JPH07174510A - Device and method for measuring length - Google Patents
Device and method for measuring lengthInfo
- Publication number
- JPH07174510A JPH07174510A JP5343359A JP34335993A JPH07174510A JP H07174510 A JPH07174510 A JP H07174510A JP 5343359 A JP5343359 A JP 5343359A JP 34335993 A JP34335993 A JP 34335993A JP H07174510 A JPH07174510 A JP H07174510A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measuring
- reflected
- length
- vacuum container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高精度な測長計測が要
求される機器、例えば非球面加工機等に用いて好適な測
長装置および測長方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a length measuring apparatus and a length measuring method suitable for use in equipment requiring high-accuracy length measurement, such as an aspherical surface processing machine.
【0002】[0002]
【従来の技術】超精密加工技術の進展に伴い、光波干渉
法を用いた高精度な変位測定が多く利用されている。光
波干渉法による変位測定では非常に高分解能な測定が可
能である反面、環境変化に伴う測長光路部の屈折率の変
動により、測長値に誤差が生じる。そこで、一般的には
環境値(気温,気圧,温度等)を測定し、Edlenに
よって導かれた式によって空気の屈折率を補正してい
る。2. Description of the Related Art With the progress of ultra-precision machining technology, highly accurate displacement measurement using light wave interferometry is widely used. The displacement measurement by the light wave interferometry enables very high resolution measurement, but the measurement value has an error due to the change of the refractive index of the measurement optical path portion due to the environmental change. Therefore, in general, environmental values (temperature, atmospheric pressure, temperature, etc.) are measured, and the refractive index of air is corrected by the formula derived by Edlen.
【0003】また、測長環境の屈折率の変動の影響を減
らす方法として、測長光路を減圧したり、屈折率の低い
気体を光路中に充填したり、さらには測長光路を真空化
する等の対策を施している。Further, as a method for reducing the influence of the fluctuation of the refractive index in the measuring environment, the measuring optical path is decompressed, a gas having a low refractive index is filled in the optical path, and the measuring optical path is evacuated. Etc. are taken.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述の
環境値を測定し空気の屈折率の補正を行なう方法は、環
境値の空気揺らぎに起因する変動周波数が高く、屈折率
の変動を完全に補正することは難しいという問題があっ
た。更に、環境値は測長部の近傍を測定する必要がある
が、現実的には機構的な制約のため、正確に光路部の環
境値を測定することは難しい。一方、測長光路を真空も
しくは減圧して屈折率の低い気体を充填する方式では、
真空容器を被測定物に接触させる必要があるため、例え
ばXYステージ等の2次元的に移動する物体の位置を測
長する場合では利用できないという問題があった。However, in the method of measuring the environmental value and correcting the refractive index of air, the fluctuation frequency due to the air fluctuation of the environmental value is high, and the fluctuation of the refractive index is completely corrected. There was a problem that it was difficult to do. Further, the environmental value needs to be measured in the vicinity of the length measuring unit, but in reality, it is difficult to accurately measure the environmental value of the optical path portion due to mechanical restrictions. On the other hand, in the method of filling the gas with low refractive index by vacuuming or decompressing the measuring optical path,
Since it is necessary to bring the vacuum container into contact with the object to be measured, there is a problem that it cannot be used when measuring the position of a two-dimensionally moving object such as an XY stage.
【0005】したがって、本発明は上記したような従来
の問題点に鑑みてなされたもので、その目的とするとこ
ろは、従来の測長装置を使用して空気揺らぎ等に起因す
る屈折率変動の影響を補正し、高精度な変位測定を行い
得るようにした測長装置および測長方法を提供すること
にある。Therefore, the present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to use a conventional length-measuring device to prevent a change in refractive index due to air fluctuations or the like. An object of the present invention is to provide a length measuring device and a length measuring method capable of correcting an influence and performing highly accurate displacement measurement.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するた
め、第1の発明に係る測長方法は、光源から出射した光
を測定光と参照光とに分割し、前記測定光の光軸方向に
移動可能な測定対象物に設置された移動鏡で反射した測
定光と参照面で反射した参照光とを干渉させ、この干渉
光を検出して基準点と前記移動鏡との距離を測長する測
長方法において、両端に前記測定光が通過する透明材料
からなる窓を有し、内部が測定光の光路の一部を形成す
る伸縮自在な真空容器を設け、この真空容器中の光路の
長さまたは該真空容器と前記移動鏡との間の長さを計測
し、この計測値で前記測長結果を補正することで、測長
環境の屈折率変動によって生じる前記測長結果の誤差を
取り除くものである。In order to achieve the above object, a length measuring method according to a first aspect of the present invention divides light emitted from a light source into measuring light and reference light, and measures the optical axis direction of the measuring light. The measurement light reflected by the movable mirror installed on the movable measurement object and the reference light reflected by the reference surface are caused to interfere with each other, and the interference light is detected to measure the distance between the reference point and the movable mirror. In the length measuring method, which has a window made of a transparent material through which the measurement light passes at both ends, the inside is provided with an expandable and contractible vacuum container forming a part of the optical path of the measurement light, and the optical path of the vacuum container By measuring the length or the length between the vacuum container and the movable mirror and correcting the measurement result with this measurement value, the error in the measurement result caused by the fluctuation of the refractive index of the measurement environment is reduced. To remove.
【0007】第2の発明に係る測長装置は、光源から出
射した光を測定光と参照光とに分割し、前記測定光の光
軸方向に移動可能な測定対象物に設置された移動鏡で反
射した測定光と参照面で反射した参照光とを干渉させ、
この干渉光を検出して基準点と前記移動鏡との距離を測
長する測長装置において、両端に前記測定光が通過する
透明材料からなる窓を有し、内部が測定光の光路の一部
を形成する伸縮自在な真空容器と、この真空容器中の光
路の長さまたは真空容器と前記移動鏡との間の長さを計
測する計測手段と、この計測手段による計測値で前記計
測結果を補正して測長環境の屈折率変動によって生じる
前記測長結果の誤差を取り除く演算装置とを備えたもの
である。A length measuring apparatus according to a second aspect of the present invention splits light emitted from a light source into measuring light and reference light, and a movable mirror installed on a measuring object movable in the optical axis direction of the measuring light. Interference between the measurement light reflected by and the reference light reflected by the reference surface,
In a length measuring device that measures the distance between a reference point and the movable mirror by detecting the interference light, a window made of a transparent material through which the measurement light passes is provided at both ends, and the inside is one of the optical paths of the measurement light. A stretchable vacuum container forming a part, a measuring means for measuring the length of the optical path in the vacuum container or the length between the vacuum container and the movable mirror, and the measurement result by the measurement value by this measuring means. And an arithmetic unit for removing the error in the length measurement result caused by the fluctuation of the refractive index of the length measurement environment.
