[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07165499A - Gaas single crystal wafer and its production and method for sorting the same - Google Patents

Gaas single crystal wafer and its production and method for sorting the same

Info

Publication number
JPH07165499A
JPH07165499A JP5311634A JP31163493A JPH07165499A JP H07165499 A JPH07165499 A JP H07165499A JP 5311634 A JP5311634 A JP 5311634A JP 31163493 A JP31163493 A JP 31163493A JP H07165499 A JPH07165499 A JP H07165499A
Authority
JP
Japan
Prior art keywords
peak height
bond peak
spectrum
single crystal
crystal wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5311634A
Other languages
Japanese (ja)
Other versions
JP3232833B2 (en
Inventor
Takehiko Tani
毅彦 谷
Harunori Sakaguchi
春典 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP31163493A priority Critical patent/JP3232833B2/en
Publication of JPH07165499A publication Critical patent/JPH07165499A/en
Application granted granted Critical
Publication of JP3232833B2 publication Critical patent/JP3232833B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide a method for producing a GaAs single crystal wafer so designed that only wafer having such crystal surface as to easily remove a Ga oxide therefrom is sorted to ensure a thermal cleaning to be carried out stably and easily and enable high-quality epitaxial layer to be grown. CONSTITUTION:The photoelectron spectrum on the surface of a GaAs single crystal wafer is determined by X-ray photoelectron spectroscopy; The conditions for the determination are as follows: AlKalpha-rays are used as X-ray source; the angle of incidence of X-rays with the surface of a test sample is 20 deg.; and, the angle of an analyzer input lens with the surface of the test sample is 75 deg.. Such a GaAs single crystal wafer as to satisfy the following two conditions is sorted; namely: (Ga-O bond peak height)/(Ga-As bond peak height) <=0.05, and (As-As bond peal height)/(As-Ga bond peak height) >=0.5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はGaAs単結晶ウェハ及
びその製造方法並びに選別方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a GaAs single crystal wafer, a manufacturing method thereof, and a sorting method.

【0002】[0002]

【従来の技術】化合物半導体は、ショットキーゲート電
界効果トランジスタ(MESFET)、高移動度トラン
ジスタ(HEMT)、ヘテロ接合バイポーラトランジス
タ(HBT)、受発光デバイス等の作製に用いられてい
る。これらの素子は鏡面ウェハ表面に分子線エピタキシ
ャル成長(MBE)法、有機金属気層エピタキシャル成
長(MOVPE)法により能動層をエピタキシャル成長
することにより作製される。
2. Description of the Related Art Compound semiconductors are used in the manufacture of Schottky gate field effect transistors (MESFETs), high mobility transistors (HEMTs), heterojunction bipolar transistors (HBTs), light emitting and receiving devices and the like. These devices are manufactured by epitaxially growing an active layer on the mirror-finished wafer surface by the molecular beam epitaxial growth (MBE) method and the metal organic vapor layer epitaxial growth (MOVPE) method.

【0003】一般に、鏡面ウェハは次の手順で作成され
る。インゴットをスライスし、ウェハを切り出す。この
ウェハを粗研磨し平坦性を高めた後、メカノケミカル研
磨により鏡面に仕上げる。次に脱脂洗浄、極く僅かなエ
ッチング作用を持つ洗浄液での洗浄、および超純水洗浄
を行う。最後にウェハをIPA(イソプロピールアルコ
ール)乾燥法またはスピン乾燥法により乾燥する。
Generally, a mirror-finished wafer is produced by the following procedure. Slice the ingot and cut the wafer. This wafer is rough-polished to improve its flatness, and then mirror finished by mechanochemical polishing. Next, degreasing cleaning, cleaning with a cleaning liquid having an extremely slight etching action, and ultrapure water cleaning are performed. Finally, the wafer is dried by an IPA (isopropyl alcohol) drying method or a spin drying method.

【0004】エピタキシャル成長させるには、このウェ
ハをそのまま用いる場合もあるが、多くの場合、エピタ
キシャル成長前に前処理として、硫酸系エッチャント
(H2SO4 −H2 2 −H2 O)やアンモニア系エッ
チャント(NH4 OH−H2 2 −H2 O)で、ウェハ
表面を1〜2μm エッチングしたウェハを用いる。エッ
チング後、エピタキシャル成長炉内で熱処理(サーマル
クリーニング)して、ウェハ表面の自然酸化物を昇華、
蒸発させ表面清浄化を行う。
For epitaxial growth, this wafer may be used as it is, but in many cases, as a pretreatment before the epitaxial growth, a sulfuric acid type etchant (H 2 SO 4 —H 2 0 2 —H 2 O) or an ammonia type is used. A wafer whose wafer surface is etched by 1 to 2 μm with an etchant (NH 4 OH—H 2 O 2 —H 2 O) is used. After etching, heat treatment (thermal cleaning) in the epitaxial growth furnace to sublimate the native oxide on the wafer surface.
Evaporate and clean the surface.

