based compound, and F
By adding e, the solid solution amount of Mn is decreased,
By making the electric potential of the material base, the interaction between these alloying elements enhances the strength and thermal conductivity after brazing and makes the sacrificial anode effect excellent. Also, M
By limiting the g content, the reaction between Mg and the flux is prevented, and the ratio of the flux that effectively acts in brazing is increased to improve the fin joint rate, and the heat exchanger has excellent heat transfer performance and durability. be able to.

【0016】[0016]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示す組成のアルミニウム合金鋳塊を常法に従って
均質化処理、熱間圧延、冷間圧延、中間焼鈍、仕上げ冷
間圧延し、0.07mm厚さのフィン材とした。なお、中間焼
鈍温度は300 ℃とした。得られたフィン材について、フ
ッ化物系フラックス( 濃度1 %)を塗布した後、ろう付
け条件と同様、窒素ガス雰囲気中で600℃で3 分間の加
熱を行い、加熱後の試験材について引張試験を行った。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. Example 1 An aluminum alloy ingot having the composition shown in Table 1 was homogenized, hot-rolled, cold-rolled, intermediate-annealed and finish cold-rolled according to a conventional method to obtain a fin material having a thickness of 0.07 mm. The intermediate annealing temperature was 300 ° C. After applying a fluoride flux (concentration: 1%) to the obtained fin material, heat it at 600 ° C for 3 minutes in a nitrogen gas atmosphere for 3 minutes as in the brazing condition, and then perform a tensile test on the test material after heating. I went.

【0017】また、加熱後の試験材について、25℃で電
気伝導度を測定することにより熱伝導度を評価した。本
発明のフィン材においては、一般の金属材と同様、熱伝
導度と電気伝導度との間には比例関係があり、電気伝導
度を測定することにより熱伝導度を評価できることがわ
かっている。さらに、犠牲陽極効果を評価するために、
pH 3に調整した3 %NaCl水溶液中に8 時間浸漬した
後、自然電極電位を測定した。
The thermal conductivity of the test material after heating was evaluated by measuring the electrical conductivity at 25 ° C. In the fin material of the present invention, like the general metal material, there is a proportional relationship between the thermal conductivity and the electrical conductivity, and it is known that the thermal conductivity can be evaluated by measuring the electrical conductivity. . Furthermore, in order to evaluate the sacrificial anode effect,
After immersing in a 3% NaCl aqueous solution adjusted to pH 3 for 8 hours, the natural electrode potential was measured.

【0018】つぎに、フィン材にコルゲート加工を施
し、3003合金を心材とし4045合金を皮材( ろう材) とす
る厚さ0.6mm のプレート材の上に載置して、フッ化物系
フラックスろう付けを行い、コルゲートフィン材とプレ
ート材がろう付け接合している割合を調べ、フィン接合
率からろう付け性を評価し、フィンとプレートの接合部
について、CASS試験を、JIS D0201 に基づいて1か月間
実施し、プレートの最大腐食深さの測定と、フィンの腐
食状況の観察を行った。また、ろう付け前後におけるフ
ィン山高さの変化率を測定し、フィンの耐高温座屈性を
評価した。試験、測定、評価結果を表2に示す。
Next, the fin material is corrugated and placed on a 0.6 mm thick plate material having 3003 alloy as the core material and 4045 alloy as the skin material (brazing material), and the fluoride flux brazing material is used. After the brazing, the ratio of the corrugated fin material and the plate material brazed and joined is checked, and the brazing property is evaluated from the fin joint rate. The CASS test is performed on the joint portion of the fin and plate based on JIS D0201. It was carried out for a month, and the maximum corrosion depth of the plate was measured and the fin corrosion condition was observed. The rate of change in fin height before and after brazing was measured to evaluate the high temperature buckling resistance of the fins. Table 2 shows the test, measurement, and evaluation results.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 《表注》耐高温座屈性評価:ろう付け前後のフィン山高
さ変化率が2.5 %以下は◎、2.5 〜5 %は○
[Table 2] << Table Note >> High temperature buckling resistance evaluation: ◎ when the fin height change rate before and after brazing is 2.5% or less, ○ when 2.5 to 5%