【0008】第3の発明に係る測長装置は、光源から出
射した光を測定光と参照光とに分割し、前記測定光の光
軸方向に移動可能な測定対象物に設置された移動鏡で反
射した測定光と参照面で反射した参照光とを干渉させ、
この干渉光を検出して基準点と前記移動鏡との距離を測
長する測長装置において、両端に前記測定光が通過する
透明材料からなる窓を有し、内部が前記測定光の光路の
一部を形成する伸縮自在な真空容器と、この真空容器中
の光路の長さまたは真空容器と前記移動鏡との間の長さ
を計測する計測手段と、この計測手段による計測値で前
記測長結果を補正して測長環境の屈折率変動によって生
じる前記測長結果の誤差を取り除く演算手段と、この演
算手段での演算結果に基づいて前記真空容器を測長光の
光軸方向に伸縮させる制御装置を備えたものである。A length measuring apparatus according to a third aspect of the invention splits light emitted from a light source into measuring light and reference light, and is a movable mirror installed on a measuring object movable in the optical axis direction of the measuring light. Interference between the measurement light reflected by and the reference light reflected by the reference surface,
In a length measuring device that measures the distance between a reference point and the movable mirror by detecting this interference light, a window made of a transparent material through which the measurement light passes is provided at both ends, and the inside is the optical path of the measurement light. An expandable and contractible vacuum container forming a part, a measuring means for measuring the length of the optical path in the vacuum container or the length between the vacuum container and the movable mirror, and the measuring value by the measuring means. Computation means for correcting the length result to remove the error in the measurement result caused by fluctuation of the refractive index of the measurement environment, and expanding and contracting the vacuum container in the optical axis direction of the measurement light based on the calculation result by the calculation means. It is provided with a control device.
【0009】第4の発明に係る測長装置は、上記第2ま
たは第3の発明において、前記制御装置は、前記真空容
器を伸縮させるものである。A length measuring apparatus according to a fourth aspect of the present invention is the measuring apparatus according to the second or third aspect of the invention, wherein the control unit expands and contracts the vacuum container.
【0010】第5の発明に係る測長装置は、光源から出
射した光を測定光と参照光とに分割し、前記測定光の光
軸方向に移動可能な測定対象物に設置された移動鏡で反
射した測定光と参照面で反射した参照光とを干渉させ、
この干渉光を検出して基準点と前記移動鏡との距離を測
長する測長装置において、透明材料からなり前記測定光
が通過する第1,第2の窓を有し、内部が前記測定光の
光路の一部を形成する伸縮自在な真空容器と、前記第
1,第2の測定用光束を前記真空容器に導く干渉計と、
計測手段と、演算手段とを備え、前記第2の窓は、前記
真空容器の移動鏡に設けられると共に、この移動鏡と対
向する面の前記第1の測定用光束に対応する部分に反射
面が形成され、前記第2の測定用光束に対応する部分が
透光部とされ、前記干渉計は、前記各第1,第2の測定
用光束を透過光束と反射光束にそれぞれ分割し、各反射
光束を前記真空容器に導く偏光ビームスプリッタと、こ
の反射光束の偏光面を回転させる1/4波長板と、前記
偏光ビームスプリッタを透過した各透過光束を反射し再
び前記偏光ビームスプリッタに戻す第1の反射鏡と、前
記偏光ビームスプリッタおよび1/4波長板をそれぞれ
透過しその一方が前記真空容器の第2の窓の反射面に当
たって反射することにより元きた光路を戻って前記偏光
ビームスプリッタを透過し、他方が前記真空容器の第2
の窓の透光部を透過して移動鏡で反射し元きた光路を戻
り前記偏光ビームスプリッタを透過する2つの反射光束
をそれぞれ反射し前記偏光ビームスプリッタに戻す第2
の反射鏡とを含み、この第2の反射鏡に当たって反射し
た2つの反射光束のうちその一方は再度偏光ビームスプ
リッタおよび1/4波長板を経て真空容器内に入射し再
度第2の窓の反射面で反射して元きた光路を通り偏光ビ
ームスプリッタに当たって反射することにより、偏光ビ
ームススプリッタをはじめに透過した2つの透過光束の
うちの一方(第1の測定用光束の透過光束)に重ね合わ
されて干渉縞を形成し、他方は再度偏光ビームスプリッ
タ、1/4波長板および真空容器を透過して再度移動鏡
で反射して元きた光路を通り前記偏光ビームスプリッタ
に当たって反射することにより、偏光ビームスプリッタ
をはじめに透過した前記2つの透過光束のうちの他方
(第2の測定用光束の透過光束)に重ね合わされて干渉
縞を形成し、前記計測手段は、前記第1,第2の測定用
光束の干渉縞によって前記干渉計と移動鏡間の変位およ
び前記干渉計と第2の窓間の変位を計測し、前記演算装
置は、前記計測手段による計測値のうちいずれか一方の
の変位で前記測長結果を補正して測長環境の屈折率変動
によって生じる前記測長結果の誤差を取り除くものであ
る。A length measuring apparatus according to a fifth aspect of the present invention splits light emitted from a light source into measuring light and reference light, and a movable mirror installed on a measuring object movable in the optical axis direction of the measuring light. Interference between the measurement light reflected by and the reference light reflected by the reference surface,
A length measuring device for measuring the distance between a reference point and the movable mirror by detecting the interference light, which has first and second windows made of a transparent material through which the measuring light passes, and the inside of which is used for the measurement. An expandable and contractible vacuum container that forms part of the optical path of light; an interferometer that guides the first and second measurement light beams to the vacuum container;
The second window is provided on a moving mirror of the vacuum container, and a reflecting surface is provided on a portion of the surface facing the moving mirror, the portion corresponding to the first measuring light flux. Is formed, and a portion corresponding to the second measurement light beam is a light transmitting portion, and the interferometer divides each of the first and second measurement light beams into a transmission light beam and a reflection light beam. A polarization beam splitter that guides the reflected light flux to the vacuum container, a quarter-wave plate that rotates the polarization plane of the reflected light flux, and each transmitted light flux that has passed through the polarization beam splitter is reflected back to the polarization beam splitter. No. 1 reflecting mirror, the polarizing beam splitter, and the quarter-wave plate, respectively, and one of them impinges on the reflecting surface of the second window of the vacuum container to be reflected and returns to the original optical path to return to the polarizing beam splitter. Transmitted, the second the other of said vacuum vessel
A second reflected light beam that returns through the light transmitting portion of the window and returns from the original light path that is reflected by the movable mirror and that passes through the polarization beam splitter and returns to the polarization beam splitter.
And one of the two reflected light beams reflected by the second reflecting mirror, which is reflected by the second reflecting mirror, again enters the vacuum chamber through the polarizing beam splitter and the quarter wavelength plate and is reflected again by the second window. By passing through the original optical path reflected by the surface and hitting the polarizing beam splitter and reflecting it, one of the two transmitted light beams that first transmitted through the polarizing beam splitter (superposed light beam of the first measuring light beam) is superimposed and interferes. The fringes are formed, and the other passes through the polarization beam splitter, the quarter-wave plate and the vacuum container again and is reflected by the moving mirror again, passes through the original optical path, and strikes the polarization beam splitter to be reflected, thereby reflecting the polarization beam splitter. The interference fringes are formed by being superposed on the other of the two transmitted light fluxes that have been transmitted first (transmission light flux of the second measurement light flux). The means measures the displacement between the interferometer and the movable mirror and the displacement between the interferometer and the second window by the interference fringes of the first and second measuring light beams, and the arithmetic unit is the measuring means. The measurement result is corrected by the displacement of any one of the measurement values according to 1. to eliminate the error in the measurement result caused by the fluctuation of the refractive index of the measurement environment.
【0011】[0011]
【作用】本発明においては、真空容器と移動鏡との間の
長さもしくは真空容器中の光路の長さを計測し、その測
定値で測長値を補正し測長環境の屈折率変動による誤差
を取り除くので、高精度な変位測定が可能である。According to the present invention, the length between the vacuum container and the movable mirror or the length of the optical path in the vacuum container is measured, and the measured value is corrected by the measured value to adjust the refractive index variation in the measuring environment. Since the error is removed, highly accurate displacement measurement is possible.
