JPH07179920A - Production of molten steel - Google Patents
Production of molten steelInfo
- Publication number
- JPH07179920A JPH07179920A JP32908793A JP32908793A JPH07179920A JP H07179920 A JPH07179920 A JP H07179920A JP 32908793 A JP32908793 A JP 32908793A JP 32908793 A JP32908793 A JP 32908793A JP H07179920 A JPH07179920 A JP H07179920A
- Authority
- JP
- Japan
- Prior art keywords
- slag
- refining
- molten steel
- dephosphorization
- refining vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は転炉における溶鋼製造方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing molten steel in a converter.
【0002】[0002]
【従来の技術】製鋼トータルコストのミニマム化や低り
ん鋼化に関して、従来の溶銑脱りん方法として、(1)
トーピードカー内の溶銑に脱りん用フラックスをインジ
ェクションして予備脱りんを行う方法、(2)取鍋内の
溶銑に脱りん用フラックスをインジェクションもしくは
吹き付けを行い予備脱りんを行う方法、あるいは(3)
2基の転炉を用いて、一方で脱りんを行い、他方で脱炭
を行う方法(例えば、特開昭63−195210号公
報)が用いられている。2. Description of the Related Art As a conventional hot metal dephosphorization method for reducing the total cost of steel making to a minimum and reducing phosphorus, (1)
Preliminary dephosphorization by injecting dephosphorization flux into hot metal in a torpedo car, (2) Preliminary dephosphorization by injecting or spraying dephosphorization flux into hot metal in ladle, or (3)
A method of dephosphorizing on one side and decarburizing on the other side by using two converters (for example, JP-A-63-195210) is used.
【0003】しかしながら、上記(1)、(2)、
(3)のいずれの方法も脱りん工程から脱炭工程に移る
際、溶銑の移し替えを必要とし、温度低下を余儀なくさ
れ、エネルギーロスが大きいという欠点がある。この問
題点を解決するために、特開平2−181989号公報
において、従来の多工程にわたる精錬機能を転炉に集約
し、溶銑のもつエネルギーロスを大幅に低減すると共
に、転炉前後工程の固定費(設備費、労務費)の大幅な
軽減を可能とする方法が提案されている。However, the above (1), (2),
In any of the methods (3), when the dephosphorization step is transferred to the decarburization step, the hot metal needs to be transferred, the temperature must be lowered, and the energy loss is large. In order to solve this problem, in Japanese Patent Application Laid-Open No. 2-181989, the conventional refining function over multiple steps is integrated in a converter to significantly reduce the energy loss of the hot metal and to fix the steps before and after the converter. A method has been proposed that enables a significant reduction in costs (equipment costs, labor costs).
【0004】図2はこのフローを示しているが、第一工
程として溶銑を転炉に装入し、第二工程としてフラック
ス添加と酸素吹込みを行って脱珪、脱りん精錬を施し、
所定のりん含有量まで低減させ、第三工程として前記転
炉を傾動して第二工程で生成したスラグを排出し、その
後第四工程として同一転炉にてフラックス添加と酸素吹
錬により、所定のC含有量まで脱炭を行い、第五工程と
して第四工程で生成したスラグを該転炉内に残したまま
出鋼して、再び第一工程へ戻り、前記第五工程までを繰
り返し実施する。場合によっては、第四工程で生成した
スラグを第一工程に戻さず、第五工程において出鋼した
後、スラグを全量排出してもよい。FIG. 2 shows this flow. As a first step, hot metal is charged into a converter, and as a second step, flux addition and oxygen blowing are performed to perform desiliconization and dephosphorization refining,
The phosphorus content is reduced to a predetermined value, the converter is tilted as a third step to discharge the slag generated in the second step, and then a fourth step is performed in the same converter by adding flux and blowing oxygen to a predetermined value. Decarburization up to the C content, and as the fifth step, steel is tapped while leaving the slag generated in the fourth step in the converter, and the process returns to the first step again, and the fifth step is repeated. To do. Depending on the case, the slag generated in the fourth step may not be returned to the first step, but the entire amount of slag may be discharged after tapping in the fifth step.