【0021】表2に示されるように、本発明に従う試験
材No.1〜No.17 は、ろう付け後に相当する引張強度(以
下、単に引張強度)がいずれも130MPa以上の優れた強度
を示し、従来のJIS 3004フィン材の電気伝導度が39%IA
CSであるのに対していずれも電気伝導度が43%IACS以上
であり、熱伝導度が良好なことを示した。また、フィン
接合率も95%以上でろう付け性が優れていることを示し
た。自然電極電位も−780 〜−840mV vs SCEの範囲で、
電気化学的に十分貴であり、CASS試験後の最大腐食深さ
は0.09〜0.16mmでほとんど腐食を生じていない。
As shown in Table 2, the test materials No. 1 to No. 17 according to the present invention all have excellent tensile strength (hereinafter simply referred to as tensile strength) corresponding to 130 MPa or more after brazing. , The electrical conductivity of conventional JIS 3004 fin material is 39% IA
The electrical conductivity was 43% IACS or more, while the thermal conductivity was good, in contrast to CS. Moreover, it was shown that the fin bonding rate was 95% or more and the brazing property was excellent. The natural electrode potential is also in the range of -780 to -840 mV vs SCE,
It is electrochemically noble, and the maximum corrosion depth after the CASS test is 0.09 to 0.16 mm, and almost no corrosion occurs.

【0022】比較例 表3に示す組成のアルミニウム合金鋳塊を、実施例1と
同一の条件で、均質化処理、熱間圧延、冷間圧延、中間
焼鈍および仕上げ冷間圧延し、0.07mm厚さのフィン材を
得た。得られたフィン材について、実施例1と同様、引
張強度、電気伝導度、自然電極電位を測定し、フィン材
の耐高温座屈性、ろう付け性を評価し、フィンとプレー
トの接合部についてCASS試験後の最大腐食深さを測定し
た。結果を表4に示す。なお、表3において、本発明の
条件を外れた項目について下線を付した。
Comparative Example An aluminum alloy ingot having the composition shown in Table 3 was homogenized, hot-rolled, cold-rolled, intermediate annealed and finish cold-rolled under the same conditions as in Example 1 to obtain a thickness of 0.07 mm. I got the fin material. For the obtained fin material, tensile strength, electrical conductivity and natural electrode potential were measured in the same manner as in Example 1 to evaluate the high temperature buckling resistance and brazing property of the fin material, and for the joint portion between the fin and the plate. The maximum corrosion depth after the CASS test was measured. The results are shown in Table 4. In Table 3, the items that do not satisfy the conditions of the present invention are underlined.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 《表注》フィン材の耐高温座屈性:ろう付け前後のフィ
ン山高さの変化率が2.5 %以下は◎、2.5 〜5 %は○と
し、5 %以下を合格とした
[Table 4] << Table Note >> High temperature buckling resistance of fin material: ◎ when the rate of change in fin height before and after brazing is 2.5% or less, ○, 2.5 to 5% is ○, and 5% or less is passed.

【0025】表4に示されるように、本発明の条件を満
たさないアルミニウム合金フィン材は、いずれも熱交換
器用フィン材として十分な性能を有しない。試験材No.1
は、Mg含有量が多いためろう付け性がわるく、フィン
接合率が低くなり、熱交換器に組み込んだ場合、熱交換
器の熱特性を低下させる。No.2は、Cuの含有量が多く
自然電極電位が貴となるため、犠牲陽極効果が劣り、プ
レートの最大腐食深さも大きくなる。No.3、No.4は、Z
rまたはCrの含有量が多いため電気伝導度が低くな
り、熱伝導度が劣ることを示した。No.5は、Mn含有量
が少ないため引張強度が十分でない。No.6は、Mn含有
量が多過ぎるため、熱間圧延が困難となりフィン材の製
造に支障を来した。
As shown in Table 4, none of the aluminum alloy fin materials satisfying the conditions of the present invention has sufficient performance as a heat exchanger fin material. Test material No.1
Has a high Mg content, which results in poor brazing properties and a low fin bonding rate, and when incorporated into a heat exchanger, deteriorates the thermal characteristics of the heat exchanger. In No. 2, since the Cu content is high and the natural electrode potential is noble, the sacrificial anode effect is poor and the maximum corrosion depth of the plate is large. No.3 and No.4 are Z
It was shown that the electrical conductivity was low and the thermal conductivity was poor because the content of r or Cr was large. No. 5 has a low Mn content, so the tensile strength is not sufficient. Since No. 6 had too much Mn content, hot rolling became difficult and hindered the production of fin material.