【0012】[0012]
【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。先ず、本発明の基本原理を図1に基づ
いて説明する。図1(a),(b)は、マイケルソン型
レーザ干渉式測長装置の概略構成図であり、XYステー
ジ(測定対象物)5に取り付けられた移動鏡4の変位を
測定するものである。1はレーザ光源、2は偏光ビーム
スプリッタ、3は真空容器、6は検出器である。偏光ビ
ームスプリッタ2の互いに対向する2つの面のうち移動
鏡4と対向する一方の面には1/4波長板7が固定さ
れ、他方の面には1/4波長板8と固定鏡9が固定され
ている。真空容器3は、固定筒3Aと、固定筒3Aの軸
線方向に移動自在な可動筒3Bとを有して内部の気圧が
1KPa以下に減圧されており、固定筒3Aと可動筒3
Bの閉塞端面にはそれぞれ透明材料からなる第1,第2
の窓10,11がそれぞれ配設されている。移動鏡4
は、真空容器3の軸線延長上に第2の窓11と正対する
ようXYステージ5に配置されている。検出器6は、偏
光ビームスプリッタ2を挟んでレーザ光源1の反対側に
配置されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings. First, the basic principle of the present invention will be described with reference to FIG. 1A and 1B are schematic configuration diagrams of a Michelson-type laser interferometric length measuring device, which measures the displacement of a movable mirror 4 attached to an XY stage (measurement target) 5. . 1 is a laser light source, 2 is a polarization beam splitter, 3 is a vacuum container, and 6 is a detector. Of the two surfaces of the polarization beam splitter 2 facing each other, the quarter-wave plate 7 is fixed to one surface facing the movable mirror 4, and the quarter-wave plate 8 and the fixed mirror 9 are fixed to the other surface. It is fixed. The vacuum container 3 has a fixed cylinder 3A and a movable cylinder 3B movable in the axial direction of the fixed cylinder 3A, and the internal air pressure is reduced to 1 KPa or less.
The closed end surface of B has a first and second transparent material, respectively.
Windows 10 and 11 are respectively provided. Moving mirror 4
Are arranged on the XY stage 5 so as to face the second window 11 on the extension of the axis of the vacuum container 3. The detector 6 is arranged on the opposite side of the laser light source 1 with the polarization beam splitter 2 interposed therebetween.
【0013】このような構成において、レーザ光源1か
ら出射したレーザ光12は偏光ビームスプリッタ2に入
射すると、その誘電体多層膜2Aによって偏光方向が互
いに直交する2つの測定用光束(透過直線偏光光と反射
直線偏光光)12a,12bに分割され、一方の測定用
光束12aが偏光ビームスプリッタ2を直進して検出器
6に向かい、もう一方の測定用光束12bが反射して1
/4波長板7および真空容器3を透過して移動鏡4で反
射して同じ光路を戻り、1/4波長板7を透過すること
により偏光面が入射光に対して90°回転した状態にな
るので、偏光ビームスプリッタ2を透過する。そして、
この測定用光束12bは、1/4波長板8を透過して固
定鏡9により反射し、再度1/4波長板8を透過するこ
とにより偏光方向が90°回転するため、偏光ビームス
プリッタ2で反射し、検出器6に入射する。このため、
2つの測定用光束12aと12bは互いに重ね合わされ
て干渉し、検出器6の撮像素子上に結像して干渉縞を形
成する。そして、この干渉縞の明暗の変化を計測するこ
とにより第1の窓10から移動鏡4までの距離(Lv+
La)を測定することができる。In such a configuration, when the laser light 12 emitted from the laser light source 1 is incident on the polarization beam splitter 2, the dielectric multi-layer film 2A causes two measuring light beams (transmission linearly polarized light) whose polarization directions are orthogonal to each other. And reflected linearly polarized light) 12a and 12b, one measuring light beam 12a goes straight through the polarization beam splitter 2 toward the detector 6, and the other measuring light beam 12b is reflected to 1
/ 4 wavelength plate 7 and vacuum container 3 are reflected, and are reflected by the moving mirror 4 to return to the same optical path, and by passing through the ¼ wavelength plate 7, the polarization plane is rotated by 90 ° with respect to the incident light. Therefore, the light passes through the polarization beam splitter 2. And
This measurement light beam 12b passes through the quarter-wave plate 8 and is reflected by the fixed mirror 9, and again passes through the quarter-wave plate 8 to rotate the polarization direction by 90 °. It is reflected and enters the detector 6. For this reason,
The two measuring light beams 12a and 12b are superposed on each other and interfere with each other, and form an image on the image sensor of the detector 6 to form interference fringes. Then, the distance (Lv +) from the first window 10 to the moving mirror 4 is measured by measuring the change in brightness of the interference fringes.
La) can be measured.
【0014】(a)図に示すように測長装置の干渉縞計
測装置をリセットしたときの真空容器3の長さをLv,
真空容器3の第2の窓11と移動鏡4との間隔をLaと
する。(b)図に示すようにXYステージ5の移動に伴
い真空容器3の長さがdv、第2の窓11と移動鏡4と
の間隔がda変化した場合を考える。このとき、測長光
路が全て真空として干渉縞を計測して得られる変位Xd
と、実際の移動鏡4の変位(dv+da)の差Dxは次
式によって計算することができる。 Dx={(Lv+dv)/λv+(La+da)/λa}・λv −(Lv+La+dv+da) =(La+da)・(na−1) ・・・・(1) 但し、Dx:測長光路が全て真空として得られる変位と
実際の移動鏡4の変位との差(補正値) Lv:干渉縞計測装置をリセットしたときの真空容器3
の長さ La:干渉縞計測装装置をリセットしたときの第2の窓
11と移動鏡4との間隔 dv:真空容器3の長さの変化量 da:第2の窓11と移動鏡4との間隔の変化量 λv:真空中でのレーザ光の波長 λa:空気中でのレーザ光の波長 na:レーザ光の波長における空気の屈折率As shown in (a), the length of the vacuum container 3 when the interference fringe measuring device of the length measuring device is reset is Lv,
The distance between the second window 11 of the vacuum container 3 and the movable mirror 4 is La. Consider a case where the length of the vacuum container 3 changes by dv and the distance between the second window 11 and the movable mirror 4 changes by da as the XY stage 5 moves, as shown in FIG. At this time, the displacement Xd obtained by measuring the interference fringes with the length measuring optical path being entirely vacuum
And the difference Dx of the actual displacement (dv + da) of the movable mirror 4 can be calculated by the following equation. Dx = {(Lv + dv) / λv + (La + da) / λa} · λv− (Lv + La + dv + da) = (La + da) · (na−1) ··· (1) However, Dx: all measuring optical paths are obtained as a vacuum. Difference between displacement and actual displacement of movable mirror 4 (correction value) Lv: Vacuum container 3 when the interference fringe measuring device is reset
La: Distance between the second window 11 and the moving mirror 4 when the interference fringe measuring device is reset dv: Change in length of the vacuum container 3 da: Second window 11 and the moving mirror 4 Variation of the distance between λv: wavelength of laser light in vacuum λa: wavelength of laser light in air na: refractive index of air at the wavelength of laser light
【0015】そこで、干渉縞計測装置をリセットしたと
きの第2の窓11と移動鏡4との間隔La、第2の窓1
1と移動鏡4との間隔の変化量da、レーザ光の波長に
おける空気の屈折率naの値より補正値Dxを求め、こ
の値を干渉縞計測装置から得た変位(dv+da±D
x)から引けば移動鏡4の正しい変位(dv+da)が
得られる。Therefore, the distance La between the second window 11 and the movable mirror 4 when the interference fringe measuring device is reset, the second window 1
The correction value Dx is obtained from the amount of change da in the distance between the movable mirror 4 and the moving mirror 4 and the value of the refractive index na of the air at the wavelength of the laser light, and this value is obtained by the displacement (dv + da ± D
The correct displacement (dv + da) of the movable mirror 4 can be obtained by subtracting from x).
