JPH07161646A - Formation of polycrystalline film - Google Patents
Formation of polycrystalline filmInfo
- Publication number
- JPH07161646A JPH07161646A JP31182193A JP31182193A JPH07161646A JP H07161646 A JPH07161646 A JP H07161646A JP 31182193 A JP31182193 A JP 31182193A JP 31182193 A JP31182193 A JP 31182193A JP H07161646 A JPH07161646 A JP H07161646A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- gas
- fine particles
- reaction
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は多結晶膜作成方法に関
し、特に精度の良好な多結晶膜の作成方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polycrystalline film, and more particularly to a method for producing a polycrystalline film with good accuracy.
【0002】[0002]
【従来の技術】従来の気相反応多結晶膜は、図2に示す
ような製造装置に用いて行なわれる。この装置は、反応
系を外空間と遮断する反応室1、反応室内の反応ガスの
濃度を適度な値にするためのキャリアガス(水素、アル
ゴン等)を反応室1内に導入するキャリアガス導入管
2、多結晶膜の材料となる反応ガス(ポリシリコンの場
合は、シラン、ジシラン等)を反応室1内に導入する反
応ガス導入管3、多結晶膜の堆積を受ける基板5、この
基板5の温度分布を一様にして支持するサセプタ4、高
周波誘導によりサセプタ4及び基板5を加熱する高周波
誘導コイル6、及び反応室1内の圧力の一定に保ち反応
済ガス等を反応室1外に排気する排気系7を有してい
る。2. Description of the Related Art A conventional vapor-phase reaction polycrystalline film is used in a manufacturing apparatus as shown in FIG. This apparatus is equipped with a reaction chamber 1 that shuts off the reaction system from the external space, and a carrier gas introduction that introduces a carrier gas (hydrogen, argon, etc.) to the reaction chamber 1 to bring the concentration of the reaction gas in the reaction chamber to an appropriate value. Tube 2, reaction gas introduction tube 3 for introducing a reaction gas (silane, disilane or the like in the case of polysilicon) into the reaction chamber 1, a substrate 5 for depositing a polycrystalline film, and this substrate 5, the susceptor 4 supporting the temperature distribution uniformly, the high-frequency induction coil 6 for heating the susceptor 4 and the substrate 5 by high-frequency induction, and keeping the pressure in the reaction chamber 1 constant, the reacted gas and the like outside the reaction chamber 1. It has an exhaust system 7 for exhausting to.
【0003】次に、作成方法について具体的に説明す
る。まず、反応室内にキャリアガス(例えばアルゴン)
と反応ガス(例えばシラン)をキャリアガス導入管2及
び反応ガス導入管3より、それぞれ導入する。この時、
キャリアガスであるアルゴンに対するシランの濃度は
0.5〜5.0%程度とする。反応室1内の圧力は取扱
いの簡便さのため、常圧(約760Torr:100k
Pa)とする。ここで高周波誘導コイル6に高周波(1
0〜20MHz程度)電力を印加し、サセプタ4及び基
板5を300℃〜600℃程度に加熱する。この加熱さ
れた基板5により反応ガス(シラン)が熱分解を起こし
て、基板5上に多結晶シリコン膜が堆積される。Next, a method for creating the image will be specifically described. First, the carrier gas (eg, argon) in the reaction chamber
And a reaction gas (for example, silane) are introduced through the carrier gas introduction pipe 2 and the reaction gas introduction pipe 3, respectively. This time,
The concentration of silane relative to the carrier gas, argon, is about 0.5 to 5.0%. The pressure in the reaction chamber 1 is atmospheric pressure (about 760 Torr: 100 k for easy handling).
Pa). Here, a high frequency (1
Electric power is applied to heat the susceptor 4 and the substrate 5 to about 300 ° C. to 600 ° C. Reaction gas (silane) is thermally decomposed by the heated substrate 5, and a polycrystalline silicon film is deposited on the substrate 5.