【0005】[0005]
【発明が解決しようとする課題】上述の同一転炉を用い
て脱りん、脱炭工程を続けて行うプロセスを用いると、
脱りん工程から脱炭工程へ移る際のエネルギーロスを少
なくすることができ、また固定費(設備費、労務費)の
大幅な軽減を可能にすることができる。ところが、第三
工程でのスラグ排出量が少ないと、第二工程でスラグ中
に除去したりんが第四工程で再び溶鋼中に戻ってくる
(以下これを復りんと記述)ため、第四工程にて再び脱
りんする必要が生じ、生石灰等のフラックス量を増加さ
せねばならず、コスト増につながる。しかもこの第四工
程のりん濃度が高くなったスラグは第二工程に再び使用
されるため、第二工程での脱りん負荷が増加しコスト増
になる。このように第三工程でのスラグ排出量が少ない
と、脱りん負荷が増大しコスト増につながるという問題
が生ずる。When the process of continuously performing the dephosphorization and decarburization steps using the same converter described above is used,
It is possible to reduce energy loss when moving from the dephosphorization process to the decarburization process, and it is possible to significantly reduce fixed costs (equipment costs, labor costs). However, if the amount of slag discharged in the third step is small, the phosphorus removed in the slag in the second step returns to the molten steel again in the fourth step (hereinafter referred to as "reconstituted phosphorus"). It becomes necessary to dephosphorize again, and the amount of flux such as quick lime must be increased, leading to an increase in cost. Moreover, since the slag having a high phosphorus concentration in the fourth step is reused in the second step, the dephosphorization load in the second step increases and the cost increases. When the amount of slag discharged in the third step is small as described above, there arises a problem that the dephosphorization load increases and the cost increases.
【0006】本発明は上記溶鋼製造法の第二工程での操
業条件を適正化することにより、第三工程においてスラ
グ排出量を多くし、第四工程での復りん量を抑え、生石
灰原単位の低減を図る方法を提供することを目的とする
ものである。In the present invention, by optimizing the operating conditions in the second step of the above-mentioned molten steel manufacturing method, the amount of slag discharged in the third step is increased, the amount of reconstituted phosphorus in the fourth step is suppressed, and the quicklime basic unit is reduced. It is an object of the present invention to provide a method for reducing the above.
【0007】[0007]
【課題を解決するための手段】本発明は上述の課題を有
利に解決したものであり、その要旨とするところは、一
つの精錬容器にて脱りん処理および脱炭処理を行い溶銑
から溶鋼を製造する際に、脱りん処理後のスラグ中のC
aO/SiO2 が2.5以下、且つ酸化鉄とマンガン酸
化物濃度の和(T.Fe+MnO)が10%以上、且つ
MgO濃度が10%以下であり、且つ処理終点温度を1
320℃以上、1400℃以下とすることを特徴とする
溶鋼製造方法にある。The present invention advantageously solves the above-mentioned problems, and the gist thereof is to perform dephosphorization treatment and decarburization treatment in one refining vessel to remove molten steel from hot metal. During production, C in the slag after dephosphorization treatment
aO / SiO 2 is 2.5 or less, the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 10% or more, and the MgO concentration is 10% or less, and the treatment end point temperature is 1
A molten steel manufacturing method is characterized in that the temperature is 320 ° C. or higher and 1400 ° C. or lower.