【0016】さて、第2の窓11と移動鏡4との間隔を
他の測定手段を用いて測定し補正値Dxを求め、移動鏡
4の正しい変位を測定する場合を考える。(La+d
a)の測定誤差やレーザ光の波長における空気の屈折率
naの値に誤差が含まれるためDxにも誤差が含まれ
る。(La+da)の測定誤差をδa、naの誤差をδ
nとするとDxに含まれる誤差Exは次式で表される。 Ex=Dx−(La+da+δa)・(na+δn−1) =−(La+da)・δn−δa・(na−1) −δa・δn ・・・(2) 但し Ex:補正値Dxに含まれる測定誤差 δa:第2の窓11と移動鏡4との間隔の測定誤差 δn:レーザ光の波長における空気の屈折率naの誤差 上記2式において、第1項はδnで決まる(La+d
a)の許容値を示している。また、第2項はnaで決ま
るdaの測定誤差δaの許容値を示している。第3項は
daの測定誤差δaと屈折率の誤差δnの積を示す。Now, consider a case where the correct displacement of the movable mirror 4 is measured by measuring the distance between the second window 11 and the movable mirror 4 using another measuring means to obtain the correction value Dx. (La + d
Since the measurement error in a) and the value of the refractive index na of the air at the wavelength of the laser light include an error, Dx also includes an error. The measurement error of (La + da) is δa, and the error of na is δ
The error Ex included in Dx is represented by the following equation, where n is n. Ex = Dx− (La + da + δa) · (na + δn−1) = − (La + da) · δn−δa · (na−1) −δa · δn (2) However, Ex: measurement error δa included in the correction value Dx : Error in measurement of distance between second window 11 and movable mirror 4 δn: Error in refractive index na of air at wavelength of laser light In the above two equations, the first term is determined by δn (La + d
The allowable value of a) is shown. The second term represents the allowable value of the measurement error δa of da determined by na. The third term represents the product of the measurement error δa of da and the error δn of the refractive index.
【0017】例として補正値Dxの測定誤差Exが1n
m以下となる(La+da)、δaを計算する。δnは
空気揺らぎや環境変化で生じるが、一般的には1°Cの
気温変化、2.5mmHgの気圧変化、80%の相対湿
度変化が生じた場合、na×10-6前後の屈折率変動が
生じる。そこで、レーザ光をHeNeとし、標準空気中
で測長するとしてδn,naをそれぞれ na=1.0002767,δn=1.0002767×10-6・・・(3) とする。La+daの最大値、daの測定誤差δaの許
容値を計算すると、 La+da<1mm、δa<3.6μm ・・・・(4) となる。上記2式の第2項のδaとδnの積は、 δa・δn=3.6×10-3nm ・・・・(5) となり、この値は十分無視できる。As an example, the measurement error Ex of the correction value Dx is 1n.
δa is calculated when m is less than or equal to (La + da). δn is caused by air fluctuations and environmental changes, but in general, when a temperature change of 1 ° C, a pressure change of 2.5 mmHg, and a relative humidity change of 80% occur, the refractive index changes around na × 10 -6. Occurs. Therefore, assuming that the laser beam is HeNe and the length is measured in standard air, δn and na are set to na = 1.0002767, δn = 1.0002767 × 10 −6 (3), respectively. When the maximum value of La + da and the allowable value of the measurement error δa of da are calculated, La + da <1 mm, δa <3.6 μm (4) The product of δa and δn in the second term of the above two equations is δa · δn = 3.6 × 10 −3 nm (5), and this value can be sufficiently ignored.
【0018】第2の窓11と移動鏡4との間隔をXYス
テージ5の移動に応じて1mm以下となるよう真空容器
3を伸縮させることは容易に実現できる。また、第2の
窓11と移動鏡4との間隔の変化の測定誤差を3.6μ
mとすることも十分に実現可能である。この例では測定
誤差Exを1nm以下として試算したが、測定誤差Ex
の許容値を広げれば上記のLa、δaの許容値は更に大
きくなる。It is easy to expand and contract the vacuum container 3 so that the distance between the second window 11 and the movable mirror 4 becomes 1 mm or less according to the movement of the XY stage 5. In addition, the measurement error of the change in the distance between the second window 11 and the movable mirror 4 is 3.6 μm.
It is also sufficiently feasible to set m. In this example, the calculation error Ex was set to 1 nm or less, but the measurement error Ex
If the permissible value of is increased, the permissible values of La and δa are further increased.
【0019】なお、測長光路が全て空気中に露出してい
るとして得られる変位と実際の移動鏡4の変位との差D
x(補正値)を求める式は、次式で示される。 Dx={(Lv+dv)/λv+(La+da)/λa}・λa −(Lv+La+dv+da) =(Lv+dv)・{(1/na)−1} ・・・・(1’)The difference D between the displacement obtained when the length-measuring optical path is entirely exposed to the air and the actual displacement of the movable mirror 4.
The equation for obtaining x (correction value) is shown by the following equation. Dx = {(Lv + dv) / λv + (La + da) / λa} · λa− (Lv + La + dv + da) = (Lv + dv) · {(1 / na) -1} ··· (1 ′)
【0020】次に、本発明の原理を実現するための測長
装置の実施例を説明する。図2は測長装置の一実施例を
示す断面図、図3は干渉計と光学素子の斜視図、図4は
ビームスプリッタと測定用光束を示す図、図5は干渉計
の構成と測定用光束を示す図、図6は第2の窓の斜視図
である。なお、図中、図1と同一構成部材のものに対し
ては同一符号をもって示し、その説明を省略する。本実
施例はダブルパス型干渉測長装置を用いて、測長光路を
真空とみなしたときの干渉計22と移動鏡4の変位(L
1)および干渉計22と真空容器3の第2の窓11間の
変位(L2)を同時に計測するようにしたものである。Next, an embodiment of a length measuring device for realizing the principle of the present invention will be described. 2 is a cross-sectional view showing an embodiment of the length measuring device, FIG. 3 is a perspective view of an interferometer and an optical element, FIG. 4 is a view showing a beam splitter and a measuring light beam, and FIG. 5 is a configuration of the interferometer and a measuring beam. FIG. 6 is a diagram showing a luminous flux, and FIG. 6 is a perspective view of the second window. In the figure, the same components as those in FIG. 1 are designated by the same reference numerals and the description thereof will be omitted. This embodiment uses a double-pass interferometer to measure the displacement (L) of the interferometer 22 and the movable mirror 4 when the length measurement optical path is regarded as a vacuum.
1) and the displacement (L2) between the interferometer 22 and the second window 11 of the vacuum container 3 are simultaneously measured.
