JPH0718063A - Degradable polymer - Google Patents
Degradable polymerInfo
- Publication number
- JPH0718063A JPH0718063A JP16068693A JP16068693A JPH0718063A JP H0718063 A JPH0718063 A JP H0718063A JP 16068693 A JP16068693 A JP 16068693A JP 16068693 A JP16068693 A JP 16068693A JP H0718063 A JPH0718063 A JP H0718063A
- Authority
- JP
- Japan
- Prior art keywords
- organic solvent
- solvent
- copolymer
- water
- copolymer according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、医療用材料や汎用樹脂
の代替物として有用な生分解性ポリマーである乳酸とグ
リコール酸のコポリマーに関する。特に、乳酸とグリコ
ール酸から直接脱水縮合により製造されたコポリマーに
関する。乳酸およびグリコール酸は、自然界に広く分布
し動植物および人畜に対して無害であり、その重合物で
あるポリ乳酸およびポリグリコール酸は、水の存在下で
比較的容易に加水分解を受け、また、生体内でも加水分
解され吸収されるところから上記用途に用い得るポリマ
ーとして注目されている。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copolymer of lactic acid and glycolic acid, which is a biodegradable polymer useful as a substitute for medical materials and general-purpose resins. In particular, it relates to a copolymer produced from lactic acid and glycolic acid by direct dehydration condensation. Lactic acid and glycolic acid are widely distributed in nature and are harmless to animals, plants, and humans, and their polymerization products, polylactic acid and polyglycolic acid, are relatively easily hydrolyzed in the presence of water, and Since it is hydrolyzed and absorbed even in the living body, it is attracting attention as a polymer that can be used for the above-mentioned applications.
【0002】[0002]
【従来技術】ポリ乳酸、または、ポリグリコール酸は、
一般に、乳酸またはグリコール酸の環状二量体であるラ
クチドまたはグリコリドを開環重合することにより得ら
れていた。2. Description of the Related Art Polylactic acid or polyglycolic acid is
Generally, it has been obtained by ring-opening polymerization of lactide or glycolide which is a cyclic dimer of lactic acid or glycolic acid.
【0003】米国特許明細書第2,703,316に
は、D,L−乳酸を一旦オリゴマー化した後、減圧下、
200〜250℃でラクチドを単離し、さらに、酢酸エ
チルから数回再結晶して得られた融点120℃以上のラ
セミ−ラクチドを開環重合することにより対数粘度数(i
nherent viscosity)(η)0.45dl/g以上のポリ
D,L−乳酸が得られ、強靭なフィルムや糸にすること
ができると記載されている。また、この中には、乳酸か
ら直接縮合により得られるポリマーは脆く延伸できない
ことが述べられている。US Pat. No. 2,703,316 discloses that D, L-lactic acid is once oligomerized and then under reduced pressure.
Lactide was isolated at 200 to 250 ° C. and further recrystallized from ethyl acetate several times to obtain racemic lactide having a melting point of 120 ° C. or higher by ring-opening polymerization to obtain a logarithmic viscosity number (i
It is described that a poly (D, L-lactic acid) having a nherent viscosity (η) of 0.45 dl / g or more can be obtained and a tough film or yarn can be obtained. It is also stated therein that the polymer obtained from lactic acid by direct condensation is brittle and cannot be stretched.
【0004】米国特許明細書第2,758,987に
は、L−乳酸から同様の方法で得られた融点94℃以上
のL,L−ラクチドから、対数粘度数(η)が0.4d
l/g以上のポリL−乳酸の製造法が示されている。し
かし、ポリマー原料に適したラクチドやグリコリドの製
造には、蒸留、再結晶等多大の労力と費用を必要とする
ため経済的でなく、また、ラクチドやグリコリドのよう
な環状ラクトンを形成しないヒドロキシカルボン酸を共
重合する際には、この方法を用いることはできない。US Pat. No. 2,758,987 discloses that an L, L-lactide having a melting point of 94 ° C. or higher obtained from L-lactic acid in a similar manner has a logarithmic viscosity number (η) of 0.4d.
A method for producing poly L-lactic acid of 1 / g or more is shown. However, the production of lactide or glycolide suitable as a polymer raw material is not economical because it requires a great deal of labor and cost such as distillation and recrystallization, and hydroxycarboxylic acid which does not form a cyclic lactone such as lactide or glycolide. This method cannot be used when copolymerizing an acid.
【0005】また、ラクタイドとグリコライドの開環重
合により得られるコポリマーはラクタイドに比べてグリ
コライドの反応性が高いため、ポリグリコライドが優先
的に生成した後ラクタイドが重合するためにブロック重
合体の性質を示し、溶媒に対する溶解性が低いコポリマ
ーが得られるという欠点があった。Further, the copolymer obtained by ring-opening polymerization of lactide and glycolide has higher reactivity of glycolide than lactide, and therefore, lactide is polymerized after polyglycolide is preferentially produced, so that a block polymer is obtained. However, there is a drawback that a copolymer having the above-mentioned property and having low solubility in a solvent can be obtained.
【0006】一方、乳酸やグリコール酸等のヒドロキシ
カルボン酸の直接重縮合反応は、二塩基酸と多価アルコ
ールによるエステル化反応と同様に逐次反応であり、反
応時間と共に分子量は増大する。また、この際生成する
水は、加水分解作用により重縮合体の分子量を低下させ
る作用を有するので、生成する水を系外へ除去すること
が高分子量ポリ乳酸やポリグリコール酸等のポリヒドロ
キシカルボン酸を得るために必要であった。On the other hand, the direct polycondensation reaction of a hydroxycarboxylic acid such as lactic acid or glycolic acid is a sequential reaction similar to the esterification reaction between a dibasic acid and a polyhydric alcohol, and the molecular weight increases with the reaction time. Further, the water produced at this time has an action of lowering the molecular weight of the polycondensate by a hydrolysis action, so that it is necessary to remove the produced water out of the system by using a polyhydroxycarboxylic acid such as high-molecular-weight polylactic acid or polyglycolic acid It was needed to get the acid.
【0007】日本特許公開公報昭和59年第96,12
3号には触媒の不存在下に、反応温度220〜260
℃、圧力10mmHg以下で縮合反応を行い、分子量
4,000以上のポリ乳酸を得る技術が示されている。Japanese Patent Publication No. 96,12, 1984
No. 3 had a reaction temperature of 220 to 260 in the absence of a catalyst.
A technique for obtaining a polylactic acid having a molecular weight of 4,000 or more by performing a condensation reaction at a temperature of 10 ° C. and a pressure of 10 mmHg or less is disclosed.
【0008】また、米国特許明細書第4,273,92
0にはイオン交換樹脂を触媒として脱水縮合した後触媒
を除去することによる乳酸とグリコール酸のコポリマー
が開示されており、それらは実質的に触媒を含まず対数
粘度数(η)が0.08〜0.30dl/gであり平均
分子量が6,000〜35,000のものである。しか
し、上記方法では高分子量のポリマーを得るためには1
80℃以上の高温度を必要としており、このような条件
で得られるポリマーは着色したり、熱分解による不純物
を含む等の問題がある。さらに、これらの方法で得られ
るポリマーの分子量にも限界があり、フィルムや糸等の
成形物にして充分な強度を持ったポリマーを得ることは
できない。US Pat. No. 4,273,92
No. 0 discloses a copolymer of lactic acid and glycolic acid obtained by dehydration condensation using an ion exchange resin as a catalyst and then removing the catalyst. They have substantially no catalyst and a logarithmic viscosity number (η) of 0.08. Is 0.30 dl / g and the average molecular weight is 6,000 to 35,000. However, in order to obtain a high molecular weight polymer by the above method, 1
Since a high temperature of 80 ° C. or higher is required, the polymer obtained under such conditions has problems such as being colored and containing impurities due to thermal decomposition. Furthermore, the molecular weight of the polymer obtained by these methods is also limited, and it is not possible to obtain a polymer having sufficient strength as a molded product such as a film or thread.