【0004】[0004]
【発明が解決しようとする課題】この従来の気相反応多
結晶膜作成方法では、ある一定の濃度の反応ガスが存在
する雰囲気の中に、加熱された基板を置くことにより、
反応ガスの熱分解とその物質の自然結晶可現象を利用し
ているため、多結晶膜中の結晶粒子の大きさは様々であ
り一様であるといえない状態となっている。また結晶粒
子どうしの境界条件も、双晶状態や、アモルファス状態
の制御がされていないため、多結晶膜の状態はプロセス
条件によって大きく左右され、同一のプロセス条件であ
っても不安定な要素を数多く持っていた。また、同一基
板の面内の特性でも均一性の低い膜しか作成できないと
いう問題点があった。In this conventional method for producing a vapor-phase reaction polycrystalline film, by placing a heated substrate in an atmosphere in which a reaction gas having a certain constant concentration is present,
Since the thermal decomposition of the reaction gas and the natural crystallinity of the substance are used, the size of the crystal grains in the polycrystalline film varies and is not uniform. In addition, the boundary condition between the crystal grains is not controlled in the twin state or the amorphous state, so the state of the polycrystalline film is largely influenced by the process conditions, and even if the process conditions are the same, an unstable element may occur. I had many. Further, there is a problem that only a film having a low uniformity in the in-plane characteristics of the same substrate can be formed.
【0005】[0005]
【課題を解決するための手段】本発明の気相反応多結晶
膜作成方法は、マイクロ波共振、または高周波誘導法に
よるプラズマによって反応ガスを分解し多結晶膜の材料
となる微粒子を作成するガス反応室と、この微粒子を高
速なキャリアガス流にのせて基板に吹き付け、粒子の慣
性衝突、反射、質量による重力作用、キャリアガスによ
る拡散作用等により、ほぼ一定の粒子を基板上に堆積さ
せるノズル部とを備えている。The method for producing a vapor-phase reaction polycrystalline film of the present invention is a gas for decomposing a reaction gas by plasma by microwave resonance or high frequency induction method to produce fine particles to be a material of the polycrystalline film. A nozzle that deposits almost constant particles on the substrate by means of inertial collision of particles, reflection, gravity action by mass, diffusion action by carrier gas, etc. And a section.
【0006】[0006]
【実施例】次に、本発明について図面を参照しながら説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.
【0007】図1は、本発明の一実施例の気相反応多結
晶膜作成に用いる成膜装置の概略図である。この装置
は、主に、互いに接続されたガス反応室10及び反応室
1からなる。ガス反応室10には、反応ガスが導入され
る反応ガス導入管3、キャリアガスが導入されるキャリ
アガス導入管2、ドープガスが導入されるドープガス導
入管11が上方に接続され、ガス反応室10に導入され
た反応ガスをプラズマ状態にする目的で高周波誘導コイ
ル9が巻かれている。ガス反応室10の下方はノズル8
となっており、ここでさらに下方に設けられた反応室1
につながっている。反応室1内にはサセプタ4が設けら
れ、その上には、多結晶膜がその表面に形成される基板
5が搭載される。反応室1の下方には排気系7が接続さ
れている。さらに、サセプタ4及び基板5を取り囲むよ
うな高さで加熱用の高周波誘導コイル6が、反応室1の
周りを巻いている。FIG. 1 is a schematic view of a film forming apparatus used for forming a vapor phase reaction polycrystalline film according to an embodiment of the present invention. The device mainly comprises a gas reaction chamber 10 and a reaction chamber 1 which are connected to each other. A reaction gas introduction pipe 3 into which a reaction gas is introduced, a carrier gas introduction pipe 2 into which a carrier gas is introduced, and a dope gas introduction pipe 11 into which a dope gas is introduced are connected to the gas reaction chamber 10 above. A high frequency induction coil 9 is wound for the purpose of turning the reaction gas introduced into the chamber into a plasma state. The nozzle 8 is located below the gas reaction chamber 10.