【0008】[0008]
【作用】以下本発明を詳述する。本発明は溶銑予備処理
と脱炭とを集約して同一転炉によって操業される。即
ち、例えば図2に示すように、炉底に脱りん、脱炭用フ
ラックスを吹込むための1個ないし複数個の底吹き羽口
と、出鋼孔と対面炉腹にスラグフォーミング用ガス吹込
み羽口を備えた上底吹き転炉に溶銑を装入し、前述の底
吹き羽口より生石灰粉をベースとしたフラックスを窒素
等の不活性ガスを搬送ガスとして吹込み脱りん処理を行
う。The present invention will be described in detail below. The present invention integrates the hot metal pretreatment and decarburization and operates in the same converter. That is, for example, as shown in FIG. 2, one or a plurality of bottom blowing tuyere for blowing flux for dephosphorization and decarburization to the bottom of the furnace, and gas blowing blades for slag forming on the tapping hole and the facing furnace side. The hot metal is loaded into an upper-bottom blowing converter equipped with a port, and a flux based on quicklime powder is blown from the above-mentioned bottom-blowing tuyere using an inert gas such as nitrogen as a carrier gas for dephosphorization treatment.
【0009】この時、酸化鉄粉を生石灰粉に混合する
か、あるいは羽口を3重管構造とし、酸素ガスを同一羽
口を通して吹込むことにより、脱りん反応速度を高める
ことができる。もしくは、上吹きランスから酸素ガスを
吹付け、上方よりフラックスを、投入、吹込み、吹付け
等の方法で添加して、生成スラグの酸化鉄濃度をコント
ロールすることによっても、脱りんを促進することがで
きる。At this time, the dephosphorization reaction rate can be increased by mixing the iron oxide powder with the quicklime powder or by forming the tuyere with a triple tube structure and blowing oxygen gas through the same tuyere. Alternatively, dephosphorization can be promoted by spraying oxygen gas from the top-blown lance and adding flux from the top by methods such as charging, blowing, and spraying to control the iron oxide concentration of the produced slag. be able to.
【0010】所定のりん含有量まで低下した時点で炉を
反出鋼側(排滓側)に傾動しスラグのみを排出させる。
ところが、この時のスラグ排出量が少ないと、スラグ中
に除去したりんが次の脱炭処理時に復りんするため生石
灰を余計に添加する必要が生じコスト増につながる。排
滓率(排出スラグ量/生成スラグ量×100)と生石灰
原単位の関係を図1に示す。排滓率が60%未満では生
石灰原単位が急増することがわかる。従って排滓率は少
なくとも60%以上にする必要がある。When the phosphorus content is reduced to a predetermined level, the furnace is tilted to the side of the unextruded steel (slag side) to discharge only the slag.
However, if the amount of slag discharged at this time is small, the phosphorus removed in the slag is re-phosphorized during the next decarburization treatment, so that it is necessary to add extra quick lime, leading to an increase in cost. The relationship between the slag ratio (amount of discharged slag / amount of generated slag × 100) and the basic unit of quick lime is shown in FIG. It can be seen that when the slag removal rate is less than 60%, the quick lime basic unit rapidly increases. Therefore, the slag removal rate must be at least 60% or more.
【0011】スラグ排出量はスラグの流動性が低い程少
なくなる。また流動性はスラグのCaO/SiO2 、
(T.Fe+MnO)濃度、MgO濃度、および温度に
依存する。これは、CaO/SiO2 が高い場合、
(T.Fe+MnO)濃度が低い場合、MgO濃度が高
い場合にはスラグの融点が上昇し、温度が低い場合スラ
グ中に固相が析出するため、スラグの見掛けの粘度が上
昇するためである。そこでスラグ排出前のスラグ組成、
即ち脱りん処理終了時のCaO/SiO2 を2.5以
下、且つ酸化鉄とマンガン酸化物濃度の和(T.Fe+
MnO)を10%以上、且つMgO濃度を10%以下と
し、温度を1320℃以上とすることによりスラグの流
動性を高め、排滓率を60%以上にすることができる。
温度に関しては温度が高い程有利であるが、温度が高く
なると脱りん反応が阻害されるために1400℃以下に
保つ必要がある。The amount of slag discharged decreases as the fluidity of the slag decreases. In addition, the fluidity is slag CaO / SiO 2 ,
(T. Fe + MnO) concentration, MgO concentration, and temperature. This is because if CaO / SiO 2 is high,
This is because when the (T.Fe + MnO) concentration is low and when the MgO concentration is high, the melting point of the slag rises, and when the temperature is low, the solid phase precipitates in the slag and the apparent viscosity of the slag rises. So the slag composition before slag discharge,
That is, CaO / SiO 2 at the end of the dephosphorization treatment is 2.5 or less, and the sum of iron oxide and manganese oxide concentrations (T.Fe +
(MnO) is 10% or higher, the MgO concentration is 10% or lower, and the temperature is 1320 ° C. or higher, whereby the fluidity of the slag can be enhanced and the slag ratio can be 60% or higher.