【0009】[0009]
【課題を解決しようとする課題】本発明は、乳酸とグリ
コール酸の直接脱水縮合により、上記従来技術の欠点を
克服した熱分解による不純物を含まず、着色のない乳酸
とグリコール酸のコポリマーを得ること、およびフィル
ムや糸等の成形物にして充分な強度を持った乳酸とグリ
コール酸のコポリマーを提供することを課題とする。DISCLOSURE OF THE INVENTION According to the present invention, a direct dehydration condensation of lactic acid and glycolic acid is carried out to obtain a lactic acid-glycolic acid-free copolymer which does not contain impurities due to thermal decomposition and overcomes the above-mentioned drawbacks of the prior art. Another object is to provide a copolymer of lactic acid and glycolic acid having a sufficient strength as a molded product such as a film or a thread.
【0010】[0010]
【課題を解決するための手段】本発明は、乳酸とグリコ
ール酸またはそれらのオリゴマーを、有機溶媒中、実質
的に水の存在しない状態で縮合することにより得らる
た、平均分子量50,000以上、または対数粘度数
(η)が0.40dl/g以上である、乳酸単位とグリ
コール酸単位からなるコポリマーである。The present invention provides an average molecular weight of 50,000 obtained by condensing lactic acid and glycolic acid or their oligomers in an organic solvent in the substantially absence of water. Or more, or a copolymer having a logarithmic viscosity number (η) of 0.40 dl / g or more and comprising lactic acid units and glycolic acid units.
【0011】本発明のポリマーを得るための製造方法の
特徴は、乳酸とグリコール酸の反応を有機溶媒中で行な
い、生成した水を該有機溶媒と共に反応系外に留出させ
ることにあるが、好ましくは乳酸とグリコール酸の加熱
脱水縮合反応を有機溶媒中で行ない、生成した水を該有
機溶媒と共に反応系外に留出させるとともに、留出した
有機溶媒に溶解する水分量以下の水分量を有する有機溶
媒を追加溶媒として反応系に装入しながら反応すること
にある。The production method for obtaining the polymer of the present invention is characterized in that the reaction of lactic acid and glycolic acid is carried out in an organic solvent, and the produced water is distilled out of the reaction system together with the organic solvent. Preferably, the heat dehydration condensation reaction of lactic acid and glycolic acid is carried out in an organic solvent, and the produced water is distilled out of the reaction system together with the organic solvent, and a water content not more than the water content dissolved in the distilled organic solvent is adjusted. The reaction is carried out while charging the reaction system with the organic solvent that it has as an additional solvent.
【0012】本発明に使用できる有機溶媒は、例えば、
トルエン、キシレン、メシチレン等の炭化水素系溶媒、
クロロベンゼン、ブロモベンゼン、ヨ−ドベンゼン、ジ
クロロベンゼン、1,1,2,2−テトラクロロエタ
ン、p-クロロトルエン等のハロゲン系溶媒、3−ヘキサ
ノン、アセトフェノン、ベンゾフェノン等のケトン系溶
媒、ジブチルエ−テル、アニソ−ル、フェネトール、o
−ジメトキシベンゼン、p−ジメトキシベンゼン、3−
メトキシトルエン、ジベンジルエーテル、ベンジルフェ
ニルエーテル、メトキシナフタレン等のエーテル系溶
媒、フェニルスルフィド、チオアニソール等のチオエー
テル溶媒、安息香酸メチル、フタル酸メチル、フタル酸
エチル等のエステル系溶媒、ジフェニルエーテル、また
は4−メチルフェニルエーテル、3−メチルフェニルエ
ーテル、3−フェノキシトルエン等のアルキル置換ジフ
ェニルエーテル、または、4−ブロモフェニルエーテ
ル、4−クロロフェニルエーテル、4ーブロモジフェニ
ルエーテル、4−メチル−4’−ブロモジフェニルエー
テル等のハロゲン置換ジフェニルエーテル、または、4
−メトキシジフェニルエーテル、4−メトキシフェニル
エーテル、3−メトキシフェニルエーテル、4−メチル
−4’−メトキシジフェニルエーテル等のアルコキシ置
換ジフェニルエーテル、または、ジベンゾフラン、キサ
ンテン等の環状ジフェニルエーテル等のジフェニルエー
テル系溶媒が挙げられ、これらは、混合して用いてもよ
い。そして、溶媒として容易に水と分液分離できるもの
が好ましく、特に平均分子量の高いポリヒドロキシカル
ボン酸を得るためにはエーテル系溶媒、アルキル−アリ
ールエーテル系溶媒およびジフェニルエーテル系溶媒が
より好ましいが、アルキル−アリールエーテル系溶媒お
よびジフェニルエーテル系溶媒が特に好ましい。The organic solvent which can be used in the present invention is, for example,
Hydrocarbon solvents such as toluene, xylene, mesitylene,
Chlorobenzene, bromobenzene, iodobenzene, dichlorobenzene, 1,1,2,2-tetrachloroethane, halogen solvents such as p-chlorotoluene, ketone solvents such as 3-hexanone, acetophenone and benzophenone, dibutyl ether, Anisole, phenetole, o
-Dimethoxybenzene, p-dimethoxybenzene, 3-
Ether-based solvents such as methoxytoluene, dibenzyl ether, benzylphenyl ether and methoxynaphthalene, thioether solvents such as phenyl sulfide and thioanisole, ester-based solvents such as methyl benzoate, methyl phthalate and ethyl phthalate, diphenyl ether, or 4 Alkyl-substituted diphenyl ether such as -methyl phenyl ether, 3-methyl phenyl ether, 3-phenoxytoluene, or 4-bromophenyl ether, 4-chlorophenyl ether, 4-bromodiphenyl ether, 4-methyl-4'-bromodiphenyl ether, etc. Halogen-substituted diphenyl ether, or 4
-Methoxydiphenyl ether, 4-methoxyphenyl ether, 3-methoxyphenyl ether, alkoxy substituted diphenyl ether such as 4-methyl-4'-methoxydiphenyl ether, or diphenyl ether solvent such as dibenzofuran or cyclic diphenyl ether such as xanthene. You may mix and use. And, as the solvent, those which can be easily separated from water by separation are preferable, and particularly ether type solvents, alkyl-aryl ether type solvents and diphenyl ether type solvents are more preferable in order to obtain a polyhydroxycarboxylic acid having a high average molecular weight. -Aryl ether solvents and diphenyl ether solvents are particularly preferred.
【0013】本発明の溶剤の沸点は高い方が良く、好ま
しくは180℃以上の沸点を持つ溶媒を用い、低温、高
真空度で反応を行うことにより、好ましくない副反応を
ともなわず効率的に脱水を進めることができる。The boiling point of the solvent of the present invention is preferably high, preferably by using a solvent having a boiling point of 180 ° C. or higher, and carrying out the reaction at a low temperature and a high degree of vacuum, the reaction can be carried out efficiently without undesired side reactions. Dehydration can proceed.
【0014】これらの溶媒の使用量は得られるポリマー
の濃度で10〜80%であることが好ましい。The amount of these solvents used is preferably 10 to 80% in terms of the concentration of the polymer obtained.
【0015】本発明のにおいて、生成した水を反応系外
に留出させるには、用いた有機溶媒と水との共沸による
ことが好ましい。共沸により留出した有機溶媒は、含有
する水の量が該有機溶媒に対する水の溶解度より多い場
合は分液により水を除去した後、反応系内に戻して良
く、さらに用いた有機溶媒に溶解した水を除くために、
乾燥剤で処理したり、蒸留等により水分量を低下させた
後、反応系に戻しても良い。また共沸により留出した有
機溶媒の代わりに、新たな水分量の低い有機溶媒を装入
しても良い。また反応の始めの部分で水分を減圧により
除去し、その後に有機溶媒を含む反応混合物より有機溶
媒の一部を除去することにより、反応混合物の水分を所
定の値とすることもできる。In the present invention, in order to distill the produced water out of the reaction system, it is preferable to carry out azeotropic distillation of the used organic solvent and water. When the amount of water contained in the organic solvent distilled by azeotropic distillation is higher than the solubility of water in the organic solvent, the water may be removed by liquid separation and then returned to the reaction system. To remove dissolved water,
It may be returned to the reaction system after treatment with a desiccant or after reducing the water content by distillation or the like. Further, a new organic solvent having a low water content may be charged in place of the organic solvent distilled by azeotropic distillation. Further, the water content of the reaction mixture can be adjusted to a predetermined value by removing the water content at the beginning of the reaction by reducing the pressure and then removing a part of the organic solvent from the reaction mixture containing the organic solvent.