And the reaction chamber 1 provided further below
Connected to. A susceptor 4 is provided in the reaction chamber 1, and a substrate 5 having a polycrystalline film formed on its surface is mounted thereon. An exhaust system 7 is connected below the reaction chamber 1. Further, a high frequency induction coil 6 for heating is wound around the reaction chamber 1 at a height that surrounds the susceptor 4 and the substrate 5.
【0008】次に、この装置を用いて、多結晶膜として
多結晶シリコン膜を基板5の表面に形成するための方法
を説明する。Next, a method for forming a polycrystalline silicon film as a polycrystalline film on the surface of the substrate 5 using this apparatus will be described.
【0009】まず、ガス反応室10内にシラン(SiH
4 )等の反応ガスとアルゴン(Ar)等のキャリアガス
を、それぞれ反応ガス導入管3及びキャリアガス導入管
2より導入する。この時、キャリアガスに対する反応ガ
スの濃度は、0.01〜0.1%程度とする。次にプラ
ズマ発生用の高周波誘導コイル9に10〜20MHz程
度の高周波を印加し、ガス反応室10内にプラズマ状態
を誘導する。このガス反応室10内のプラズマにより、
シラン等の反応ガスが分解され、自然結晶化により、様
々な大きさのシリコン微粒子が発生する。このシリコン
微粒子を大流量のアルゴンガスに乗せてノズル8によっ
て基板5に吹き付ける。ノズルの形状は、キャリアガス
が基板5に一様に吹き付けられるように広く取るか、ま
たは回転する等基板5との関係が周期的に可動できるよ
うにする。基板5及びサセプタ4は加熱用の高周波誘導
コイル6により加熱される。基板の温度は室温でも構わ
ないが、150〜250℃程度に加熱した方が膜の付着
性及び膜質が良好となる。なおプラズマ発生用の高周波
誘導コイル9に印加する高周波電力は、加熱用の高周波
誘導コイル6に印加する高周波電力の約10〜200倍
程度である。反応室1内の圧力は排気系7により、0.
1〜10.0Torr程度にしておく。キャリアガスの
流量は反応室1内の圧力が約1.0Torrの場合、1
0〜100SLMとする。ガス反応室10で発生したシ
リコン粒子はこのキャリアガス流によって基板5に吹き
付けられる。このシリコン粒子の内、粒径の大きいもの
は慣性衝突による反射及び散乱により、また、粒径の小
さいものはガス流による拡散により基板に付着しないた
め、基板上には粒径が約5〜50nmの粒子のみが堆積
する。この現象が発生する理由は、この程度の大きさの
粒子が、粒子の表面エネルギーによる物質付着性と表面
反応性、及び質量とのバランスにより、基板に付着し易
くなるためでる。First, in the gas reaction chamber 10, silane (SiH
A reaction gas such as 4) and a carrier gas such as argon (Ar) are introduced through the reaction gas introduction pipe 3 and the carrier gas introduction pipe 2, respectively. At this time, the concentration of the reaction gas with respect to the carrier gas is set to about 0.01 to 0.1%. Next, a high frequency of about 10 to 20 MHz is applied to the high frequency induction coil 9 for plasma generation to induce a plasma state in the gas reaction chamber 10. By the plasma in the gas reaction chamber 10,
The reaction gas such as silane is decomposed and spontaneous crystallization produces silicon fine particles of various sizes. The silicon fine particles are placed on a large flow rate of argon gas and sprayed onto the substrate 5 by the nozzle 8. The shape of the nozzle is set to be wide so that the carrier gas is uniformly sprayed on the substrate 5, or rotated so that the relationship with the substrate 5 can be periodically moved. The substrate 5 and the susceptor 4 are heated by the high frequency induction coil 6 for heating. The temperature of the substrate may be room temperature, but heating to about 150 to 250 ° C. improves the adhesion and quality of the film. The high frequency power applied to the high frequency induction coil 9 for plasma generation is about 10 to 200 times the high frequency power applied to the high frequency induction coil 6 for heating. The pressure in the reaction chamber 1 is set to 0.