【0026】試験材No.7は、Siの含有量が少ないた
め、Mnの固溶量が増加して電気伝導度を低下させ、熱
伝導度が不十分なものとなった。No.8は、Siの含有量
が多過ぎるために、ろう付け時の加熱においてフィン材
の局部溶融が生じた。No.9は、Fe含有量が少ないた
め、Mnの固溶量が増加して電気伝導度を低下させ、熱
伝導度が不十分なものとなった。No.10 は、Feの含有
量が多いため、熱間圧延が困難となり、フィン材の製造
に支障が生じた。No.11 は、Zn含有量が少なく自然電
極電位が貴となるため、犠牲陽極効果が劣り、CASS試験
においてプレートのに貫通孔が生じた。No.12 は、Zn
含有量が多過ぎるため自己腐食性が大きくなってフィン
の腐食消耗が顕著となり、フィン材の犠牲陽極効果が長
時間持続されない。No.13 は、JIS 3004合金材に相当
し、MnおよびSi含有量が低いため引張強度が十分で
なく、電気伝導度も低く熱伝導度が不十分である。また
Mg含有量が多過ぎるためろう付け性が劣り、フィン接
合率が低くなり、さらにZnを含有していないため、自
然電極電位が貴となり、プレートに貫通孔が生じた。
Since the test material No. 7 had a low Si content, the solid solution amount of Mn increased and the electrical conductivity was lowered, resulting in insufficient thermal conductivity. In No. 8, since the Si content was too high, the fin material locally melted during heating during brazing. Since No. 9 had a small Fe content, the solid solution amount of Mn increased and the electric conductivity decreased, resulting in insufficient thermal conductivity. Since No. 10 had a large Fe content, it was difficult to perform hot rolling, which hindered the production of the fin material. In No. 11, since the Zn content was small and the natural electrode potential was noble, the sacrificial anode effect was inferior and a through hole was formed in the plate in the CASS test. No.12 is Zn
Since the content is too large, the self-corrosion property becomes large and the corrosion consumption of the fin becomes remarkable, and the sacrificial anode effect of the fin material cannot be maintained for a long time. No. 13 corresponds to JIS 3004 alloy material, and its Mn and Si contents are low, so that its tensile strength is not sufficient, its electrical conductivity is low, and its thermal conductivity is insufficient. Further, since the Mg content was too large, the brazing property was poor, the fin bonding rate was low, and since Zn was not contained, the natural electrode potential became noble and a through hole was formed in the plate.

【0027】[0027]