With respect to the temperature, the higher the temperature, the more advantageous it is. However, since the phosphorus removal reaction is hindered when the temperature rises, it is necessary to keep it at 1400 ° C or lower.
【0012】排滓終了と共に直ちに炉を正立させ、副原
料(耐火物保護、復りん防止用生石灰、ドロマイト、鉄
鉱石、Mn鉱石等)を投入して通常の上底吹き脱炭精錬
を行う。吹止後、溶鋼は出鋼するが、スラグはそのまま
炉内に残し、次のチャージの脱りん用フラックスとして
活用する。Immediately after the slag is exhausted, the furnace is immediately erected and auxiliary materials (refractory protection, quick lime for preventing phosphorus reversion, dolomite, iron ore, Mn ore, etc.) are put in to carry out ordinary upper bottom blown decarburization refining . After blowing off, the molten steel is tapped, but the slag is left in the furnace as it is and used as the flux for dephosphorization for the next charge.
【0013】[0013]
【実施例】4.5%のC,0.1%のP,0.3%のS
iを含む1350℃の溶銑を前チャージの脱炭滓を残し
た300t転炉に装入し、底吹攪拌を行いながら、脱り
ん剤として生石灰と鉄鉱石を添加し、上吹き吹酸を行い
脱りん処理を行った後、スラグを排出し、その後脱炭処
理を行う試験を行った。脱りん処理終了時点のスラグの
CaO/SiO2 ,(T/Fe+MnO)濃度、MgO
濃度、および温度を表1に示す。EXAMPLE 4.5% C, 0.1% P, 0.3% S
1350 ° C hot metal containing i was charged into a 300t converter with a pre-charged decarburizing slag left, and while bottom blowing and stirring, quicklime and iron ore were added as a dephosphorizing agent and top blowing acid was carried out. After the dephosphorization treatment, the slag was discharged, and then the decarburization treatment was conducted. CaO / SiO 2 , (T / Fe + MnO) concentration of slag at the end of dephosphorization treatment, MgO
The concentration and temperature are shown in Table 1.
【0014】[0014]
【表1】 [Table 1]
【0015】試験No.1〜10は、CaO/SiO2
を2.5以下、且つ酸化鉄とマンガン酸化物濃度の和
(T.Fe+MnO)を10%以上、且つMgO濃度を
10%以下とし、温度を1320℃以上とした場合であ
る。比較のため、試験No.11〜12は、CaO/S
iO2 が2.5以下、且つ(T.Fe+MnO)が10
%以上、且つMgO濃度が10%以下であるが、温度が
1320℃未満の場合、試験No.13〜14は、Ca
O/SiO2 が2.5以下、且つ(T.Fe+MnO)
が10%以上、温度が1320℃以上であるが、MgO
濃度を10%超とした場合、試験No.15〜16は、
CaO/SiO2 が2.5以下、且つMgO濃度が10
%以下、温度が1320℃以上であるが、(T.Fe+
MnO)を10%未満とした場合、試験No.17〜1
8は、(T.Fe+MnO)が10%以上、且つMgO
濃度が10%以下、温度が1320℃以上であるが、C
aO/SiO2 を2.5超とした場合である。Test No. 1 to 10 are CaO / SiO 2
Is 2.5 or less, the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 10% or more, the MgO concentration is 10% or less, and the temperature is 1320 ° C. or more. For comparison, the test No. 11 to 12 are CaO / S
iO 2 is 2.5 or less, and (T.Fe + MnO) is 10
% Or more and the MgO concentration is 10% or less, but the temperature is less than 1320 ° C., the test No. 13-14 is Ca
O / SiO 2 is 2.5 or less, and (T.Fe + MnO)
Is 10% or higher and the temperature is 1320 ° C. or higher.