It is set to about 1 to 10.0 Torr. The flow rate of the carrier gas is 1 when the pressure in the reaction chamber 1 is about 1.0 Torr.
0 to 100 SLM. The silicon particles generated in the gas reaction chamber 10 are sprayed onto the substrate 5 by this carrier gas flow. Of these silicon particles, those with a large particle size do not adhere to the substrate due to reflection and scattering due to inertial collision, and those with a small particle size do not adhere to the substrate due to diffusion by the gas flow. Only particles of are deposited. The reason why this phenomenon occurs is that particles of this size tend to adhere to the substrate due to the balance between the substance adhesion and surface reactivity due to the surface energy of the particles and the mass.
【0010】図1では、基板5に対し、上からキャリア
ガスを吹き付けているが、これを他の方向、例えば横か
ら、また下からキャリアガスを基板5に引きつける(図
1の上下を逆にするとこうなる)と、重力による粒子選
択性がより向上する。In FIG. 1, the carrier gas is blown onto the substrate 5 from above, but the carrier gas is attracted to the substrate 5 from another direction, for example, from the side and from below (upside down in FIG. 1). Then, the particle selectivity due to gravity is further improved.
【0011】これによって基板5上に堆積される粒子
は、粒径が5〜50nmの粒子が主となり、従来の気相
反応多結晶作成方法に比べ粒径がそろっており、また粒
子の生成条件も同一であるため、多結晶膜中の境界条件
も良くそろったものとなる。よって得られた多結晶シリ
コン膜は、従来の方法によって作成したものに比べ均一
性が10〜100倍程度向上する。また、ドープガス導
入管11より、ホスフィン等のドーピングガスを導入す
ることにより、ドープドポリシリコン膜の作成も可能で
ある。As a result, the particles deposited on the substrate 5 are mainly particles having a particle diameter of 5 to 50 nm, and the particle diameters are more uniform than those in the conventional vapor phase reaction polycrystal production method. Since they are the same, the boundary conditions in the polycrystalline film are also well aligned. Thus, the obtained polycrystalline silicon film has a uniformity improved by about 10 to 100 times as compared with the film formed by the conventional method. Further, a doped polysilicon film can be formed by introducing a doping gas such as phosphine through the dope gas introducing pipe 11.
【0012】この方法で多結晶シリコンの抵抗を作成す
ると、抵抗の加工精度が2〜3倍向上し、抵抗精度は1
0〜20倍程度向上させることができる。When a polycrystalline silicon resistor is formed by this method, the resistance processing accuracy is improved by a factor of 2 to 3, and the resistance accuracy is 1
It can be improved about 0 to 20 times.
【0013】本発明は、様々な変更が可能である。例え
ば図1の装置と同じものを用い、表面段差の大きい基板
に吹き付ける事によって、表面段差を小さくすることが
できる。基板方面の段差を小さくするためにシリコン酸
化膜を堆積させる場合は、反応ガスとしてシランと酸素
を用い、キャリアガスにはアルゴンを用いると良い。こ
の場合基板に吹き付けられた粒子は、基板上の表面段差
の部分でいわいる「吹き溜まり」の様な現象を起こして
堆積し易くなるため、基板上の表面段差を小さくする事
が可能となる。The present invention can be variously modified. For example, the same device as that of FIG. 1 is used, and by spraying it on a substrate having a large surface step, the surface step can be reduced. When depositing a silicon oxide film in order to reduce the level difference on the substrate surface, it is preferable to use silane and oxygen as reaction gases and argon as a carrier gas. In this case, the particles sprayed on the substrate cause a phenomenon such as a so-called "blown pool" at the surface step portion on the substrate to be easily deposited, so that the surface step on the substrate can be reduced.
