JPH07173587A - Production of zirconium alloy welded member - Google Patents
Production of zirconium alloy welded memberInfo
- Publication number
- JPH07173587A JPH07173587A JP32037693A JP32037693A JPH07173587A JP H07173587 A JPH07173587 A JP H07173587A JP 32037693 A JP32037693 A JP 32037693A JP 32037693 A JP32037693 A JP 32037693A JP H07173587 A JPH07173587 A JP H07173587A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion resistance
- beta
- phase
- zirconium alloy
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Arc Welding In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は溶接部の耐食性が劣化し
ないジルコニウム合金溶接部材の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a zirconium alloy welded member in which the corrosion resistance of the welded portion does not deteriorate.
【0002】[0002]
【従来の技術】原子炉(軽水炉)に使用される燃焼チャ
ンネルや燃料被覆管等の炉心部材は、中性子吸収断面積
が小さく、高温・高圧下での純水あるいは水蒸気に対す
る耐食性が良好で、かつ適切な強度および延性を持つジ
ルコニウム合金により形成されている。従来、かかるジ
ルコニウム合金として、ジルコニウムに若干の元素(F
e、Cr、Ni)を添加して耐食性を改善したジルカロ
イと呼ばれるα型ジルコニウム合金(例えば、ジルカロ
イ−2、ジルカロイ−4)が使用されてきた。2. Description of the Related Art Core members such as combustion channels and fuel cladding used in nuclear reactors (light water reactors) have a small neutron absorption cross section, good corrosion resistance to pure water or water vapor under high temperature and high pressure, and It is made of a zirconium alloy with suitable strength and ductility. Conventionally, zirconium contains some elements (F
[alpha] -type zirconium alloys called Zircaloy (for example, Zircaloy-2 and Zircaloy-4) having improved corrosion resistance by adding e, Cr, and Ni) have been used.
【0003】近年、軽水炉による原子力発電コストの低
減のため、高燃焼化が計画されており、かかる条件の下
ではα型ジルコニウム合金では機械的強度が不十分にな
り、クリープ現象などにより変形し、原子炉の運転に支
障が来すおそれがあった。そこで、炉心部材を(α+
β)型ジルコニウム合金で製作することが試みられてい
る。(α+β)型ジルコニウム合金は優れた耐食性を有
し、中性子吸収断面積が小さく、加工性も優れており、
しかもα型ジルコニウム合金より機械的強度が高いから
である。このような(α+β)型ジルコニウム合金とし
ては、Zrにβ安定化元素であるNbを2.6wt%含有
させたZr−2.5%Nb合金が代表的である。In recent years, in order to reduce the nuclear power generation cost by the light water reactor, high combustion is planned, and under such conditions, the α type zirconium alloy has insufficient mechanical strength and is deformed by creep phenomenon or the like. There was a risk that the operation of the reactor would be hindered. Therefore, the core member is (α +
Attempts have been made to fabricate β) type zirconium alloys. The (α + β) type zirconium alloy has excellent corrosion resistance, a small neutron absorption cross section, and excellent workability.
Moreover, the mechanical strength is higher than that of the α-type zirconium alloy. A typical example of such an (α + β) -type zirconium alloy is a Zr-2.5% Nb alloy in which Zr contains 2.6% by weight of Nb which is a β-stabilizing element.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、(α+
β)型ジルコニウム合金に溶接加工を施すと、溶接部の
耐食性が劣化し、マトリックスに較べて酸化が速やかに
進行し、厚膜化した酸化膜が形成される。その結果、溶
接部の肉厚が減少し、強度の低下を招く。本発明はかか
る問題に鑑みなされたものであり、溶接部の耐食性が劣
化しない(α+β)型ジルコニウム合金溶接部材の製造
方法を提供することを目的とする。[Problems to be Solved by the Invention] However, (α +
When the β) type zirconium alloy is subjected to welding, the corrosion resistance of the welded portion deteriorates, the oxidation progresses more rapidly than the matrix, and a thick oxide film is formed. As a result, the wall thickness of the welded portion is reduced and the strength is reduced. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for manufacturing a (α + β) type zirconium alloy welded member in which the corrosion resistance of the welded portion does not deteriorate.
【0005】[0005]
【課題を解決するための手段】本発明のジルコニウム合
金溶接部材の製造方法は、(α+β)型ジルコニウム合
金に対して溶接加工を行った後、加工率が5〜30%の
冷間加工を行い、次いで520〜600℃の熱処理を行
う。尚、本発明の製造対象となる(α+β)型ジルコニ
ウム合金としては、既述のZr−2.5%Nb合金に限
らず、常温での組織が(α+β)相である、Nb含有量
が1〜20wt%のジルコニウム合金であればいずれのも
のでも適用可能である。According to the method for producing a zirconium alloy welded member of the present invention, after performing welding on an (α + β) type zirconium alloy, cold working is performed at a working rate of 5 to 30%. Then, heat treatment at 520 to 600 ° C. is performed. The (α + β) -type zirconium alloy to be manufactured according to the present invention is not limited to the Zr-2.5% Nb alloy described above, and the Nb content of which the structure at room temperature is the (α + β) phase is 1 Any zirconium alloy of up to 20 wt% can be applied.