When the concentration is more than 10%, the test No. 15 to 16 are
CaO / SiO 2 is 2.5 or less and MgO concentration is 10
% Or less and the temperature is 1320 ° C. or higher, but (T.Fe +
MnO) is less than 10%, the test No. 17-1
No. 8 has (T.Fe + MnO) of 10% or more and MgO
Although the concentration is 10% or less and the temperature is 1320 ° C or more, C
This is the case where aO / SiO 2 exceeds 2.5.
【0016】表2に各試験における排滓率と生石灰原単
位を示す。CaO/SiO2 を2.5以下、且つ酸化鉄
とマンガン酸化物濃度の和(T.Fe+MnO)を10
%以上、且つMgO濃度を10%以下とし、温度を13
20℃以上とした場合には、比較例に比べ安定して排滓
率を60%以上とし、生石灰原単位が低減できているこ
とがわかる。Table 2 shows the slag ratio and quicklime basic unit in each test. CaO / SiO 2 is 2.5 or less, and the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 10
% Or more and the MgO concentration is 10% or less, and the temperature is 13%.
It can be seen that when the temperature is 20 ° C. or higher, the waste slag ratio is set to 60% or more more stably than in the comparative example, and the quicklime basic unit can be reduced.
【0017】[0017]
【表2】 [Table 2]
【0018】以上本発明を主として同一転炉で脱珪、脱
りん処理と脱炭処理を行い、脱炭処理後のスラグを脱
珪、脱りん処理に使用する溶鋼製造法を例にとり説明し
たが、本発明はこれに限定されるものではなく、脱炭処
理後のスラグを排出し脱珪、脱りん処理に使用しない溶
鋼製造法に適用した場合もむろん本発明の範囲を逸脱す
るものではない。The present invention has been described above mainly using the molten steel production method in which desiliconization, dephosphorization and decarburization are performed in the same converter, and the slag after decarburization is used for desiliconization and dephosphorization. However, the present invention is not limited to this, and naturally it does not depart from the scope of the present invention when applied to a molten steel production method in which slag after decarburization is discharged and is not used for desiliconization and dephosphorization. .
【0019】[0019]
【発明の効果】同一精錬容器にて脱珪、脱りん処理と脱
炭処理を行うプロセスにおいて、本発明を実施すること
により、脱りん処理後のスラグの排出量を高めることが
でき、生石灰原単位を低減することができる。EFFECTS OF THE INVENTION In the process of performing desiliconization, dephosphorization treatment and decarburization treatment in the same refining vessel, by carrying out the present invention, it is possible to increase the discharge amount of slag after dephosphorization treatment. The unit can be reduced.
【図1】排滓率(排出スラグ量/生成スラグ量×10
0)と生石灰原単位の関係を示す図である。[Fig. 1] Waste slag ratio (amount of discharged slag / amount of generated slag × 10
It is a figure which shows the relationship between 0) and quicklime basic unit.