【0021】図2において、20は演算装置で、この演
算装置20はレーザ光の干渉縞によって上記変位L1お
よびL2を同時に計測すると共に、これら測定値のいず
れか一方を用いて測長値を補正することにより、測長環
境の屈折率変動による誤差を取り除き、正しい測長値を
算出する。21は演算装置20による出力信号によって
駆動され真空容器3を伸縮させる制御装置、23はビー
ムスプリッタ、24,25は反射鏡、26は制御装置2
1からの出力信号よって駆動され真空容器3を伸縮させ
る中空モータである。In FIG. 2, reference numeral 20 denotes an arithmetic unit which simultaneously measures the displacements L1 and L2 by the interference fringes of the laser light and corrects the length measurement value by using one of these measured values. By doing so, the error due to the fluctuation of the refractive index in the measurement environment is removed, and the correct measurement value is calculated. Reference numeral 21 is a control device that is driven by an output signal from the arithmetic device 20 to expand and contract the vacuum container 3, 23 is a beam splitter, 24 and 25 are reflecting mirrors, and 26 is a control device 2.
It is a hollow motor that is driven by the output signal from 1 to expand and contract the vacuum container 3.
【0022】干渉計22はレーザ光源1と真空容器3と
の間の光路中に配置されており、1/4波長板7、偏光
ビームスプリッタ2および第1,第2の反射鏡(コーナ
キューブ)28,29を有している。また、干渉計22
のレーザ光源1と対向する面には、図3に示すようにそ
の中心に対して90°ずつずれた4つの透明部30(3
0a〜30d)が設けられており、そのうちの2つが入
光部30a,30b、残り2つが出光部30c,30d
を形成している。第1,第2の反射鏡28,29は、図
5に示すように互いに直交する2つの平面鏡で構成され
ている。The interferometer 22 is arranged in the optical path between the laser light source 1 and the vacuum chamber 3, and has a quarter wavelength plate 7, a polarization beam splitter 2, and first and second reflecting mirrors (corner cubes). It has 28 and 29. In addition, the interferometer 22
On the surface facing the laser light source 1, the four transparent parts 30 (3
0a to 30d), two of which are light incident portions 30a and 30b, and the other two are light emitting portions 30c and 30d.
Is formed. The first and second reflecting mirrors 28 and 29 are composed of two plane mirrors orthogonal to each other as shown in FIG.
【0023】真空容器3の第2の窓11の2つの面のう
ち移動鏡4と対向する面は、干渉計22の入光部30b
と、出光部30dに対応する部分のみが透明部32a,
32bを形成し、それ以外の部分は反射コート33が施
されることにより反射面を形成している。Of the two surfaces of the second window 11 of the vacuum container 3, the surface facing the movable mirror 4 is the light entrance portion 30b of the interferometer 22.
And only the portion corresponding to the light emitting portion 30d is the transparent portion 32a,
32b is formed, and the other portions are coated with the reflection coat 33 to form a reflection surface.
【0024】レーザ光源1から出射されたレーザ光12
は、ビームスプリッタ23によって2つの光束、すなわ
ち第1,第2の測定用光束12a,12bに分割され、
これらの測定用光束12a,12bは前記各入光部30
a,30bから干渉計22内に入射する。また、干渉計
22内に入射した第1,第2の測定用光束20a,20
bは、図5に示すように偏光ビームスプリッタ2によっ
てさらに2分割されることにより、偏光ビームスプリッ
タ2を透過して第1の反射鏡(参照面)28に向かう透
過光束12a−1,12b−1と、偏光ビームスプリッ
タ2で反射し1/4波長板7を透過して真空容器3へ向
かう反射光束12a−2,12b−2にそれぞれ分割さ
れる。偏光ビームスプリッタ2を透過した各透過光束1
2a−1,12b−1は、第1の反射鏡28に当たって
反射し、偏光ビームスプリッタ2を透過して出光部30
c,30dからそれぞれ出射し、反射鏡24,25(図
3)で反射して検出器6A,6Bにそれぞれ入射する。Laser light 12 emitted from the laser light source 1
Is split into two light beams by the beam splitter 23, that is, first and second measuring light beams 12a and 12b,
These measuring luminous fluxes 12a and 12b are transmitted to the respective light entering portions 30.
The light enters the interferometer 22 from a and 30b. In addition, the first and second measurement light beams 20 a and 20 that have entered the interferometer 22.
As shown in FIG. 5, b is further divided into two by the polarization beam splitter 2, so that the transmitted light fluxes 12a-1 and 12b- that pass through the polarization beam splitter 2 and travel toward the first reflecting mirror (reference surface) 28. 1 and reflected light beams 12a-2, 12b-2 reflected by the polarization beam splitter 2, transmitted through the quarter-wave plate 7 and directed to the vacuum container 3 are split. Each transmitted light beam 1 transmitted through the polarization beam splitter 2
2a-1 and 12b-1 impinge on and reflect the first reflecting mirror 28, pass through the polarization beam splitter 2, and exit the light.
It is emitted from each of c and 30d, is reflected by the reflecting mirrors 24 and 25 (FIG. 3), and is incident on each of the detectors 6A and 6B.
【0025】一方、偏光ビームスプリッタ2に当たって
反射した2つの反射光束12a−2,12b−2は、1
/4波長板7を経て真空容器3内にそれぞれ入射する。
このうち一方の反射光束12a−2は、第2の窓11の
反射コート33で反射して元きた光路を戻り、1/4波
長板7を通ることにより偏光面が入射方向に対して90
°回転するため、偏光ビームスプリッタ2を透過して第
2の反射鏡29で反射して再度偏光ビームスプリッタ2
および1/4波長板7を経て真空容器3内に再度入射
し、第2の窓11の反射コート33で反射して元きた光
路を戻り、1/4波長板7を通過することにより偏光面
が90°回転される。したがって、この反射光束12a
−2は偏光ビームスプリッタ2に当たって反射すること
により、出光部30cから干渉計22の外部に出射し、
反射鏡24で反射して検出器6Aに入射する。この結
果、前述の透過光束12a−1と反射光束12a−2と
は互いに重ね合わされて干渉し、干渉縞を形成する。こ
のように、反射光束12a−2は、第2の窓11で2回
反射して干渉計22から出光し、検出器6Aに入射する
ものである。On the other hand, the two reflected light beams 12a-2 and 12b-2 which are reflected by the polarization beam splitter 2 are 1
The light enters the vacuum chamber 3 via the quarter wave plate 7.
One of the reflected light beams 12a-2 returns to the original optical path after being reflected by the reflection coat 33 of the second window 11 and passes through the quarter wavelength plate 7 so that the polarization plane is 90 degrees with respect to the incident direction.
Since it rotates by 90 degrees, it passes through the polarization beam splitter 2, is reflected by the second reflecting mirror 29, and is again reflected by the polarization beam splitter 2.
And again enters the vacuum chamber 3 through the quarter-wave plate 7, is reflected by the reflection coat 33 of the second window 11 and returns to the original optical path, and passes through the quarter-wave plate 7 to make the polarization plane. Is rotated 90 °. Therefore, this reflected light flux 12a
-2 is emitted to the outside of the interferometer 22 from the light emitting unit 30c by hitting and reflecting the polarization beam splitter 2.
The light is reflected by the reflecting mirror 24 and enters the detector 6A. As a result, the transmitted light beam 12a-1 and the reflected light beam 12a-2 described above are superposed on each other and interfere with each other to form an interference fringe. In this way, the reflected light flux 12a-2 is reflected twice by the second window 11, emitted from the interferometer 22, and enters the detector 6A.