【0006】[0006]
【作用】(α+β)型ジルコニウム合金の溶接部には、
溶接の加熱冷却に伴い、残留歪およびβ−Zr相が生成
し、これにより耐食性が劣化する。すなわち、(α+
β)型ジルコニウム合金に溶接加工を施すと、溶接部は
一度溶解した後に凝固したミクロ組織、換言すれば針状
組織になる。この針状組織の形態は、溶接後の冷却速度
により異なる。冷却速度が速い(約80℃/秒以上)場
合には、Nbを過飽和に固溶し、残留歪の非常に多いマ
ルテンサイト組織になる。一方、冷却速度が遅い場合に
は、マルテンサイト組織に比して残留歪が軽減されるも
のの、Nbを約0.5%固溶したα−Zr相と、Nbを
約20%固溶したβ−Zr相とが混ざり合った針状組織
となる。溶接加工後の冷却速度は一義的に定まらない
が、いずれの場合も残留歪の多い針状組織となり、β−
Zr相が生成する傾向がある。[Operation] At the welded part of the (α + β) type zirconium alloy,
Along with heating and cooling of welding, residual strain and β-Zr phase are generated, which deteriorates corrosion resistance. That is, (α +
When the β) type zirconium alloy is subjected to welding, the welded portion has a microstructure that is once melted and then solidified, in other words, a needle-shaped structure. The morphology of this acicular structure depends on the cooling rate after welding. When the cooling rate is fast (about 80 ° C./second or more), Nb is dissolved in a supersaturated solid solution, and the martensite structure has a very large residual strain. On the other hand, when the cooling rate is slow, the residual strain is reduced as compared with the martensite structure, but α-Zr phase in which Nb is dissolved in about 0.5% and β in which Nb is dissolved in about 20% are dissolved. -A needle-like structure is formed by mixing with the Zr phase. The cooling rate after welding is not uniquely determined, but in any case, a needle-like structure with a large residual strain is formed, and β-
The Zr phase tends to form.
【0007】本発明によると、溶接加工後に冷間加工を
施し、続いて相変態熱処理を施すので、残留歪を緩和
し、またβ−Zr相をα−Zr相およびβ−Nb相すな
わち耐食性の良好な相に変態させることができるので、
溶接部の耐食性を向上させることができる。この際、冷
間加工率が5%未満では加工歪が過少であるため、残留
歪の緩和が生じ難く、また相変態が不足し、耐食性の回
復が少ない。一方、溶接部に生じた針状組織は冷間加工
性が悪いため、30%を越えると加工中に割れが生じ易
く、加工が困難となる。また、熱処理温度が520℃未
満では相変態が不十分で、耐食性が不足する。一方、6
00℃を越えると、残留歪を緩和することができるが、
β−Zr相の生成が助長され、却って耐食性が低下す
る。尚、熱処理時間は、部材の大きさや冷間加工率の程
度により異なるが、通常、30分〜10時間程度とされ
る。According to the present invention, since cold working is performed after welding and then phase transformation heat treatment is performed, residual strain is relaxed, and β-Zr phase is transformed into α-Zr phase and β-Nb phase, that is, corrosion resistance. Since it can be transformed into a good phase,
The corrosion resistance of the welded portion can be improved. At this time, when the cold working ratio is less than 5%, the working strain is too small, the relaxation of residual strain is difficult to occur, the phase transformation is insufficient, and the recovery of corrosion resistance is small. On the other hand, since the needle-like structure generated in the welded portion has poor cold workability, if it exceeds 30%, cracks are likely to occur during processing, which makes processing difficult. If the heat treatment temperature is lower than 520 ° C, the phase transformation is insufficient and the corrosion resistance is insufficient. On the other hand, 6
If the temperature exceeds 00 ° C, the residual strain can be relaxed,
The formation of the β-Zr phase is promoted, and on the contrary, the corrosion resistance decreases. The heat treatment time varies depending on the size of the member and the degree of cold working, but is usually about 30 minutes to 10 hours.
【0008】[0008]
【実施例】(α+β)型Zr−2.5wt%Nb合金を溶
製し、得られたインゴットを鍛造、圧延して板厚2.5
mmの板材を製造し、これより150mm幅×200mm長の
板片を採取した。この板片を突き合わせた後、エレクト
ロンビーム溶接して、供試材を得た。EXAMPLE An (α + β) type Zr-2.5 wt% Nb alloy was melted, and the obtained ingot was forged and rolled to obtain a plate thickness of 2.5.