【0014】[0014]
【発明の効果】以上説明したように、本発明はプラズマ
中の反応により生成した微粒子をキャリアガスにより基
板に吹き付けることにより、多結晶膜の粒径及び境界条
件の均一性がはかられ、多結晶膜の均一性を従来の方法
のものに比べ10〜100倍程度向上させる事が可能で
ある。As described above, according to the present invention, by spraying fine particles generated by a reaction in plasma onto a substrate with a carrier gas, the grain size of the polycrystalline film and the boundary conditions can be made uniform. It is possible to improve the uniformity of the crystal film by about 10 to 100 times as compared with the conventional method.
【図1】本発明の一実施例の気相反応多結晶作成に用い
る装置の概略図。FIG. 1 is a schematic view of an apparatus used for producing a vapor phase reaction polycrystal according to an embodiment of the present invention.
【図2】従来の気相反応多結晶作成方法に用いる装置の
概略図。FIG. 2 is a schematic view of an apparatus used in a conventional vapor phase reaction polycrystal production method.
1 反応室 2 キャリアガス導入管 3 反応ガス導入管 4 サセプタ 5 基板 6 高周波誘導コイル(加熱用) 7 排気系 8 ノズル 9 高周波誘導コイル(プラズマ用) 10 ガス反応室 11 ドープガス導入管 DESCRIPTION OF SYMBOLS 1 Reaction chamber 2 Carrier gas introduction pipe 3 Reaction gas introduction pipe 4 Susceptor 5 Substrate 6 High frequency induction coil (for heating) 7 Exhaust system 8 Nozzle 9 High frequency induction coil (for plasma) 10 Gas reaction chamber 11 Dope gas introduction pipe
Claims (3)
よるプラズマによって反応ガスを分解し多結晶膜の材料
となる微粒子を作成し、この微粒子をキャリアガス流に
のせて基板に吹き付けることを特徴とする多結晶膜作成
方法。1. A method for decomposing a reaction gas by microwave resonance or plasma by a high frequency induction method to prepare fine particles to be a material of a polycrystalline film, and depositing the fine particles on a carrier gas flow and spraying them on a substrate. Method for producing polycrystalline film.
るときに、前記基板が加熱されていることを特徴とする
請求項1記載の多結晶膜作成方法。2. The method for producing a polycrystalline film according to claim 1, wherein the substrate is heated when the fine particles are sprayed onto the surface of the substrate.
けられることを特徴とする請求項1又は請求項2記載の
多結晶膜作成方法。3. The method for producing a polycrystalline film according to claim 1, wherein the fine particles are sprayed from below the substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31182193A JPH07161646A (en) | 1993-12-13 | 1993-12-13 | Formation of polycrystalline film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31182193A JPH07161646A (en) | 1993-12-13 | 1993-12-13 | Formation of polycrystalline film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07161646A true JPH07161646A (en) | 1995-06-23 |
Family
ID=18021813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31182193A Pending JPH07161646A (en) | 1993-12-13 | 1993-12-13 | Formation of polycrystalline film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07161646A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007247014A (en) * | 2006-03-17 | 2007-09-27 | Ulvac Japan Ltd | Plasma cvd apparatus, and film deposition method |
CN114031082A (en) * | 2021-12-22 | 2022-02-11 | 中国有色桂林矿产地质研究院有限公司 | Method for preparing nano silicon powder by inductive plasma pyrolysis of silane |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6055615A (en) * | 1983-09-07 | 1985-03-30 | Sharp Corp | Thin film forming device |
JPS62167885A (en) * | 1986-11-19 | 1987-07-24 | Semiconductor Energy Lab Co Ltd | Production of composite body having carbon film |
JPH01100920A (en) * | 1987-10-14 | 1989-04-19 | Canon Inc | Substrate treating apparatus using plasma product |