【0026】前記偏光ビームスプリッタ2に当たって反
射した2つの反射光束12a−2,12b−2のうち他
方の反射光束12b−2は、1/4波長板7を経て真空
容器3内に入射し、第2の窓11の透光部32a(図
6)を透過して移動鏡4で反射して元きた光路を戻り、
1/4波長板7を通ることにより偏光面が入射方向に対
して90°回転するため、偏光ビームスプリッタ2を透
過して第2の反射鏡29で反射して再度偏光ビームスプ
リッタ2および1/4波長板7を経て真空容器3内に再
度入射し、第2の窓11の透光部32bを透過して移動
鏡4で反射して元きた光路を戻り、1/4波長板7を通
過することにより偏光面が90°回転される。したがっ
て、この反射光束12b−2は偏光ビームスプリッタ2
に当たって反射することにより、出光部30dから干渉
計22の外部に出射し、反射鏡25で反射して検出器6
Bに入射する。この結果、この反射光束12bー2と前
述の透過光束12b−1は互いに重ね合わされて干渉
し、干渉縞を形成する。このように、反射光束12b−
2は、移動鏡4で2回反射して干渉計22から出光し、
検出器6Bに入射するものである。Of the two reflected light beams 12a-2, 12b-2 reflected by the polarization beam splitter 2, the other reflected light beam 12b-2 enters the vacuum chamber 3 through the quarter wavelength plate 7 and 2 is transmitted through the transparent portion 32a (FIG. 6) of the window 11 and is reflected by the movable mirror 4 to return to the original optical path,
Since the plane of polarization is rotated by 90 ° with respect to the incident direction by passing through the quarter-wave plate 7, it passes through the polarization beam splitter 2, is reflected by the second reflecting mirror 29, and is again reflected by the polarization beam splitters 2 and 1 /. The light again enters the vacuum chamber 3 via the four-wave plate 7, passes through the transparent portion 32b of the second window 11 and is reflected by the movable mirror 4 to return to the original optical path, and passes through the quarter-wave plate 7. By doing so, the plane of polarization is rotated by 90 °. Therefore, the reflected light beam 12b-2 is reflected by the polarization beam splitter 2
The light is emitted from the light emitting section 30d to the outside of the interferometer 22 by being reflected on the detector 6 and reflected by the reflecting mirror 25.
It is incident on B. As a result, the reflected light beam 12b-2 and the transmitted light beam 12b-1 are superposed on each other and interfere with each other to form an interference fringe. Thus, the reflected light flux 12b-
2 is reflected by the movable mirror 4 twice and emitted from the interferometer 22.
It is incident on the detector 6B.
【0027】演算装置20は、前記各検出器6A,6B
で得られた干渉縞から、測長光路を真空とみなしたとき
の干渉計22と移動鏡4の変位L1および干渉計22と
真空容器3の第2の窓11間の変位L2を計測する。こ
れらの値はそれぞれ先の原理で示した測長光路が全て真
空として干渉縞を計測して得られる変位Xd、真空容器
3の長さの変化量dvを示している。そこで、上記
(1)式に示した計算を以下のように演算装置20で行
なうことにより、移動鏡4の変位Xmを求めることがで
きる。 Xm=L1−Dx =L1−{La+(L1−L2)}(na−1) ・・・・(6)The arithmetic unit 20 includes the detectors 6A and 6B.
From the interference fringes obtained in step 2, the displacement L1 of the interferometer 22 and the movable mirror 4 and the displacement L2 between the interferometer 22 and the second window 11 of the vacuum container 3 when the length measurement optical path is regarded as a vacuum are measured. These values show the displacement Xd and the variation dv of the length of the vacuum container 3 which are obtained by measuring interference fringes in which the length-measuring optical paths shown in the above principle are all vacuum. Therefore, the displacement Xm of the movable mirror 4 can be obtained by performing the calculation shown in the above equation (1) in the arithmetic unit 20 as follows. Xm = L1-Dx = L1- {La + (L1-L2)} (na-1) ... (6)
【0028】このとき、(L1−L2)には、測定用光
束12aと測定用光束12bの測定位置が同一軸線上に
あるため、アッベ誤差が生じない。また、測定用光束1
2aによって真空容器3の第2の窓11の移動鏡4側の
面の位置を測定しているため、第2の窓11の変形の影
響を受けずに正確に真空容器3の長さの変化量L2を測
定できる。At this time, in (L1-L2), since the measuring positions of the measuring light beam 12a and the measuring light beam 12b are on the same axis, no Abbe error occurs. Also, the measurement light flux 1
Since the position of the surface of the second window 11 of the vacuum container 3 on the side of the movable mirror 4 is measured by 2a, the length of the vacuum container 3 can be accurately changed without being affected by the deformation of the second window 11. The quantity L2 can be measured.
【0029】次に、XYステージ5の移動が生じてもL
a+daを1mm以下にするための実施例を説明する。
演算装置20では上記6式の演算の他に連続的にL1と
L2の差を計算し、その値をアナログ信号あるいはデジ
タル信号で制御装置21に送出している。制御装置21
は、L1とL2の差に比例した出力信号により中空モー
タ26を駆動制御する。中空モータ26が回転すると真
空容器3の可動筒3Bの外周に設けられた送りねじによ
って光軸方向の力が発生し、可動筒3Bを伸縮させる。
この結果、L1を目標位置として現在位置と目標位置と
の偏差をL1−L2としたサーボループが形成され真空
容器3の第2の窓11と移動鏡4との間隔が一定となる
ように制御される。このとき、真空容器3の第2の窓1
1と移動鏡4の間隔を維持する精度は1mm以下でよい
ため容易に実現できる。また、真空容器3が伸縮すると
きに必要な運動精度(真直度、傾き)は、L1とL2が
同軸状に配置されているため非常に低くてよい。Next, even if the XY stage 5 moves, L
An example for making a + da 1 mm or less will be described.
The arithmetic unit 20 continuously calculates the difference between L1 and L2 in addition to the arithmetic operation of the above equation 6, and sends the value to the control unit 21 as an analog signal or a digital signal. Control device 21
Controls the hollow motor 26 by an output signal proportional to the difference between L1 and L2. When the hollow motor 26 rotates, a force in the optical axis direction is generated by the feed screw provided on the outer circumference of the movable barrel 3B of the vacuum container 3, and the movable barrel 3B is expanded and contracted.
As a result, a servo loop is formed in which L1 is the target position and the deviation between the current position and the target position is L1-L2, and control is performed so that the distance between the second window 11 of the vacuum container 3 and the movable mirror 4 becomes constant. To be done. At this time, the second window 1 of the vacuum container 3
Since the accuracy of maintaining the distance between 1 and the movable mirror 4 is 1 mm or less, it can be easily realized. Further, the motion accuracy (straightness, inclination) required when the vacuum container 3 expands and contracts may be extremely low because L1 and L2 are arranged coaxially.
【0030】なお、上記実施例はレーザ光を使用した
が、本発明はこれに必ずしも特定されるものではない。Although the above embodiment uses the laser beam, the present invention is not necessarily limited to this.
【0031】[0031]
【発明の効果】以上説明したように本発明に係る測長装
置および測長方法によれば、真空容器と移動鏡との間の
長さもしくは真空容器中の光路の長さを測定し、この測
定値で測長値を補正することにより、測長環境の屈折率
変動による誤差を取り除くようにしたので、測長環境の
影響を受けて測長できなかったナノメータオーダの測長
が、従来の測長装置が有していた測定の自由度を維持し
つつ簡単に達成できる。As described above, according to the length measuring apparatus and the length measuring method of the present invention, the length between the vacuum container and the movable mirror or the length of the optical path in the vacuum container is measured, By correcting the length measurement value with the measured value, the error due to the fluctuation of the refractive index in the length measurement environment was removed, so the length measurement on the order of nanometers, which could not be measured due to the influence of the length measurement environment, This can be easily achieved while maintaining the measurement flexibility of the length measuring device.