A plate material having a width of 150 mm and a length of 200 mm was sampled from the plate. After abutting these plate pieces, electron beam welding was performed to obtain a sample material.
【0009】この供試材に対して、表1及び表2の冷間
加工条件で最大加工率(板厚減少率)40%の冷間圧延
を行った後、同表に示す種々の温度で5h保持後、放冷
した。このような処理を行った供試材から試料を採取し
て、400℃、105kgf/cm 2 の水蒸気中で腐食試験を
行い、72hr保持後の酸化膜厚さ(μm)を測定し
た。耐食性は酸化膜厚さで評価することとし、酸化膜厚
さ3μm未満をレベル1、同値以上をレベル2とし、レ
ベル1では耐食性が良好であると判定した。それらの結
果を冷間加工時の欠陥の有無と共に表1及び表2に示
す。尚、試料数は2点であり、同表のデータは平均値で
ある。For this test material, the cold
Cold rolling with maximum working rate (sheet thickness reduction rate) of 40% under working conditions
Then, after holding for 5 hours at various temperatures shown in the same table, let it cool.
did. A sample was taken from the test material that had been treated in this way.
400 ℃, 105kgf / cm 2 Corrosion test in water vapor of
And measure the oxide film thickness (μm) after holding for 72 hours
It was Corrosion resistance is evaluated by oxide film thickness, and oxide film thickness
If the size is less than 3 μm, the level is 1;
With Bell 1, it was determined that the corrosion resistance was good. Those conclusions
The results are shown in Tables 1 and 2 together with the presence or absence of defects during cold working.
You The number of samples is two, and the data in the table are average values.
is there.
【0010】[0010]
【表1】 [Table 1]
【0011】[0011]
【表2】 [Table 2]
【0012】表1及び表2より、実施例にかかる試料で
は、冷間加工時に欠陥の発生もなく、耐食性も良好であ
ることが分かる。特に、冷間加工率が10%以上で、熱
処理温度が550〜600℃では酸化膜厚さが2μm未
満であり、耐食性が極めて良好である。また、同表よ
り、熱処理温度550℃のデータを抽出して、冷間加工
率と酸化膜厚さとの関係を調べた。その結果を図1に示
す。これより、本発明の冷間加工率の下限である5%、
好ましくは10%以上で耐食性が大幅に向上し、40%
まで変化しないことが分かる。もっとも、30%を越え
ると、加工性に問題がある。From Tables 1 and 2, it can be seen that the samples according to the Examples have no defects during cold working and have good corrosion resistance. In particular, when the cold working ratio is 10% or more and the heat treatment temperature is 550 to 600 ° C., the oxide film thickness is less than 2 μm, and the corrosion resistance is extremely good. Further, from the same table, data at a heat treatment temperature of 550 ° C. was extracted to investigate the relationship between the cold working rate and the oxide film thickness. The result is shown in FIG. From this, the lower limit of the cold working rate of the present invention is 5%,
Corrosion resistance is greatly improved by preferably 10% or more, 40%
You can see that it doesn't change. However, if it exceeds 30%, there is a problem in workability.
【0013】更にまた、同表より、冷間加工率が10%
のデータを抽出して、熱処理温度と酸化膜厚さとの関係
を調べた。その結果を図2に示す。これより、本発明範
囲である520℃好ましくは550℃以上、600℃以
下で優れた耐食性の改善作用が得られることが分かる。Furthermore, according to the table, the cold working rate is 10%.
Data was extracted and the relationship between the heat treatment temperature and the oxide film thickness was investigated. The result is shown in FIG. From this, it is understood that an excellent effect of improving corrosion resistance can be obtained at 520 ° C., preferably 550 ° C. or more and 600 ° C. or less, which is the range of the present invention.
【0014】[0014]
【発明の効果】以上説明した通り、本発明のジルコニウ
ム合金溶接部材の製造方法は、(α+β)型ジルコニウ
ム合金に対して溶接加工を行った後、5〜30%の加工
率で冷間加工を行い、次いで520〜600℃の熱処理
を行うので、溶接部の残留歪を緩和し、またβ−Zr相
をα−Zr相およびβ−Nb相に変態させることがで
き、これにより溶接部の耐食性を大幅に向上させること
ができる。As described above, according to the method for manufacturing a zirconium alloy welded member of the present invention, after welding the (α + β) type zirconium alloy, the cold working is performed at a working rate of 5 to 30%. Since it is performed and then heat treatment at 520 to 600 ° C. is performed, residual strain of the welded portion can be relaxed, and β-Zr phase can be transformed into α-Zr phase and β-Nb phase. Can be significantly improved.
【図1】(α+β)型ジルコニウム合金溶接部材の冷間
加工率と耐食性との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the cold workability and the corrosion resistance of (α + β) type zirconium alloy welded members.