JPH02163379A (en) * | 1988-12-16 | 1990-06-22 | Anelva Corp | Formation of thin film and device therefor |
JPH02231710A (en) * | 1989-03-03 | 1990-09-13 | Nippon Telegr & Teleph Corp <Ntt> | Thin film forming apparatus |
JPH03122996A (en) * | 1989-10-04 | 1991-05-24 | Sumitomo Metal Ind Ltd | Plasma device |
JPH05105584A (en) * | 1991-10-18 | 1993-04-27 | Tokai Carbon Co Ltd | Method for controlling temperature of substrate body for depositing synthetic diamond |
-
1993
- 1993-12-13 JP JP31182193A patent/JPH07161646A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6055615A (en) * | 1983-09-07 | 1985-03-30 | Sharp Corp | Thin film forming device |
JPS62167885A (en) * | 1986-11-19 | 1987-07-24 | Semiconductor Energy Lab Co Ltd | Production of composite body having carbon film |
JPH01100920A (en) * | 1987-10-14 | 1989-04-19 | Canon Inc | Substrate treating apparatus using plasma product |
JPH02163379A (en) * | 1988-12-16 | 1990-06-22 | Anelva Corp | Formation of thin film and device therefor |
JPH02231710A (en) * | 1989-03-03 | 1990-09-13 | Nippon Telegr & Teleph Corp <Ntt> | Thin film forming apparatus |
JPH03122996A (en) * | 1989-10-04 | 1991-05-24 | Sumitomo Metal Ind Ltd | Plasma device |
JPH05105584A (en) * | 1991-10-18 | 1993-04-27 | Tokai Carbon Co Ltd | Method for controlling temperature of substrate body for depositing synthetic diamond |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007247014A (en) * | 2006-03-17 | 2007-09-27 | Ulvac Japan Ltd | Plasma cvd apparatus, and film deposition method |
CN114031082A (en) * | 2021-12-22 | 2022-02-11 | 中国有色桂林矿产地质研究院有限公司 | Method for preparing nano silicon powder by inductive plasma pyrolysis of silane |
CN114031082B (en) * | 2021-12-22 | 2023-10-31 | 中国有色桂林矿产地质研究院有限公司 | Method for preparing nano silicon powder by induction plasma pyrolysis of silane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06302528A (en) | Vapor deposition of silicon nitride thin film | |
IE50240B1 (en) | A method of vapour phase growth and apparatus therefor | |
JPS62152171A (en) | Thin-film transistor | |
JPS6237527B2 (en) | ||
US20070063183A1 (en) | Substrate having silicon dots | |
JPS61232613A (en) | Apparatus for vapor-phase reaction in plasma | |
JPS6054919B2 (en) | low pressure reactor | |
JPH0377655B2 (en) | ||
JPH06168937A (en) | Manufacture of silicon oxide film | |
JPS621565B2 (en) | ||
JPH07161646A (en) | Formation of polycrystalline film | |
JP2783041B2 (en) | Vapor phase silicon epitaxial growth equipment | |
US5881090A (en) | Quartz used in semiconductor manufacturing device, apparatus for manufacturing the quartz, and method for manufacturing the same | |
JPH0364466A (en) | Production of amorphous silicon-based semiconductor film | |
JPH0586476A (en) | Chemical vapor growth device | |
JPH0633245A (en) | Cvd device | |
JPS5941773B2 (en) | Vapor phase growth method and apparatus | |
JPS59177919A (en) | Selective growth of thin film | |
JPH07335643A (en) | Film forming method | |
JPH08100264A (en) | Formation of thin film and device therefor | |
JPH0544037A (en) | Vapor growth device and production of semiconductor device using the same | |
JPS6299463A (en) | Deposited film formation | |
JPH0941147A (en) | Plasma cvd method | |
JPS62142772A (en) | Deposited film forming device by cvd method | |
JPS61283113A (en) | Epitaxial growth method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19970325 |