【図2】同一転炉による精錬プロセスの模式的説明図で
ある。FIG. 2 is a schematic explanatory diagram of a refining process using the same converter.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 升光 法行 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 (72)発明者 小泉 文夫 北海道室蘭市仲町12番地 新日本製鐵株式 会社室蘭製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Noriyuki Mitsuko 12 Nakamachi, Muroran, Hokkaido Stock of Nippon Steel Corporation (72) Inventor Fumio Koizumi 12 Nakamachi, Muroran, Hokkaido Stock of Nippon Steel Muroran Works
Claims (2)
一工程として溶銑を精錬容器に装入し、第二工程として
脱りん精錬あるいは脱珪、脱りん精錬を施し所定のりん
含有量まで低減させ、第三工程として前記精錬容器を傾
動して第二工程で生成したスラグを排出し、その後第四
工程として同一精錬容器にて脱炭精錬を行う溶鋼製造法
にて、第二工程後のスラグ中のCaO/SiO2 が2.
5以下、且つ酸化鉄とマンガン酸化物濃度の和(T.F
e+MnO)が10%以上、且つMgO濃度が10%以
下であり、且つ処理終点温度を1320℃以上、140
0℃以下とすることを特徴とする溶鋼製造方法。1. When refining hot metal to produce molten steel, the hot metal is charged into a refining vessel as a first step, and dephosphorization refining or desiliconization and dephosphorization refining are performed as a second step to contain a predetermined phosphorus content. In the molten steel manufacturing method in which the amount is reduced to a third step, the refining vessel is tilted as the third step to discharge the slag generated in the second step, and then the fourth step is decarburization refining in the same refining vessel. CaO / SiO 2 in the slag after the process is 2.
5 or less and the sum of iron oxide and manganese oxide concentrations (TF
e + MnO) is 10% or higher, the MgO concentration is 10% or lower, and the treatment end point temperature is 1320 ° C. or higher, 140
A method for producing molten steel, characterized in that the temperature is 0 ° C. or lower.
一工程として溶銑を精錬容器に装入し、第二工程として
脱りん処理あるいは脱珪、脱りん精錬を施し所定のりん
含有量まで低減させ、第三工程として前記精錬容器を傾
動して第二工程で生成したスラグを排出し、その後第四
工程として同一精錬容器にて脱炭を行い、第五工程とし
て第四工程で生成したスラグを該精錬容器内に残したま
ま出鋼して、再び第一工程へ戻り、繰り返し上記工程を
行う溶鋼製造法の第二工程において、スラグ中のCaO
/SiO2 が2.5以下、且つ酸化鉄とマンガン酸化物
濃度の和(T.Fe+MnO)が10%以上、且つMg
O濃度が10%以下であり、且つ処理終点温度を132
0℃以上、1400℃以下とすることを特徴とする溶鋼
製造方法。2. When refining hot metal to produce molten steel, the hot metal is charged into a refining vessel as the first step, and the second step is dephosphorization treatment or desiliconization and dephosphorization refining to contain a predetermined phosphorus content. The amount is reduced to the third step, the refining vessel is tilted as the third step to discharge the slag generated in the second step, and then the fourth step is the decarburization in the same refining vessel, and the fifth step is the fourth step. In the second step of the molten steel manufacturing method, in which the produced slag is tapped while remaining in the refining vessel, the process is returned to the first step, and the above steps are repeatedly performed, CaO in the slag is removed.