【図2】(α+β)型ジルコニウム合金溶接部材の熱処
理温度と耐食性との関係を示すグラフである。FIG. 2 is a graph showing a relationship between heat treatment temperature and corrosion resistance of a (α + β) type zirconium alloy welded member.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安部 勝洋 兵庫県加古川市尾上町池田字池田開拓2222 −1 株式会社神戸製鋼所加古川研究地区 内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiro Abe 2222 -1 Kobe Steel Co., Ltd. Kakogawa Research Area
Claims (1)
溶接加工を行った後、加工率が5〜30%の冷間加工を
行い、次いで520〜600℃の熱処理を行うことを特
徴とするジルコニウム合金溶接部材の製造方法。1. Zirconium which is characterized by performing a welding process on an (α + β) type zirconium alloy, then performing a cold working at a working rate of 5 to 30%, and then performing a heat treatment at 520 to 600 ° C. A method for manufacturing an alloy welded member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32037693A JPH07173587A (en) | 1993-12-20 | 1993-12-20 | Production of zirconium alloy welded member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32037693A JPH07173587A (en) | 1993-12-20 | 1993-12-20 | Production of zirconium alloy welded member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07173587A true JPH07173587A (en) | 1995-07-11 |
Family
ID=18120787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32037693A Pending JPH07173587A (en) | 1993-12-20 | 1993-12-20 | Production of zirconium alloy welded member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07173587A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100597310B1 (en) * | 2004-11-26 | 2006-07-06 | 한전원자력연료 주식회사 | Manufacturing method of CANDU fuel appendages by using Zr-Be alloyed strap and Fusion Brazing Process by using Zr-Be alloyed strap |
CN102816981A (en) * | 2012-08-13 | 2012-12-12 | 燕山大学 | Preparation method for zirconium-niobium alloy having gradient microstructure |
US8795441B2 (en) * | 2006-04-26 | 2014-08-05 | Smith & Nephew, Inc. | Reworking of surface oxidized and nitrided components |
US9764061B2 (en) | 2004-09-16 | 2017-09-19 | Smith & Nephew, Inc. | Method of providing a zirconium surface and resulting product |
-
1993
- 1993-12-20 JP JP32037693A patent/JPH07173587A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9764061B2 (en) | 2004-09-16 | 2017-09-19 | Smith & Nephew, Inc. | Method of providing a zirconium surface and resulting product |
KR100597310B1 (en) * | 2004-11-26 | 2006-07-06 | 한전원자력연료 주식회사 | Manufacturing method of CANDU fuel appendages by using Zr-Be alloyed strap and Fusion Brazing Process by using Zr-Be alloyed strap |
US8795441B2 (en) * | 2006-04-26 | 2014-08-05 | Smith & Nephew, Inc. | Reworking of surface oxidized and nitrided components |
CN102816981A (en) * | 2012-08-13 | 2012-12-12 | 燕山大学 | Preparation method for zirconium-niobium alloy having gradient microstructure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100382997B1 (en) | Method of Manufacturing A Tube and A Sheet of Niobium-containing Zirconium Alloys for High Burn-up Nuclear Fuel | |
EP1111623B1 (en) | Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup | |
JP3512402B2 (en) | Method for producing niobium-containing zirconium alloy nuclear fuel cladding with excellent corrosion resistance | |
KR100441562B1 (en) | Nuclear fuel cladding tube of zirconium alloys having excellent corrosion resistance and mechanical properties and process for manufacturing thereof | |
US20100128834A1 (en) | Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion resistance | |
EP0198570B1 (en) | Process for producing a thin-walled tubing from a zirconium-niobium alloy | |
KR930009987B1 (en) | Method of manufacturing tubes of zirconium alloys with improved corrosion resistance for thermal nuclear reactors | |
US5844959A (en) | Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup | |
US5854818A (en) | Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup | |
US5835550A (en) | Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup | |
JPH0529080B2 (en) | ||
JPH01119650A (en) | Manufacture of channel box for nuclear reactor fuel assembly | |
JP4982654B2 (en) | Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance | |
JP5982474B2 (en) | Zirconium-based alloy manufacturing method | |
US10221475B2 (en) | Zirconium alloys with improved corrosion/creep resistance | |
US9725791B2 (en) | Zirconium alloys with improved corrosion/creep resistance due to final heat treatments | |
JPH07173587A (en) | Production of zirconium alloy welded member | |
JPS6358223B2 (en) | ||
EP0745258B1 (en) | A nuclear fuel element for a pressurized water reactor and a method for manufacturing the same | |
JPH0421746B2 (en) | ||
JPH0422982B2 (en) | ||
JPH08100231A (en) | Highly corrosion resistant zirconium alloy and its production | |
JPS61253352A (en) | Manufacture of zirconium alloy |