【0016】本発明は要は水分を除去しつつ縮合反応を
進めるものであり、この実施態様としては、溶媒は水と
共沸するものでもしないものでもよく、水と分液するも
のでもしないものでもよい。また、他の実施態様として
は、過剰の溶媒を予め装入しておき、単に溶媒を抜き出
すのみで脱水する方法、反応溶媒を他の溶媒を用いて乾
燥する方法等も含まれる。またさらに変形として、反応
溶媒自体を液状のまま水分を除去してもよい。また、本
発明の反応温度については、溶媒が水と共沸するため
に、沸点が低下したとしても所定の温度で行われればよ
い。In the present invention, the point is to proceed with the condensation reaction while removing water. In this embodiment, the solvent may or may not be an azeotrope with water, or it may not be separated into water. But it's okay. Further, as another embodiment, a method of preliminarily charging an excess solvent and dehydrating by simply extracting the solvent, a method of drying the reaction solvent using another solvent, and the like are also included. As a further modification, water may be removed while the reaction solvent itself remains liquid. Regarding the reaction temperature of the present invention, since the solvent is azeotropic with water, it may be carried out at a predetermined temperature even if the boiling point is lowered.
【0017】コポリマーの平均分子量は、反応系に装入
する有機溶媒の水分量にも依存し、溶媒の種類にもよる
が、溶媒が400〜500ppmと高い水分量を有する
場合、得られるポリヒドロキシカルボン酸の平均分子量
は、15,000〜50,000である。しかしなが
ら、上記高水分量でもジフェニルエーテル系溶媒を用い
ると40,000〜50,000の平均分子量のコポリ
マーが得られることは驚くべきことである。更に高い平
均分子量のコポリマーを得るためには、反応系に挿入す
る有機溶媒の水分量が低いことが望ましく、共沸により
留出した有機溶媒を乾燥剤で処理して水を除去または減
少して反応系に戻すか、水分量の低い新たな有機溶媒を
挿入することにより、挿入する水分量を50ppm以下
とすることにより、平均分子量Mw50,000〜40
0,000のコポリマーを得ることができる。The average molecular weight of the copolymer depends on the water content of the organic solvent charged to the reaction system, and depends on the kind of the solvent, but when the solvent has a high water content of 400 to 500 ppm, the obtained polyhydroxy compound is obtained. The average molecular weight of the carboxylic acid is 15,000 to 50,000. However, it is surprising that a copolymer having an average molecular weight of 40,000 to 50,000 can be obtained by using a diphenyl ether solvent even with the above-mentioned high water content. In order to obtain a copolymer having a higher average molecular weight, it is desirable that the water content of the organic solvent to be inserted into the reaction system is low, and the organic solvent distilled by azeotropic treatment is treated with a desiccant to remove or reduce water. By returning to the reaction system or inserting a new organic solvent having a low water content, the water content to be inserted is adjusted to 50 ppm or less, whereby the average molecular weight Mw of 50,000 to 40.
10,000 copolymers can be obtained.
【0018】本発明において、平均分子量の高いコポリ
マーを得るために用いる乾燥剤としては、モレキュラー
シーブ3A、モレキュラーシーブ4A、モレキュラーシ
ーブ5A、モレキュラーシーブ13X等のモレキュラー
シーブ類、アルミナ、シリカゲル、塩化カルシム、硫酸
カルシウム、五酸化二リン、濃硫酸、過塩素酸マグネシ
ウム、酸化バリウム、酸化カルシウム、水酸化カリウ
ム、水酸化ナトリウム、あるいは水素化カルシウム、水
素化ナトリウム、水素化リチウムアルミニウム等の金属
水素化物、または、ナトリウム等のアルカリ金属等があ
げられる。中でも、取扱い及び再生の容易さからモレキ
ュラーシーブ類が好ましい。In the present invention, as a desiccant used for obtaining a copolymer having a high average molecular weight, molecular sieves such as molecular sieve 3A, molecular sieve 4A, molecular sieve 5A, molecular sieve 13X, alumina, silica gel, calcium chloride, Calcium sulfate, diphosphorus pentoxide, concentrated sulfuric acid, magnesium perchlorate, barium oxide, calcium oxide, potassium hydroxide, sodium hydroxide, or metal hydride such as calcium hydride, sodium hydride, lithium aluminum hydride, or , Alkali metals such as sodium, and the like. Among them, molecular sieves are preferable because they are easy to handle and regenerate.
【0019】本発明のにおける反応温度は、コポリマー
の生成速度および生成したコポリマーの熱分解速度を考
慮して、好ましくは80〜200℃であり、より好まし
くは、110〜170℃である。縮合反応は、通常、常
圧下に使用する有機溶媒の留出温度で行われる。反応温
度を好ましい範囲にするために高沸点の有機溶媒を用い
る場合には、減圧下で行っても良い。The reaction temperature in the present invention is preferably 80 to 200 ° C., more preferably 110 to 170 ° C., in consideration of the production rate of the copolymer and the thermal decomposition rate of the produced copolymer. The condensation reaction is usually carried out at the distillation temperature of the organic solvent used under normal pressure. When an organic solvent having a high boiling point is used to keep the reaction temperature within a preferable range, the reaction may be performed under reduced pressure.
【0020】本発明のコポリマー中のグリコール酸の割
合は多すぎるとコポリマーの水分に対する安定性が低く
なるために通常の用途には20%以下が好ましい。しか
し、特に分解の速さを要求される場合には20%以上で
も良い。また、コポリマー中のグリコール酸の量が多く
なると溶液中での重合反応の過程で溶解性の低いポリマ
ーが析出して重合反応を阻害する場合があるため、好ま
しくは90%以下である。If the proportion of glycolic acid in the copolymer of the present invention is too high, the stability of the copolymer against moisture becomes low, so that it is preferably 20% or less for general use. However, it may be 20% or more when the decomposition speed is particularly required. Further, when the amount of glycolic acid in the copolymer is large, a polymer having low solubility may be precipitated in the course of the polymerization reaction in the solution to hinder the polymerization reaction, so that it is preferably 90% or less.
【0021】本発明のコポリマー中の乳酸単位はD体、
L体、それぞれ単独であっても良いし、D体とL体の混
合物でも良い。The lactic acid unit in the copolymer of the present invention is D-form,
Each of the L-forms may be used alone, or a mixture of the D-form and the L-form may be used.