【図1】(a),(b)は本発明の基本構成を示す構成
図である。1A and 1B are configuration diagrams showing a basic configuration of the present invention.
【図2】測長装置の一実施例を示す断面図である。FIG. 2 is a cross-sectional view showing an embodiment of a length measuring device.
【図3】干渉計と光学素子の斜視図である。FIG. 3 is a perspective view of an interferometer and an optical element.
【図4】ビームスプリッタと測定用光束を示す図であ
る。FIG. 4 is a diagram showing a beam splitter and a measuring light beam.
【図5】干渉計の構成と測定用光束を示す図である。FIG. 5 is a diagram showing a configuration of an interferometer and a measurement light beam.
【図6】真空容器の第2の窓の斜視図である。FIG. 6 is a perspective view of a second window of the vacuum container.
1 レーザ光源 2 偏光ビームスプリッタ 3 真空容器 4 移動鏡 5 XYステージ(測定対象物) 6 検出器 7 1/4波長板 8 1/4波長板 9 固定鏡 10 第1の窓 11 第2の窓 20 演算装置 21 制御装置 22 干渉計 23 ビームスプリッタ 24 反射鏡 25 反射鏡 26 中空モータ 1 Laser Light Source 2 Polarization Beam Splitter 3 Vacuum Container 4 Moving Mirror 5 XY Stage (Measurement Object) 6 Detector 7 1/4 Wave Plate 8 1/4 Wave Plate 9 Fixed Mirror 10 First Window 11 Second Window 20 Arithmetic device 21 Control device 22 Interferometer 23 Beam splitter 24 Reflecting mirror 25 Reflecting mirror 26 Hollow motor
───────────────────────────────────────────────────── フロントページの続き (72)発明者 石田 明 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Akira Ishida 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon Corporation
Claims (5)
に分割し、前記測定光の光軸方向に移動可能な測定対象
物に設置された移動鏡で反射した測定光と参照面で反射
した参照光とを干渉させ、この干渉光を検出して基準点
と前記移動鏡との距離を測長する測長方法において、 両端に前記測定光が通過する透明材料からなる窓を有
し、内部が測定光の光路の一部を形成する伸縮自在な真
空容器を設け、この真空容器中の光路の長さまたは該真
空容器と前記移動鏡との間の長さを計測し、この計測値
で前記測長結果を補正することで、測長環境の屈折率変
動によって生じる前記測長結果の誤差を取り除くことを
特徴とする測長方法。1. A light emitted from a light source is split into a measuring light and a reference light, and the measuring light and the reference surface are reflected by a movable mirror installed on a measuring object movable in the optical axis direction of the measuring light. In a length measuring method of interfering with a reflected reference light and detecting the interference light to measure the distance between a reference point and the movable mirror, a window made of a transparent material through which the measurement light passes is provided at both ends. The inside of the vacuum container is provided with an expandable and contractible vacuum container that forms part of the optical path of the measurement light, and the length of the optical path in the vacuum container or the length between the vacuum container and the movable mirror is measured. By correcting the length measurement result with a value, an error in the length measurement result caused by a change in the refractive index of the length measurement environment is removed.
に分割し、前記測定光の光軸方向に移動可能な測定対象
物に設置された移動鏡で反射した測定光と参照面で反射
した参照光とを干渉させ、この干渉光を検出して基準点
と前記移動鏡との距離を測長する測長装置において、 両端に前記測定光が通過する透明材料からなる窓を有
し、内部が測定光の光路の一部を形成する伸縮自在な真
空容器と、この真空容器中の光路の長さまたは真空容器
と前記移動鏡との間の長さを計測する計測手段と、この
計測手段による計測値で前記計測結果を補正して測長環
境の屈折率変動によって生じる前記測長結果の誤差を取
り除く演算装置とを備えたことを特徴とする測長装置。2. The light emitted from the light source is divided into measurement light and reference light, and the measurement light and the reference surface reflected by a movable mirror installed on a measurement target movable in the optical axis direction of the measurement light In a length measuring device that interferes with a reflected reference light and detects the interference light to measure the distance between a reference point and the movable mirror, a window made of a transparent material through which the measurement light passes is provided at both ends. An expandable vacuum container whose inside forms a part of the optical path of the measuring light, and a measuring means for measuring the length of the optical path in the vacuum container or the length between the vacuum container and the movable mirror, A length measuring device, comprising: a calculation device that corrects the measurement result with a measurement value obtained by a measuring unit to remove an error in the length measurement result caused by a change in a refractive index of a length measuring environment.
に分割し、前記測定光の光軸方向に移動可能な測定対象
物に設置された移動鏡で反射した測定光と参照面で反射
した参照光とを干渉させ、この干渉光を検出して基準点
と前記移動鏡との距離を測長する測長装置において、 両端に前記測定光が通過する透明材料からなる窓を有
し、内部が前記測定光の光路の一部を形成する伸縮自在
な真空容器と、この真空容器中の光路の長さまたは真空
容器と前記移動鏡との間の長さを計測する計測手段と、
この計測手段による計測値で前記測長結果を補正して測
長環境の屈折率変動によって生じる前記測長結果の誤差
を取り除く演算手段と、この演算手段での演算結果に基
づいて前記真空容器を測長光の光軸方向に伸縮させる制
御装置を備えたことを特徴とする測長装置。3. The light emitted from the light source is split into a measuring light and a reference light, and the measuring light and the reference surface are reflected by a moving mirror installed on a measuring object movable in the optical axis direction of the measuring light. In a length measuring device that interferes with a reflected reference light and detects the interference light to measure the distance between a reference point and the movable mirror, a window made of a transparent material through which the measurement light passes is provided at both ends. An expandable and contractable vacuum container whose inside forms a part of the optical path of the measuring light, and a measuring means for measuring the length of the optical path in the vacuum container or the length between the vacuum container and the movable mirror,
Computation means for correcting the length measurement result by the measurement value by the measurement means to remove an error in the length measurement result caused by the refractive index variation of the length measurement environment, and the vacuum container based on the calculation result by the calculation means. A length measuring device comprising a control device for expanding and contracting the length measuring light in the optical axis direction.
て、 前記制御装置は、前記真空容器を伸縮させることを特徴
とする測長装置。4. The length measuring device according to claim 2 or 3, wherein the control device expands and contracts the vacuum container.