【発明の効果】以上のとおり、本発明によれば、ろう付
け性に優れ、ろう付け後の強度、熱伝導度および犠牲陽
極効果に優れたアルミニウム合金フィン材が提供され、
従って、フィン材の薄肉化が可能となり、熱交換器の軽
量化、長寿命化が達成される。
As described above, according to the present invention, there is provided an aluminum alloy fin material which is excellent in brazing property, strength after brazing, thermal conductivity and sacrificial anode effect.
Therefore, the fin material can be made thinner, and the heat exchanger can be made lighter and have a longer life.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 健志 東京都港区新橋五丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 鈴木 祐治 東京都港区新橋五丁目11番3号 住友軽金 属工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenji Kato 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries, Ltd. (72) Inventor Yuji Suzuki 5-11-3 Shimbashi, Minato-ku, Tokyo No. Sumitomo Light Metal Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mn1.5 %(質量%、以下同じ)を越え
2.2 %以下、Si0.5 〜1.2 %、Fe0.1 〜0.6 %、Z
n0.5 〜2.0 %を含有し、不純物としてのMgを0.02%
以下に制限し、残部Alと不可避的不純物からなること
を特徴とする熱交換器用高強度アルミニウム合金フィン
材。
1. Mn exceeds 1.5% (mass%, the same applies hereinafter)
2.2% or less, Si0.5-1.2%, Fe0.1-0.6%, Z
n 0.5-2.0%, 0.02% Mg as an impurity
A high-strength aluminum alloy fin material for a heat exchanger, which is limited to the following and consists of balance Al and inevitable impurities.
【請求項2】 Mn1.5 %を越え2.2 %以下、Si0.5
〜1.2 %、Fe0.1〜0.6 %、Zn0.5 〜2.0 %を含有
し、さらにZr0.25%以下、Cr0.25%以下の1種また
は2種を含み、不純物としてのMgを0.02%以下に制限
し、残部Alと不可避的不純物からなることを特徴とす
る熱交換器用高強度アルミニウム合金フィン材。
2. Mn more than 1.5% and 2.2% or less, Si0.5
.About.1.2%, Fe0.1.about.0.6%, Zn0.5.about.2.0%, Zr 0.25% or less, Cr 0.25% or less 1 type or 2 types, and Mg as impurities 0.02% or less. A high-strength aluminum alloy fin material for heat exchangers, characterized in that the balance is limited to Al and unavoidable impurities.
【請求項3】 Mn1.5 %を越え2.2 %以下、Si0.5
〜1.2 %、Fe0.1〜0.6 %、Zn0.5 〜2.0 %、Cu
0.3 %以下を含有し、不純物としてのMgを0.02%以下
に制限し、残部Alと不可避的不純物からなることを特
徴とする熱交換器用高強度アルミニウム合金フィン材。
3. Mn more than 1.5% and 2.2% or less, Si0.5
~ 1.2%, Fe0.1-0.6%, Zn0.5-2.0%, Cu
A high-strength aluminum alloy fin material for a heat exchanger, which contains 0.3% or less, limits Mg as an impurity to 0.02% or less, and comprises the balance Al and unavoidable impurities.
【請求項4】 Mn1.5 %を越え2.2 %以下、Si0.5
〜1.2 %、Fe0.1〜0.6 %、Zn0.5 〜2.0 %、Cu
0.3 %以下を含有し、さらにZr0.25%以下、Cr0.25
%以下の1種または2種を含み、不純物としてのMgを
0.02%以下に制限し、残部Alと不可避的不純物からな
ることを特徴とする熱交換器用高強度アルミニウム合金
フィン材。
4. Mn more than 1.5% and 2.2% or less, Si0.5
~ 1.2%, Fe0.1-0.6%, Zn0.5-2.0%, Cu
0.3% or less, Zr0.25% or less, Cr0.25
% Or less, and contains Mg as an impurity.
A high-strength aluminum alloy fin material for a heat exchanger, which is limited to 0.02% or less and is composed of balance Al and unavoidable impurities.
JP18680993A 1993-06-30 1993-06-30 High strength aluminum alloy fin material for heat exchanger Pending JPH0718358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18680993A JPH0718358A (en) 1993-06-30 1993-06-30 High strength aluminum alloy fin material for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18680993A JPH0718358A (en) 1993-06-30 1993-06-30 High strength aluminum alloy fin material for heat exchanger

Publications (1)

Publication Number Publication Date
JPH0718358A true JPH0718358A (en) 1995-01-20

Family

ID=16194974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18680993A Pending JPH0718358A (en) 1993-06-30 1993-06-30 High strength aluminum alloy fin material for heat exchanger

Country Status (1)