【0022】本発明のコポリマーを製造するには、触媒
を使用しても使用しなくても良いが、触媒を用いるばあ
いには、反応速度を上げることができる。使用する触媒
としては、周期表II、III、IV、V族の金属、そ
の酸化物あるいはその塩等が挙げられる。具体的には、
亜鉛末、錫末、アルミニウム、マグネシウム等の金属、
酸化錫、酸化アンチモン、酸化亜鉛、酸化アルミニウ
ム、酸化マグネシウム、酸化チタン等の金属酸化物、塩
化第一錫、塩化第二錫、臭化第一錫、臭化第二錫、フッ
化アンチモン、塩化亜鉛、塩化マグネシウム、塩化アル
ミニウム等の金属ハロゲン化物、硫酸錫、硫酸亜鉛、硫
酸アルミニウム等の硫酸塩、炭酸マグネシウム、炭酸亜
鉛等の炭酸塩、酢酸錫、オクタン酸錫、乳酸錫、酢酸亜
鉛、酢酸アルミニウム等の有機カルボン酸塩、トリフル
オロメタンスルホン酸錫、トリフルオロメタンスルホン
酸亜鉛、トリフルオロメタンスルホン酸マグネシウム、
メタンスルホン酸錫、p−トルエンスルホン酸錫等の有
機スルホン酸塩が挙げられる。その他、ジブチルチンオ
キサイド等の上記金属の有機金属酸化物、または、チタ
ニウムイソプロポキサイド等の上記金属の金属アルコキ
サイド、または、ジエチル亜鉛等の上記金属のアルキル
金属、または、ダウエックス、アンバーライト等のイオ
ン交換樹脂等が挙げられる。To prepare the copolymer of the present invention, a catalyst may or may not be used, but when a catalyst is used, the reaction rate can be increased. Examples of the catalyst used include metals of Group II, III, IV and V of the periodic table, oxides thereof or salts thereof. In particular,
Zinc dust, tin dust, metals such as aluminum and magnesium,
Metal oxides such as tin oxide, antimony oxide, zinc oxide, aluminum oxide, magnesium oxide and titanium oxide, stannous chloride, stannic chloride, stannous bromide, stannic bromide, antimony fluoride, chloride Metal halides such as zinc, magnesium chloride and aluminum chloride, sulfates such as tin sulfate, zinc sulfate and aluminum sulfate, carbonates such as magnesium carbonate and zinc carbonate, tin acetate, tin octanoate, tin lactate, zinc acetate and acetic acid. Organic carboxylates such as aluminum, tin trifluoromethanesulfonate, zinc trifluoromethanesulfonate, magnesium trifluoromethanesulfonate,
Examples thereof include organic sulfonates such as tin methanesulfonate and tin p-toluenesulfonate. In addition, organic metal oxides of the above metals such as dibutyltin oxide, or metal alkoxides of the above metals such as titanium isopropoxide, or alkyl metals of the above metals such as diethylzinc, or Dowex, amberlite, etc. Examples include ion exchange resins.
【0023】その使用量は、使用する乳酸とグリコール
酸、または、それらのオリゴマーの0.0001〜10
重量%が良く、経済性を考えると、0.001〜2重量
%が好ましい。The amount of lactic acid and glycolic acid to be used or their oligomers is 0.0001 to 10.
The weight% is good, and considering economic efficiency, 0.001 to 2% by weight is preferable.
【0024】本発明のコポリマーを製造するには、系外
から水分が入らないように、不活性ガス雰囲気下で行う
ことが好ましく、不活性ガスで置換しながら又は不活性
ガスでバブリングしながら行っても良い。The production of the copolymer of the present invention is preferably carried out in an inert gas atmosphere so that water does not enter from the outside of the system, and while carrying out replacement with an inert gas or bubbling with an inert gas. May be.
【0025】本発明の縮合反応は、連続操作でも回分操
作でも行うことができる。また溶媒の脱水、溶媒の装入
も連続操作でも回分操作でも行うことができる。The condensation reaction of the present invention can be carried out either continuously or batchwise. Dehydration of the solvent and charging of the solvent can also be carried out by continuous operation or batch operation.
【0026】本発明のコポリマーは、反応で生成した水
を有機溶媒と共に反応系外に留出させながら反応し製造
することができるが、好ましくは生成した水を有機溶媒
と共に反応系外に留出させるとともに、留出した有機溶
媒に溶解する水分量と同じか又は低い水分量を有する有
機溶媒を反応系に装入しながら反応して製造することが
でき、その実施態様の好ましい一例を原料モノマーとし
て90%のL−乳酸(残部のほぼ全量が水である。)と
70%のグリコール酸を乳酸とグリコール酸が1:1に
なるように用いて以下に記載する。The copolymer of the present invention can be produced by reacting the water produced in the reaction with the organic solvent while distilling it out of the reaction system, but preferably the produced water is distilled out of the reaction system together with the organic solvent. It is possible to produce by reacting with an organic solvent having the same or a low water content as the water content dissolved in the distilled organic solvent into the reaction system, and a preferable example of the embodiment is a raw material monomer. As described below, 90% L-lactic acid (almost all the balance is water) and 70% glycolic acid were used so that the ratio of lactic acid and glycolic acid was 1: 1.
【0027】水分離器(例えばDean Stark
trap)を備えた反応器に、溶媒および所定量の90
%L−乳酸と70%グリコール酸と所定量の触媒を装入
し、反応器を加熱し、共沸により溶媒と水を留出させ水
分離器に導く。最初は、原料中に含まれる水が大量に溶
媒と共に留出する。溶媒の溶解度以上の水を水分離器で
分離して系外に除去し、溶解度分の水を含んだ溶媒は、
反応系に戻す。この段階で原料L−乳酸に含まれる水が
ほぼ完全に留出するとともに、L−乳酸とグリコール酸
がオリゴマー化する。この段階での平均分子量は、50
0〜1,000であり、環状二量体(すなわちラクタイ
ドおよび/またはグリコライド)を含んでいても良い
し、平均分子量が5,000程度までになっていても良
い。この間の反応時間はおよそ0.5時間から数時間で
ある。このオリゴマー化の反応は、あらかじめ別の反応
器で、無溶媒、無触媒、減圧下で行っていても良いし、
無触媒で溶媒を用いて行っても良い。このまま溶媒の留
出温度で、反応が進むにつれて生成する水を除去し、水
で飽和した溶媒を反応系に戻しながら反応をつづけも良
いが、数十時間反応しても、溶媒の種類にもよるが、平
均分子量15,000〜50,000のものが得られ
る。さらに高分子量のコポリマーを得るには、原料中の
水がほぼ留出した後、水分離器をはずし、モレキュラー
シーブ等の乾燥剤を充填した管をとりつけ、留出する溶
媒がこの管をとおって還流するようにするか、留出した
溶媒を、乾燥剤を入れた別の反応器で処理して反応器に
戻すようにするか、または新たな水分含量の低い溶媒を
反応器に装入する。これらの方法により溶媒に溶解する
水の量を50ppm以下にし、このまま数十時間反応つ
づけることにより、溶媒の種類にもよるが、平均分子量
50,000〜400,000のL−乳酸−グリコール
酸コポリマーを得ることができる。反応終了後、所望の
コポリマーを得る処理方法はどのような方法でも良い
が、例えば、反応液に塩化メチレンを加え、その後メタ
ノールに排出し、析出した結晶を濾過、乾燥すれば、所
望のコポリマーが得られる。Water separator (eg Dean Stark
trap) in a reactor equipped with a solvent and a predetermined amount of 90
% L-lactic acid, 70% glycolic acid and a predetermined amount of catalyst are charged, the reactor is heated, and the solvent and water are distilled off by azeotropy and introduced into a water separator. At first, a large amount of water contained in the raw material is distilled out together with the solvent. Water having a solubility higher than that of the solvent is removed with a water separator outside the system, and the solvent containing water for the solubility is
Return to the reaction system. At this stage, water contained in the raw material L-lactic acid is distilled out almost completely, and L-lactic acid and glycolic acid are oligomerized. The average molecular weight at this stage is 50
It is 0 to 1,000, and may contain a cyclic dimer (that is, lactide and / or glycolide) or may have an average molecular weight of up to about 5,000. The reaction time during this period is approximately 0.5 hours to several hours. This oligomerization reaction may be carried out in advance in another reactor without solvent, without catalyst, under reduced pressure,
You may carry out using a solvent without a catalyst. It is possible to continue the reaction while removing the water produced as the reaction proceeds at the distillation temperature of the solvent as it is, and returning the solvent saturated with water to the reaction system. However, an average molecular weight of 15,000 to 50,000 can be obtained. In order to obtain a higher molecular weight copolymer, after the water in the raw material is almost distilled, remove the water separator, attach a tube filled with a desiccant such as molecular sieve, and distill the solvent through this tube. Bring to reflux, treat distillate solvent in another reactor with desiccant and return to reactor, or charge new low water content solvent to reactor . The amount of water dissolved in the solvent is reduced to 50 ppm or less by these methods, and the reaction is continued for several tens of hours as it is. The L-lactic acid-glycolic acid copolymer has an average molecular weight of 50,000 to 400,000 depending on the kind of the solvent. Can be obtained. After the completion of the reaction, any treatment method may be used to obtain the desired copolymer. For example, methylene chloride is added to the reaction solution, which is then discharged into methanol, and the precipitated crystals are filtered and dried to obtain the desired copolymer. can get.