に分割し、前記測定光の光軸方向に移動可能な測定対象
物に設置された移動鏡で反射した測定光と参照面で反射
した参照光とを干渉させ、この干渉光を検出して基準点
と前記移動鏡との距離を測長する測長装置において、 透明材料からなり前記測定光が通過する第1,第2の窓
を有し、内部が前記測定光の光路の一部を形成する伸縮
自在な真空容器と、前記第1,第2の測定用光束を前記
真空容器に導く干渉計と、計測手段と、演算手段とを備
え、 前記第2の窓は、前記真空容器の移動鏡に設けられると
共に、この移動鏡と対向する面の前記第1の測定用光束
に対応する部分に反射面が形成され、前記第2の測定用
光束に対応する部分が透光部とされ、 前記干渉計は、前記各第1,第2の測定用光束を透過光
束と反射光束にそれぞれ分割し、各反射光束を前記真空
容器に導く偏光ビームスプリッタと、この反射光束の偏
光面を回転させる1/4波長板と、前記偏光ビームスプ
リッタを透過した各透過光束を反射し再び前記偏光ビー
ムスプリッタに戻す第1の反射鏡と、前記偏光ビームス
プリッタおよび1/4波長板をそれぞれ透過しその一方
が前記真空容器の第2の窓の反射面に当たって反射する
ことにより元きた光路を戻って前記偏光ビームスプリッ
タを透過し、他方が前記真空容器の第2の窓の透光部を
透過して移動鏡で反射し元きた光路を戻り前記偏光ビー
ムスプリッタを透過する2つの反射光束をそれぞれ反射
し前記偏光ビームスプリッタに戻す第2の反射鏡とを含
み、 この第2の反射鏡に当たって反射した2つの反射光束の
うちその一方は再度偏光ビームスプリッタおよび1/4
波長板を経て真空容器内に入射し再度第2の窓の反射面
で反射して元きた光路を通り偏光ビームスプリッタに当
たって反射することにより、偏光ビームススプリッタを
はじめに透過した2つの透過光束のうちの一方(第1の
測定用光束の透過光束)に重ね合わされて干渉縞を形成
し、他方は再度偏光ビームスプリッタ、1/4波長板お
よび真空容器を透過して再度移動鏡で反射して元きた光
路を通り前記偏光ビームスプリッタに当たって反射する
ことにより、偏光ビームスプリッタをはじめに透過した
前記2つの透過光束のうちの他方(第2の測定用光束の
透過光束)に重ね合わされて干渉縞を形成し、 前記計測手段は、前記第1,第2の測定用光束の干渉縞
によって前記干渉計と移動鏡間の変位および前記干渉計
と第2の窓間の変位を計測し、 前記演算装置は、前記計測手段による計測値のうちいず
れか一方のの変位で前記測長結果を補正して測長環境の
屈折率変動によって生じる前記測長結果の誤差を取り除
くことを特徴とする測長装置。5. The light emitted from the light source is split into a measuring light and a reference light, and the measuring light reflected by a movable mirror installed on a measuring object movable in the optical axis direction of the measuring light and the reference surface. In a length measuring device that interferes with a reflected reference light and detects the interference light to measure the distance between a reference point and the movable mirror, a first and second measuring device made of a transparent material through which the measuring light passes. An expandable and contractible vacuum container having a window and forming a part of the optical path of the measuring light; an interferometer for guiding the first and second measuring light beams to the vacuum container; measuring means; The second window is provided on the moving mirror of the vacuum container, and a reflecting surface is formed on a portion of the surface facing the moving mirror, which corresponds to the first measuring light beam, A portion corresponding to the second measuring light beam is a light transmitting portion, and the interferometer includes the first and second portions. The polarization beam splitter that splits the measurement light flux into a transmitted light flux and a reflected light flux and guides each reflected light flux to the vacuum container, a quarter-wave plate that rotates the polarization plane of the reflected light flux, and the polarization beam splitter. A first reflecting mirror that reflects each transmitted luminous flux and returns to the polarizing beam splitter again, and one that passes through the polarizing beam splitter and the quarter-wave plate, one of which is the reflecting surface of the second window of the vacuum container. The reflected beam returns to the original optical path and returns through the polarized beam splitter, and the other returns through the transparent portion of the second window of the vacuum chamber and reflected by the moving mirror to return to the original optical path. A second reflecting mirror that reflects the two reflected light beams that pass through the splitter and returns the reflected light beams to the polarization beam splitter; and two reflecting mirrors that strike and reflect the second reflecting mirror. One of the emitted light beams is again converted into the polarization beam splitter and the 1/4.
Of the two transmitted light fluxes that first pass through the polarizing beam splitter by being incident on the inside of the vacuum vessel via the wave plate and then again reflected by the reflecting surface of the second window and passing through the original optical path and then being reflected by the polarizing beam splitter. One is superposed on one (the transmitted luminous flux of the first measuring luminous flux) to form an interference fringe, and the other is transmitted again through the polarizing beam splitter, the quarter-wave plate and the vacuum container and is reflected again by the movable mirror. By passing through the optical path and hitting the polarizing beam splitter to be reflected, the other of the two transmitted light beams that first transmitted through the polarized beam splitter is superimposed on the other (the transmitted light beam of the second measuring light beam) to form an interference fringe, The measuring means measures the displacement between the interferometer and the movable mirror and the displacement between the interferometer and the second window by the interference fringes of the first and second measuring light beams. However, the arithmetic unit corrects the length measurement result by displacement of any one of the measured values by the measuring means, and removes an error in the length measurement result caused by a refractive index variation of the length measuring environment. And measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5343359A JPH07174510A (en) | 1993-12-17 | 1993-12-17 | Device and method for measuring length |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5343359A JPH07174510A (en) | 1993-12-17 | 1993-12-17 | Device and method for measuring length |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07174510A true JPH07174510A (en) | 1995-07-14 |
Family
ID=18360915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5343359A Pending JPH07174510A (en) | 1993-12-17 | 1993-12-17 | Device and method for measuring length |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07174510A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH095060A (en) * | 1995-06-16 | 1997-01-10 | Sokkia Co Ltd | Straightness interferometer |
-
1993
- 1993-12-17 JP JP5343359A patent/JPH07174510A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH095060A (en) * | 1995-06-16 | 1997-01-10 | Sokkia Co Ltd | Straightness interferometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5541730A (en) | Interferometric measuring apparatus for making absolute measurements of distance or refractive index | |
US6757066B2 (en) | Multiple degree of freedom interferometer | |
US6842256B2 (en) | Compensating for effects of variations in gas refractivity in interferometers | |
US6819434B2 (en) | Multi-axis interferometer | |
JP2009300263A (en) | Two-wavelength laser interferometer and method of adjusting optical axis in the same | |
JPH021501A (en) | Laser interference length measuring machine and positioning method using the same machine | |
JP2755757B2 (en) | Measuring method of displacement and angle | |
US9518816B2 (en) | Dual beam splitter interferometer measuring 3 degrees of freedom, system and method of use | |
US7764384B1 (en) | Swept frequency laser metrology system | |
JPH07101166B2 (en) | Interferometer | |
JP3830547B2 (en) | Interference applied measuring equipment | |
US20070041022A1 (en) | Interferometer for measuring perpendicular translations | |
US4807997A (en) | Angular displacement measuring interferometer | |
US5028137A (en) | Angular displacement measuring interferometer | |
CN108627084B (en) | Laser instrument wavelength calibration system based on static michelson interferometer | |
JPH07174510A (en) | Device and method for measuring length | |
CN108286943B (en) | Displacement measurement optical system applied to workbench of photoetching system | |
CN110966939B (en) | Interferometric measuring device, measuring method and photoetching equipment | |
Tamiya et al. | Detection principle and verification of non-contact displacement meter with pico-meter resolution | |
JP5361230B2 (en) | Two-wavelength laser interferometer evaluation calibration method, evaluation calibration apparatus, and evaluation calibration system | |
JPH11108614A (en) | Light-wave interference measuring instrument | |
JP3374505B2 (en) | Laser interferometer and method for correcting length error | |
JP3633828B2 (en) | Structure control method | |
JP3412212B2 (en) | Interferometer device | |
JPH04168330A (en) | Light wavelength meter |