Country Link
JP (1) JPH0718358A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024732A1 (en) * 2011-08-12 2013-02-21 住友軽金属工業株式会社 Aluminum alloy fin material for heat exchanger offering excellent post-brazing strength and corrosion resistance
JP2013216935A (en) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger
WO2016129175A1 (en) * 2015-02-10 2016-08-18 三菱アルミニウム株式会社 Aluminum alloy fin material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140098A (en) * 1979-04-20 1980-11-01 Fuji Heavy Ind Ltd Heat exchanger
JPH0347940A (en) * 1989-07-17 1991-02-28 Furukawa Alum Co Ltd Aluminum alloy for heat exchanger fin
JPH0598376A (en) * 1991-10-03 1993-04-20 Furukawa Alum Co Ltd Aluminum alloy sacrificial fin material for low temperature brazing and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55140098A (en) * 1979-04-20 1980-11-01 Fuji Heavy Ind Ltd Heat exchanger
JPH0347940A (en) * 1989-07-17 1991-02-28 Furukawa Alum Co Ltd Aluminum alloy for heat exchanger fin
JPH0598376A (en) * 1991-10-03 1993-04-20 Furukawa Alum Co Ltd Aluminum alloy sacrificial fin material for low temperature brazing and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024732A1 (en) * 2011-08-12 2013-02-21 住友軽金属工業株式会社 Aluminum alloy fin material for heat exchanger offering excellent post-brazing strength and corrosion resistance
JP2013040367A (en) * 2011-08-12 2013-02-28 Sumitomo Light Metal Ind Ltd Aluminium alloy fin material for heat exchanger excellent in strength and corrosion resistance after brazing
JP2013216935A (en) * 2012-04-06 2013-10-24 Sumitomo Light Metal Ind Ltd Aluminum alloy fin material for heat exchanger, method for producing the same, and method for producing the heat exchanger
WO2016129175A1 (en) * 2015-02-10 2016-08-18 三菱アルミニウム株式会社 Aluminum alloy fin material
JP2016148071A (en) * 2015-02-10 2016-08-18 三菱アルミニウム株式会社 Aluminum alloy fin material
US10378088B2 (en) 2015-02-10 2019-08-13 Mitsubishi Aluminum Co., Ltd. Aluminum alloy fin material and heat exchanger

Similar Documents

Publication Publication Date Title
JP2000144290A (en) Aluminum alloy sacrificial anode material for heat exchanger and high corrosion resistant aluminum alloy composite material using the same
JPS59100251A (en) Corrosion resistant aluminum alloy with high strength for brazing
JP3345845B2 (en) Aluminum alloy brazing sheet strip for ERW processing
JPH11241136A (en) High corrosion resistant aluminum alloy, clad material thereof, and its production
JP3222768B2 (en) Aluminum alloy clad material excellent in brazing property and method for producing the same
KR100329686B1 (en) Aluminum Alloy Fin Material for Heat Exchanger
JPH0718358A (en) High strength aluminum alloy fin material for heat exchanger
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JPH0841573A (en) High strength aluminum alloy fin material for heat exchanger
JPH0790442A (en) Aluminum alloy brazing sheet for heat exchanger and manufacture of aluminum alloy-made heat exchanger
JPH0797651A (en) Production of aluminum alloy brazing sheet for heat exchanger and heat exchanger made of aluminum alloy
JPH1088267A (en) Aluminum alloy clad fin material and heat exchanger made of aluminum alloy using the clad fin material
JPH05305307A (en) Manufacture of high strength aluminum alloy clad fin stock for heat exchanger
JP2691069B2 (en) Heat exchanger with excellent corrosion resistance and heat transfer
JPH0788677A (en) Manufacture of aluminum alloy brazing sheet and heat exchanger made of aluminum alloy
JP2768393B2 (en) Aluminum alloy for heat exchanger fin material with excellent strength after brazing and sacrificial anode effect
JP2000202681A (en) Aluminum alloy fin material for heat exchanger excellent in brazability
JP2000135590A (en) High strength aluminum alloy clad material for heat exchanger
JPH07150281A (en) Al alloy fin material excellent in strength after brazing and brazability
JP2002012935A (en) Aluminum alloy sheet with protective corrosion prevention and its composite material
JPH08104936A (en) Aluminum alloy clad fin material for heat exchanger
JPH11269590A (en) High strength aluminum alloy fin material for heat exchanger, excellent in brazability
JPH11256261A (en) High strength aluminum alloy fin material for heat exchanger
JPH07102337A (en) Production of aluminum alloy fin material for brazing and heat exchanger made of aluminum alloy
JPS5952760B2 (en) Heat exchanger with a structure with excellent corrosion resistance