【0028】本発明のコポリマーの平均分子量は、溶媒
の種類、触媒の種類および量、反応温度、反応時間、共
沸により留出した溶媒の処理方法等を変えることによ
り、種々のものが得られるが、約50,000〜40
0,000である。本発明のコポリマーはラクタイドと
グリコライドの開環重合により得られたコポリマーに比
べ溶剤に対する溶解性が高く、徐放性材料を作る際に混
合する薬剤等と共に溶媒に溶解して混合物を作る場合等
に効果がある。また、本発明のコポリマーは、低温で縮
合反応することができるために、着色したり、熱分解に
よる不純物を含む等の問題がない。徐放性材料等の医療
用途の場合には安全性の点から不純物の含有量の少ない
ものが求められる。Various average molecular weights of the copolymer of the present invention can be obtained by changing the type of solvent, the type and amount of catalyst, the reaction temperature, the reaction time, the treatment method of the solvent distilled by azeotropic distillation and the like. But about 50,000-40
It is 10,000. The copolymer of the present invention has a higher solubility in a solvent than the copolymer obtained by ring-opening polymerization of lactide and glycolide, and when it is dissolved in a solvent together with a drug or the like to be mixed when preparing a sustained-release material to form a mixture. Has an effect on. Further, since the copolymer of the present invention can undergo a condensation reaction at a low temperature, it does not have a problem of being colored or containing impurities due to thermal decomposition. In the case of medical applications such as sustained-release materials, those having a low content of impurities are required from the viewpoint of safety.
【0029】また、本発明のコポリマーは、ラクタイド
やグリコライドのような環状ダイマーを用いず、乳酸と
グリコール酸から直接脱水縮合することにより得られた
平均分子量50,000以上のポリマーであり、モノマ
ーから直接これほどの高分子量の乳酸とグリコール酸の
コポリマーが得られることはこれまで知られていなかっ
た。この様にして得られた高分子量のコポリマーは、フ
ィルム、成形物等に加工した場合に、十分な強度と靱性
を持ち、そのまま容器等の用途に用いることができる。
特に本発明の製造方法によって製造したポリマーでフィ
ルムに成形した場合、平均分子量50,000(η=
0.40dl/g)より低いものでは、引っ張り強度お
よび伸び率が十分ではなく、フィルムとして使用するに
難点がある。そのため、フィルムとして使用する場合強
度や伸びの点で、このポリマーの平均分子量は、50,
000(η=0.40dl/g)以上が要求され、好ま
しくは70,000(η=0.57dl/g)以上、よ
り好ましくは100,000(η=0.78dl/g)
以上の平均分子量が要求されるが、本発明の製造方法に
よれば、このフィルムに用いて好適な分子量のコポリマ
ーが容易に得られる。またさらに、これら高分子量のコ
ポリマーは、延伸、ブロー、真空成形等の二次加工を行
なうことができる。従って、本発明の方法により得られ
る高分子量の乳酸とグリコール酸のコポリマーは、医療
用材料としてあるいは、発泡体、網状体等の従来の汎用
樹脂の代替物として使用することができる。The copolymer of the present invention is a polymer having an average molecular weight of 50,000 or more obtained by direct dehydration condensation from lactic acid and glycolic acid without using a cyclic dimer such as lactide or glycolide. It has not been known so far that a copolymer of lactic acid and glycolic acid having such a high molecular weight can be directly obtained. The high molecular weight copolymer thus obtained has sufficient strength and toughness when processed into a film, a molded product and the like, and can be used as it is for applications such as containers.
Particularly when formed into a film from the polymer produced by the production method of the present invention, the average molecular weight is 50,000 (η =
If it is less than 0.40 dl / g), the tensile strength and elongation are not sufficient, and there is a problem in using it as a film. Therefore, when used as a film, the average molecular weight of this polymer is 50, in terms of strength and elongation.
000 (η = 0.40 dl / g) or more is required, preferably 70,000 (η = 0.57 dl / g) or more, more preferably 100,000 (η = 0.78 dl / g).
Although the above average molecular weight is required, the production method of the present invention makes it possible to easily obtain a copolymer having a suitable molecular weight for use in this film. Furthermore, these high molecular weight copolymers can be subjected to secondary processing such as stretching, blowing and vacuum forming. Therefore, the copolymer of high-molecular-weight lactic acid and glycolic acid obtained by the method of the present invention can be used as a medical material or as a substitute for conventional general-purpose resins such as foams and reticulate bodies.
【0030】また、ラクタイドやグリコライドのような
の環状中間体から製造した従来のラクタイドとグリコラ
イドのコポリマー(以下、ラクタイド法コポリマーとい
う)では、2つの同一のモノマーがペアになった状態で
ポリマー中のモノマーの配列が構成されるのに対し、本
発明の製造法で得られるコポリマーは、2つのモノマー
がランダムに配列した構造を有し、それらが示す物性も
異なる。例えば、本発明のL−乳酸とグリコール酸のラ
ンダムコポリマーと、ラクタイド法で得られるラクタイ
ドとグリコライドのコポリマーでは、図1〜図3に示す
ように、グリコール酸成分のメチレン炭素の13C−NM
Rスペクトルパターンが異なり、本発明の乳酸とグリコ
ール酸のランダムコポリマーでは、60.73ppmと
60.86ppmに2本の吸収を示すのに対し、ラクタ
イド法コポリマーは60.74ppm、60.86pp
m、60.95ppm、61.01ppmに4本の吸収
を示す。この様な従来のラクタイド法によるコポリマー
と異なる吸収を示す分子量50,000(η=0.40
dl/g)以上の乳酸とグリコール酸のコポリマーは、
初めてのものである。Further, in a conventional lactide-glycolide copolymer (hereinafter referred to as a lactide method copolymer) produced from a cyclic intermediate such as lactide or glycolide, two identical monomers are paired in the polymer. In contrast to the above-described arrangement of monomers, the copolymer obtained by the production method of the present invention has a structure in which two monomers are randomly arranged, and the physical properties exhibited by them are also different. For example, a random copolymer of L- lactic acid and glycolic acid of the present invention, in the copolymer of lactide and glycolide obtained by the lactide method, as shown in FIGS. 1 to 3, 13 C-NM methylene carbon of glycolic acid component
The R spectrum patterns are different, and the random copolymer of lactic acid and glycolic acid of the present invention shows two absorptions at 60.73 ppm and 60.86 ppm, whereas the lactide method copolymer has 60.74 ppm and 60.86 pp.
It shows four absorptions at m, 60.95 ppm and 61.01 ppm. A molecular weight of 50,000 (η = 0.40) which exhibits absorption different from that of the conventional lactide copolymer.
A copolymer of lactic acid and glycolic acid of dl / g) or more,
It's my first time.
【0031】この乳酸とグリコール酸のランダムコポリ
マーは、ヒートシール性が良い等の実用的なメリットを
持ち、包装用フィルムとして利用される。また、軟質の
ポリマーとして利用する場合には、用いる可塑剤の量を
減少することができる。また、グリコール酸を含む本発
明の乳酸とグリコール酸のコポリマーは、フィルムにし
たとき優れた透明性を示す。This random copolymer of lactic acid and glycolic acid has practical advantages such as good heat-sealing property and is used as a packaging film. When used as a soft polymer, the amount of plasticizer used can be reduced. Further, the copolymer of lactic acid and glycolic acid of the present invention containing glycolic acid shows excellent transparency when formed into a film.