/ SiO 2 is 2.5 or less, the sum of iron oxide and manganese oxide concentrations (T.Fe + MnO) is 10% or more, and Mg
O concentration is 10% or less, and the treatment end point temperature is 132
The method for producing molten steel is characterized in that the temperature is 0 ° C. or higher and 1400 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32908793A JP2896839B2 (en) | 1993-12-24 | 1993-12-24 | Molten steel manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32908793A JP2896839B2 (en) | 1993-12-24 | 1993-12-24 | Molten steel manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07179920A true JPH07179920A (en) | 1995-07-18 |
JP2896839B2 JP2896839B2 (en) | 1999-05-31 |
Family
ID=18217475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32908793A Expired - Fee Related JP2896839B2 (en) | 1993-12-24 | 1993-12-24 | Molten steel manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2896839B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077483A (en) * | 2005-09-16 | 2007-03-29 | Nippon Steel Corp | Steelmaking method in converter |
JP2007077481A (en) * | 2005-09-16 | 2007-03-29 | Nippon Steel Corp | Method for removing slag in converter |
JP2007262576A (en) * | 2006-02-28 | 2007-10-11 | Jfe Steel Kk | Method for smelting molten iron |
JP2007308773A (en) * | 2006-05-19 | 2007-11-29 | Nippon Steel Corp | Converter process |
JP2008063645A (en) * | 2006-09-11 | 2008-03-21 | Jfe Steel Kk | Steelmaking method |
CN117721268A (en) * | 2024-02-18 | 2024-03-19 | 上海大学 | Dephosphorization slag with excellent phosphorus-rich capability and fluidity for converter steelmaking by double slag method at different temperatures and dephosphorization method |
-
1993
- 1993-12-24 JP JP32908793A patent/JP2896839B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007077483A (en) * | 2005-09-16 | 2007-03-29 | Nippon Steel Corp | Steelmaking method in converter |
JP2007077481A (en) * | 2005-09-16 | 2007-03-29 | Nippon Steel Corp | Method for removing slag in converter |
JP4533293B2 (en) * | 2005-09-16 | 2010-09-01 | 新日本製鐵株式会社 | Converter discharge method |
JP2007262576A (en) * | 2006-02-28 | 2007-10-11 | Jfe Steel Kk | Method for smelting molten iron |
JP2007308773A (en) * | 2006-05-19 | 2007-11-29 | Nippon Steel Corp | Converter process |
JP2008063645A (en) * | 2006-09-11 | 2008-03-21 | Jfe Steel Kk | Steelmaking method |
CN117721268A (en) * | 2024-02-18 | 2024-03-19 | 上海大学 | Dephosphorization slag with excellent phosphorus-rich capability and fluidity for converter steelmaking by double slag method at different temperatures and dephosphorization method |
CN117721268B (en) * | 2024-02-18 | 2024-05-10 | 上海大学 | Dephosphorization slag with excellent phosphorus-rich capability and fluidity for converter steelmaking by double slag method at different temperatures and dephosphorization method |
Also Published As
Publication number | Publication date |
---|---|
JP2896839B2 (en) | 1999-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3239197B2 (en) | Converter steelmaking method | |
JP6665884B2 (en) | Converter steelmaking method | |
JP4977870B2 (en) | Steel making method | |
JP2896839B2 (en) | Molten steel manufacturing method | |
JP2958848B2 (en) | Hot metal dephosphorization method | |
JP2003239009A (en) | Dephosphorization refining method of hot metal | |
JP2000109924A (en) | Method for melting extra-low sulfur steel | |
JP3486889B2 (en) | Steelmaking method using two or more converters | |
US4439234A (en) | Method of increasing the cold material charging capacity in the top-blowing production of steel | |
JPH08311519A (en) | Steelmaking method using converter | |
JP2607329B2 (en) | Hot metal dephosphorization method | |
JPH11323420A (en) | Pretreating method for molten iron | |
JP3194212B2 (en) | Converter steelmaking method | |
JPH11193414A (en) | Steel manufacturing method using a plurality of converters | |
JP2607328B2 (en) | Hot metal dephosphorization method | |
JP2000087125A (en) | Method for dephosphorize-refining molten iron | |
JP2000328123A (en) | Converter refining method for adjusting silicon charging quality | |
JP3486890B2 (en) | Converter steelmaking method using dephosphorized hot metal | |
JPH0718318A (en) | Converter refining method | |
JP3684953B2 (en) | Pre-silicidation / phosphorization method of hot metal | |
JP3742543B2 (en) | Hot metal desulfurization method | |
JPS61104014A (en) | Method for reducing mn ore with high efficiency in oxidation refining furnace | |
JPH10102120A (en) | Steelmaking method | |
JPH11100608A (en) | Method for desiliconizing and desulfurizing molten iron | |
JPH07109507A (en) | Method for pretreating molten iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19990112 |
|
LAPS | Cancellation because of no payment of annual fees |