【0032】[0032]
【実施例】以下に実施例を示すが、本発明はこれに限定
されるものではない。なお、本明細書記載のポリヒドロ
キカルボン酸類の平均分子量(MW)は、ゲルパーミエ
ーションクロマトグラフィー(カラム温度40℃、クロ
ロホルム溶媒)により、ポリスチレン標準サンプルとの
比較でもとめた。また、溶媒中の水分は、カールフィシ
ャー水分計(MKC−210、京都電子工業株式会社
製)を用いて行った。また、本発明の乳酸とグリコール
酸のコポリマーの対数粘度数(η)は、ウベローデ粘度
計を用い、コポリマーを塩化メチレン100ml当たり
0.1g溶解した溶液を用いて20℃で測定し、下記式
から求めた。 η=ln(t/t0)/C (ここでtは溶液の流出時間、t0は溶媒の流出時間、
Cは溶液の濃 度(g/dl)を表わす。)実施例中、
溶媒中の水分は、カールフィシャー水分計(MKC−2
10、京都電子工業株式会社製)を用いて行った。EXAMPLES Examples will be shown below, but the present invention is not limited thereto. The average molecular weight (MW) of the polyhydroxycarboxylic acids described in this specification was determined by gel permeation chromatography (column temperature 40 ° C., chloroform solvent) in comparison with a polystyrene standard sample. The water content in the solvent was measured using a Karl Fischer water content meter (MKC-210, manufactured by Kyoto Electronics Manufacturing Co., Ltd.). In addition, the logarithmic viscosity number (η) of the copolymer of lactic acid and glycolic acid of the present invention was measured at 20 ° C. using a Ubbelohde viscometer and a solution in which 0.1 g of the copolymer was dissolved in 100 ml of methylene chloride was used. I asked. η = ln (t / t 0 ) / C (where t is the solution outflow time, t 0 is the solvent outflow time,
C represents the concentration of the solution (g / dl). ) In the examples,
The water content in the solvent is measured by the Karl Fischer water content meter (MKC-2
10, manufactured by Kyoto Electronics Manufacturing Co., Ltd.).
【0033】実施例1 90%L−乳酸36.0g、70%グリコール酸9.0
gを150℃/50mmHgで3時間、系外に水を留出
しながら加熱撹拌しオリゴマー30.8gを得た。これ
に、錫末0.158gを加え、150℃/30mmHg
で、さらに2時間撹拌した。Dean Stark t
rapを取り付け、錫末0.743gとジフェニルエー
テル95.0gを加え、150℃/35mmHgで1時
間共沸脱水反応を行い水分を除去し、その後、Dean
Stark trapをはずし、モレキュラーシーブ
3A、25gが充填された管を取り付け、還流により留
出する溶媒がモレキュラーシ−ブを通って再び系内に戻
るようにした。150℃/35mmHgで40時間反応
を行った。なお、モレキュラーシーブ通過後の溶媒中の
水分量は、2ppmであった。この反応液にクロロホル
ム220gを加え、吸引濾過し錫末を除去した。このク
ロロホルム溶液を1N塩酸100mlで洗浄し、さらに
水100mlで2回洗浄した後メタノール750ml中
に排出し、析出した固形物を吸引濾過し、続いて、メタ
ノール洗浄、ヘキサン洗浄を行った。30℃/5mmH
gで減圧乾燥後、乳酸とグリコール酸のコポリマー2
4.0g(収率85%)を得た。得られたコポリマーの
平均分子量は、160,000であり、示差熱分析によ
るガラス転移温度および融点はそれぞれ、55℃および
135℃であった。得られたポリマーは、重クロロホル
ムを溶媒として13C−NMR分析を行った。全体図をFi
g.1に、拡大したグリコール酸成分のメチレン炭素のシ
グナルをFig.2に示した。本発明のポリマーは、約6
0.86ppmに大きなシグナルをもち、約60.73
ppmに小さなシグナルを持っていることが特徴であ
る。Example 1 90% L-lactic acid 36.0 g, 70% glycolic acid 9.0
g at 150 ° C./50 mmHg for 3 hours while heating and stirring while distilling water out of the system to obtain 30.8 g of an oligomer. Add 0.158g of tin powder to this, 150 ℃ / 30mmHg
Then, the mixture was stirred for another 2 hours. Dean Stark t
Attach a rap, add 0.743 g of tin powder and 95.0 g of diphenyl ether, and remove water by azeotropic dehydration reaction at 150 ° C./35 mmHg for 1 hour, and then Dean
The Stark trap was removed, a tube filled with 25 g of the molecular sieve 3A was attached, and the solvent distilled by reflux was allowed to return to the system through the molecular sieve. The reaction was carried out at 150 ° C./35 mmHg for 40 hours. The water content in the solvent after passing through the molecular sieve was 2 ppm. 220 g of chloroform was added to this reaction solution, and suction filtration was performed to remove tin powder. The chloroform solution was washed with 100 ml of 1N hydrochloric acid, further washed twice with 100 ml of water and then discharged into 750 ml of methanol, and the precipitated solid was suction filtered, followed by washing with methanol and washing with hexane. 30 ° C / 5mmH
Copolymer of lactic acid and glycolic acid 2 after drying under reduced pressure
4.0 g (yield 85%) was obtained. The average molecular weight of the obtained copolymer was 160,000, and the glass transition temperature and melting point by differential thermal analysis were 55 ° C. and 135 ° C., respectively. The obtained polymer was subjected to 13 C-NMR analysis using deuterated chloroform as a solvent. The whole figure is Fi
The signal of the expanded methylene carbon of the glycolic acid component is shown in Fig. 1 and in Fig. 2. The polymers of the present invention have about 6
It has a large signal at 0.86ppm and is about 60.73.
It is characterized by having a small signal in ppm.
【0034】比較例1 L−ラクタイド194.4g(1.35モル)とグリコ
ライド17.4g(0.15モル)およびオクタン酸ス
ズ0.01重量%と、ラウリルアルコール0.03重量
%を、攪拌機を備えた肉厚の円筒型ステンレス製重合容
器へ封入し、真空で2時間脱気した後窒素ガスで置換し
た。この混合物を窒素雰囲気下で攪拌しつつ200℃で
5時間加熱した。温度をそのまま保ちながら、排気管及
びガラス製受器を介して真空ポンプにより徐々に脱気
し、反応容器内を3mmHgまで減圧にした。脱気開始
から1時間後、モノマーや低分子量揮発分の留出がなく
なったので、容器内を窒素置換し、容器下部からポリマ
ーを紐状に抜き出してペレット化し、白色のポリL−乳
酸を得た。このペレットをクロロホルム2lに溶解し、
1N塩酸1lで洗浄し、さらに水1lで2回洗浄した後
メタノール7.5l中に排出し、析出した固形物を吸引
濾過し、続いて、メタノール洗浄、ヘキサン洗浄を行っ
た。30℃/5mmHgで減圧乾燥後、乳酸とグリコー
ル酸のコポリマー192.7g(収率91%)を得た。
得られたコポリマーの平均分子量は、160,000で
あり、示差熱分析によるガラス転移温度および融点はそ
れぞれ、55℃および145℃であった。Comparative Example 1 194.4 g (1.35 mol) of L-lactide, 17.4 g (0.15 mol) of glycolide, 0.01% by weight of tin octoate, and 0.03% by weight of lauryl alcohol were added. It was sealed in a thick-walled cylindrical polymerization vessel made of stainless steel equipped with a stirrer, deaerated under vacuum for 2 hours, and then replaced with nitrogen gas. The mixture was heated at 200 ° C. for 5 hours with stirring under a nitrogen atmosphere. While maintaining the temperature as it was, the inside of the reaction vessel was depressurized to 3 mmHg by gradually degassing with a vacuum pump through an exhaust pipe and a glass receiver. One hour after the start of degassing, the distillation of the monomer and low-molecular-weight volatile matter disappeared, so the inside of the container was replaced with nitrogen, and the polymer was extracted from the lower part of the container into a string and pelletized to obtain white poly L-lactic acid. It was Dissolve this pellet in 2 l of chloroform,
It was washed with 1 liter of 1N hydrochloric acid, washed twice with 1 liter of water and then discharged into 7.5 liter of methanol, and the precipitated solid was suction-filtered, followed by washing with methanol and hexane. After drying under reduced pressure at 30 ° C./5 mmHg, 192.7 g (yield 91%) of a copolymer of lactic acid and glycolic acid was obtained.
The average molecular weight of the obtained copolymer was 160,000, and the glass transition temperature and melting point by differential thermal analysis were 55 ° C. and 145 ° C., respectively.
【0035】得られたポリマーは、重クロロホルムを溶
媒として13C−NMR分析を行った。拡大したグリコー
ル酸成分のメチレン炭素のシグナルをFig.3に示した。
これらを実施例32で得られたポリマーのシグナルと比
較すると、著しくパターンが異なることが解る。メチレ
ン炭素では、実施例1のポリマーは約60.86ppm
に大きなシグナルをもち、約60.73ppmに小さな
シグナルを持っているのに対し、ラクタイドから合成し
た比較例1のポリマーのものは、約60.76ppm、
約60.86ppm、約60.95ppm、約61.0
1ppmに4本のシグナルを持っており、容易に区別す
ることができる。The polymer obtained was subjected to 13 C-NMR analysis using deuterated chloroform as a solvent. The expanded methylene carbon signal of the glycolic acid component is shown in Fig. 3.
Comparing these with the signal of the polymer obtained in Example 32, it can be seen that the pattern is significantly different. At methylene carbon, the polymer of Example 1 is about 60.86 ppm.
Has a large signal at about 60.73 ppm, while the polymer of Comparative Example 1 synthesized from lactide has about 60.76 ppm,
About 60.86ppm, about 60.95ppm, about 61.0
It has 4 signals at 1 ppm and can be easily distinguished.
【0036】参考例1 実施例1で得た平均分子量160,000のポリマーを
クロロホルムに溶解し、その溶液よりキャスト法により
150mm×150mmのフィルムを作成した。作成し
たフィルムの物性を以下に示す。 厚み:41〜43μm 引張強度:570kg/cm2 (降伏) 480kg/cm2 (破断) 伸び:14% また、得られたフィルム2枚を、幅5mmの2本の加熱
板ではさみ溶着試験を行った。加熱板温度95℃、圧力
0.5kg/cm2で0.5秒間圧着することにより溶
着することができた。Reference Example 1 The polymer having an average molecular weight of 160,000 obtained in Example 1 was dissolved in chloroform, and a 150 mm × 150 mm film was prepared from the solution by a casting method. The physical properties of the produced film are shown below. Thickness: 41 to 43 μm Tensile strength: 570 kg / cm 2 (yield) 480 kg / cm 2 (break) Elongation: 14% Further, two obtained films were subjected to a scissor welding test with two heating plates having a width of 5 mm. It was It was possible to perform welding by pressure bonding for 0.5 seconds at a heating plate temperature of 95 ° C. and a pressure of 0.5 kg / cm 2.
【0037】参考例2 比較例1で得られた、平均分子量160,000のポリ
マーから、参考例1と同様の方法で150mm×150
mmのフィルムを得た。作成したフィルムの物性を以下
に示す。 厚み:37〜39μm 引張強度:620kg/cm2 (降伏、破断) 伸び:7% また、得られたフィルム2枚を用い参考例8と同様の方
法で溶着試験を行った。その結果、加熱板温度95℃、
圧力0.5kg/cm2で 0.5秒間圧着したが溶着す
ることができなかった。圧力0.5kg/cm2、圧着
時間0.5秒で溶着するためには、加熱板温度110℃
が 必要であった。Reference Example 2 From the polymer having an average molecular weight of 160,000 obtained in Comparative Example 1, 150 mm × 150 in the same manner as in Reference Example 1.
A film of mm was obtained. The physical properties of the produced film are shown below. Thickness: 37 to 39 μm Tensile strength: 620 kg / cm 2 (yield, rupture) Elongation: 7% A welding test was conducted in the same manner as in Reference Example 8 using two obtained films. As a result, the heating plate temperature 95 ℃,
Although pressure was applied for 0.5 seconds at a pressure of 0.5 kg / cm 2, welding could not be performed. To perform welding at a pressure of 0.5 kg / cm2 and a pressure bonding time of 0.5 seconds, the heating plate temperature is 110 ° C.
Was needed.
【0038】実施例2 90%L−乳酸20.0g、70%グリコール酸21.
7gを用いた以外は実施例1と同様にして重合、後処理
を行い平均分子量140,000のL−乳酸とグリコー
ル酸のコポリマーを得た。収量21.5g(収率76
%)。このポリマーにベンゼンを加えて室温で放置した
ところ容易に溶解した。また、示差熱分析によるガラス
転移温度は43℃であった。Example 2 20.0 g of 90% L-lactic acid, 70% glycolic acid 21.
Polymerization and post-treatment were carried out in the same manner as in Example 1 except that 7 g was used to obtain a copolymer of L-lactic acid and glycolic acid having an average molecular weight of 140,000. Yield 21.5 g (yield 76
%). When benzene was added to this polymer and it was left at room temperature, it easily dissolved. The glass transition temperature by differential thermal analysis was 43 ° C.
【0039】参考例3 実施例2で得た平均分子量140,000のポリマーを
クロロホルムに溶解し、その溶液よりキャスト法により
150mm×150mmのフィルムを作成した。作成し
たフィルムの物性を以下に示す。 厚み:58〜60μm 引張強度:590kg/cm2 (降伏) 370kg/cm2 (破断) 伸び:36%Reference Example 3 The polymer having an average molecular weight of 140,000 obtained in Example 2 was dissolved in chloroform, and a 150 mm × 150 mm film was prepared from the solution by a casting method. The physical properties of the produced film are shown below. Thickness: 58-60 μm Tensile strength: 590 kg / cm 2 (yield) 370 kg / cm 2 (breaking) Elongation: 36%
【0040】比較例2 L−ラクタイド108g(0.75モル)とグリコライ
ド87g(0.75モル)を用いた以外は比較例2と同
様にして重合、後処理を行い平均分子量140,000
のL−ラクタイドとグリコライドのコポリマーを得た。
収量161.9g(収率83%)。このポリマーにベン
ゼンを加え室温で放置したが容易に溶解しなかった。ま
た、示差熱分析によるガラス転移温度は47℃であっ
た。Comparative Example 2 Polymerization and post-treatment were carried out in the same manner as in Comparative Example 2 except that 108 g (0.75 mol) of L-lactide and 87 g (0.75 mol) of glycolide were used, and the average molecular weight was 140,000.
A copolymer of L-lactide and glycolide was obtained.
Yield 161.9 g (83% yield). Benzene was added to this polymer and left at room temperature, but it did not dissolve easily. The glass transition temperature by differential thermal analysis was 47 ° C.
【0041】参考例4 比較例2で得た平均分子量140,000のポリマーを
クロロホルムに溶解し、その溶液よりキャスト法により
150mm×150mmのフィルムを作成した。作成し
たフィルムの物性を以下に示す。 厚み:62〜64μm 引張強度:540kg/cm2 (降伏、破断) 伸び:7%Reference Example 4 The polymer having an average molecular weight of 140,000 obtained in Comparative Example 2 was dissolved in chloroform, and a 150 mm × 150 mm film was prepared from the solution by a casting method. The physical properties of the produced film are shown below. Thickness: 62-64 μm Tensile strength: 540 kg / cm 2 (yield, fracture) Elongation: 7%
【0042】[0042]
【発明の効果】本発明の乳酸とグリコール酸のコポリマ
ーは、ラクタイドとグリコライドの開環重合で得られた
ものと構造が異なり、13C−NMRや示差熱分析の結果
等が異なる。また、フィルムの伸びが大きいこと、ヒー
トシール性が高いこと、さらにポリマーの溶媒に対する
溶解性が高いことなど実用的な面でも特徴がある。ま
た、不純物をが少なく、透明で着色のないポリマーであ
り医療用途や食品包装用途などに用い、安全で分解性に
すぐれた材料である。The copolymer of lactic acid and glycolic acid of the present invention has a different structure from that obtained by the ring-opening polymerization of lactide and glycolide, and the results of 13 C-NMR and differential thermal analysis are different. In addition, the film has a large elongation, a high heat-sealing property, and a high solubility of the polymer in a solvent. In addition, it is a transparent, non-coloring polymer with few impurities, and is a safe and excellent degradable material used for medical applications, food packaging applications and the like.
【図1】実施例1で得られたL−乳酸90%とグリコー
ル酸10%のランダムコポリマーの13C−NMRスペク
トルの全体図である。FIG. 1 is an overall view of a 13 C-NMR spectrum of a random copolymer of 90% L-lactic acid and 10% glycolic acid obtained in Example 1.
【図2】実施例1で得られたL−乳酸90%とグリコー
ル酸10%のランダムコポリマーのグリコール酸成分の
メチレン炭素の13C−NMRスペクトルである。FIG. 2 is a 13 C-NMR spectrum of methylene carbon of a glycolic acid component of a random copolymer of L-lactic acid 90% and glycolic acid 10% obtained in Example 1.
【図3】比較例1で得られたL−ラクチド90%とグリ
コライド10%のコポリマーのグリコール酸成分のメチ
レン炭素の13C−NMRスペクトルである。FIG. 3 is a 13 C-NMR spectrum of methylene carbon of the glycolic acid component of the copolymer of 90% L-lactide and 10% glycolide obtained in Comparative Example 1.
Claims (11)
グリコール酸またはそれらのオリゴマーを、有機溶媒を
含む反応混合物中で脱水縮合反応することにより得られ
る、重量平均分子量が約50,000以上であるコポリ
マー。1. A weight average molecular weight of about 50,000 obtained by subjecting lactic acid and glycolic acid or their oligomers to dehydration condensation reaction in a reaction mixture containing an organic solvent in the substantially absence of water. The above is a copolymer.
部を除去し、除去される有機溶媒の水分量よりも少ない
か等しい水分量を持った追加有機溶媒を反応混合物に装
入する方法により得られた請求項1記載のコポリマー。2. A method of removing at least a part of an organic solvent from a reaction mixture, and charging the reaction mixture with an additional organic solvent having a water content less than or equal to that of the organic solvent to be removed. The copolymer according to claim 1,
乾燥剤と接触させて水分を除去し、追加溶媒として反応
混合物に戻す方法により得られた請求項2記載のコポリ
マー。3. The organic solvent removed from the reaction mixture is
The copolymer according to claim 2, which is obtained by a method of removing water by contacting with a desiccant and returning it to the reaction mixture as an additional solvent.
二リンまたは金属水素化物である請求項3記載のコポリ
マー。4. The copolymer according to claim 3, wherein the desiccant is a molecular sieve, diphosphorus pentoxide or a metal hydride.
分量が50ppm以下である請求項2記載のコポリマー。5. The copolymer according to claim 2, wherein the water content of the organic solvent additionally charged to the reaction mixture is 50 ppm or less.
除去し、次に反応混合物から有機溶媒の一部が除去する
ことにより得られる請求項2記載のコポリマー。6. Copolymer according to claim 2, obtained by first azeotropically removing water from the reaction mixture and then removing part of the organic solvent from the reaction mixture.
1記載のコポリマー。7. The copolymer according to claim 1, wherein the organic solvent is an ether solvent.
フェネトールである請求項7記載のコポリマー。8. The copolymer according to claim 7, wherein the ether organic solvent is anisole or phenetole.
ある請求項1記載のコポリマー。9. The copolymer according to claim 1, wherein the organic solvent is a diphenyl ether solvent.
ルエーテルである請求項9記載のコポリマー。10. The copolymer according to claim 9, wherein the diphenyl ether solvent is diphenyl ether.
請求項1記載のコポリマー。11. The copolymer according to claim 1, wherein the boiling point of the organic solvent is 180 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16068693A JP3267391B2 (en) | 1993-06-30 | 1993-06-30 | Degradable polymer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16068693A JP3267391B2 (en) | 1993-06-30 | 1993-06-30 | Degradable polymer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0718063A true JPH0718063A (en) | 1995-01-20 |
JP3267391B2 JP3267391B2 (en) | 2002-03-18 |
Family
ID=15720279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16068693A Expired - Lifetime JP3267391B2 (en) | 1993-06-30 | 1993-06-30 | Degradable polymer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3267391B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08183840A (en) * | 1994-12-28 | 1996-07-16 | Shigematsu Boeki Kk | Polymerization method for producing high-molecular polyester |
WO2001055363A1 (en) * | 2000-01-27 | 2001-08-02 | Toyota Jidosha Kabushiki Kaisha | Process for producing lactic acid |
CN1109703C (en) * | 1998-04-28 | 2003-05-28 | 三井化学株式会社 | Process for preparing polyester |
JP2003176448A (en) * | 2001-10-02 | 2003-06-24 | Toyobo Co Ltd | Biodegradable heat seal lacquer composition and biodegradable composite |
EP1535943A4 (en) * | 2002-09-24 | 2006-05-17 | Asahi Kasei Chemicals Corp | Glycolic acid copolymer and method for production thereof |
WO2012070747A2 (en) * | 2010-11-26 | 2012-05-31 | Wy Soon Myung | Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer |
KR101290309B1 (en) * | 2011-04-01 | 2013-07-26 | 폴리에너지(주) | Manufacturing method of poly lactic acid copolymer and the production apparatus thereof |
-
1993
- 1993-06-30 JP JP16068693A patent/JP3267391B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08183840A (en) * | 1994-12-28 | 1996-07-16 | Shigematsu Boeki Kk | Polymerization method for producing high-molecular polyester |
CN1109703C (en) * | 1998-04-28 | 2003-05-28 | 三井化学株式会社 | Process for preparing polyester |
WO2001055363A1 (en) * | 2000-01-27 | 2001-08-02 | Toyota Jidosha Kabushiki Kaisha | Process for producing lactic acid |
JP2003176448A (en) * | 2001-10-02 | 2003-06-24 | Toyobo Co Ltd | Biodegradable heat seal lacquer composition and biodegradable composite |
EP1535943A4 (en) * | 2002-09-24 | 2006-05-17 | Asahi Kasei Chemicals Corp | Glycolic acid copolymer and method for production thereof |
US7202326B2 (en) | 2002-09-24 | 2007-04-10 | Asahi Kasei Chemicals Corporation | Glycolic acid copolymer and method for production thereof |
WO2012070747A2 (en) * | 2010-11-26 | 2012-05-31 | Wy Soon Myung | Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer |
WO2012070747A3 (en) * | 2010-11-26 | 2012-07-19 | Wy Soon Myung | Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer |
KR101290309B1 (en) * | 2011-04-01 | 2013-07-26 | 폴리에너지(주) | Manufacturing method of poly lactic acid copolymer and the production apparatus thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3267391B2 (en) | 2002-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5310865A (en) | Polyhydroxycarboxylic acid and preparation process thereof | |
US5428126A (en) | Aliphatic polyester and preparation process thereof | |
KR0166620B1 (en) | Degradable copolymer and preparation process thereof | |
TW200307704A (en) | Method of preparing polyestercarbonates | |
US5679767A (en) | Purification process of aliphatic polyester | |
JPS6128521A (en) | Novel polymer and its production | |
JP3115956B2 (en) | Polyhydroxycarboxylic acid and method for producing the same | |
EP2137229B1 (en) | Method for producing lactic acid polymers of high crystallinity and molecular weight | |
JPH0718063A (en) | Degradable polymer | |
JP3267392B2 (en) | Degradable polymer | |
JPH09124778A (en) | Production of polylactic acid | |
US6060622A (en) | Methods of reproducing lactic acid components by using lactic acid based by-products | |
JP3517857B2 (en) | Polylactic acid production method | |
JP3319884B2 (en) | Purification method of aliphatic polyester | |
KR0134938B1 (en) | Biodegradable polymeric film and process for the preparation thereof | |
JP3517856B2 (en) | Polylactic acid production method | |
JP3288362B2 (en) | Polyhydroxycarboxylic acid and method for producing the same | |
JP3517858B2 (en) | Polylactic acid production method | |
JPH07126356A (en) | Decomposable polymer | |
JPH0616790A (en) | Aliphatic polyester and its production | |
US11174344B2 (en) | Process for the production of a solid-state polymerized poly (tetramethylene-2, 5-furan dicarboxylate) polymer and polymer thus produced | |
JPH10168175A (en) | Purification of aliphatic polyester | |
JPH08269175A (en) | Production of polyactic acid | |
JPH07228675A (en) | Aliphatic polyester and its production | |
JP2850776B2 (en) | Polylactic acid production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20100111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120111 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130111 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20140111 |
|
EXPY | Cancellation because of completion of term |