【0005】なお、一般的ではないが、熱酸化や紫外線
照射オゾン処理により強制酸化し、表面に厚い酸化層を
形成した後、炉内でサーマルクリーニングにより酸化層
を除去する方法も行われている。
Although not generally used, there is also a method of removing the oxide layer by thermal cleaning in a furnace after forming a thick oxide layer on the surface by forced oxidation by thermal oxidation or ultraviolet irradiation ozone treatment. .

【0006】[0006]

【発明が解決しようとする課題】しかし、上述した従来
技術には次のような欠点が有った。
However, the above-mentioned prior art has the following drawbacks.

【0007】(1)エピタキシャル成長前にサーマルク
リーニングの他にエッチングや強制酸化する必要がある
ため、エピタキシャル成長前の経済的負担が大きい。
(1) Since it is necessary to perform etching and forced oxidation in addition to thermal cleaning before the epitaxial growth, the economic burden before the epitaxial growth is large.

【0008】(2)エッチングや強制酸化で前処理した
GaAsウェハ表面にはAs酸化物、Ga酸化物からな
る酸化層が形成されている。この中でAs酸化物は比較
的容易に除去できるが、Ga酸化物は昇華温度が高いた
めサーマルクリーニングの温度や時間が安定せず、除去
しにくい。
(2) An oxide layer made of As oxide and Ga oxide is formed on the surface of the GaAs wafer pretreated by etching or forced oxidation. Among these, the As oxide can be removed relatively easily, but the Ga oxide has a high sublimation temperature, so that the temperature and time of thermal cleaning are not stable and are difficult to remove.

【0009】本発明の目的は、Ga酸化物の除去が容易
な結晶表面をもつウェハを選び出すことによって、前記
した従来技術の欠点を解消し、サーマルクリーニングを
安定かつ容易にでき、その後高品質なエピタキシャル層
を成長できる新規なGaAs結晶ウェハ及びその製造方
法並びに選別方法を提供することにある。
The object of the present invention is to eliminate the above-mentioned drawbacks of the prior art by selecting a wafer having a crystal surface from which Ga oxide can be easily removed, and to perform thermal cleaning in a stable and easy manner. It is an object of the present invention to provide a novel GaAs crystal wafer capable of growing an epitaxial layer, a manufacturing method thereof, and a selection method.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

条件A: Ga3dスペクトルにおいて(Ga−O結合のピーク
高さ)/(Ga−As結合のピーク高さ)≦0.06 As3dスペクトルにおいて(As−As結合のピー
ク高さ)/(As−Ga結合のピーク高さ)≧0.47 条件B: Ga3dスペクトルにおいて(Ga−O結合のピーク
高さ)/(Ga−As結合のピーク高さ)≦0.05 As3dスペクトルにおいて(As−As結合のピー
ク高さ)/(As−Ga結合のピーク高さ)≧0.5 とすると、第1発明のGaAs単結晶ウェハは、その光
電子スペクトルが、条件Aを満たすものである。
Condition A: (Ga-O bond peak height) / (Ga-As bond peak height) ≦ 0.06 in Ga3d spectrum (As-As bond peak height) / (As-Ga bond) in As3d spectrum Peak height of ≧ 0.47 Condition B: (Ga—O bond peak height) / (Ga—As bond peak height) ≦ 0.05 in Ga3d spectrum (As—As bond peak) Height) / (peak height of As—Ga bond) ≧ 0.5, the photoelectron spectrum of the GaAs single crystal wafer of the first invention satisfies the condition A.

【0011】第2発明のGaAs単結晶ウェハは、第1
発明の条件Aに代えて条件Bを満たすものである。
The GaAs single crystal wafer of the second invention is the first
The condition B is satisfied instead of the condition A of the invention.

【0012】第3発明のGaAs単結晶ウェハの製造方
法は、半絶縁性GaAsウェハをクエン酸または酢酸
と、硫酸またはフッ酸との混合水溶液に浸漬して、X線
光電子分光法のスペクトルが条件Aを満たすように表面
処理するようにしたものである。
In the method for producing a GaAs single crystal wafer of the third invention, a semi-insulating GaAs wafer is immersed in a mixed aqueous solution of citric acid or acetic acid and sulfuric acid or hydrofluoric acid, and the spectrum of X-ray photoelectron spectroscopy is conditioned. The surface treatment is performed so as to satisfy A.

【0013】第4発明のGaAs単結晶ウェハの製造方
法は、第3発明の条件Aに代えて条件Bを満たすように
したものである。
The method for producing a GaAs single crystal wafer according to the fourth aspect of the present invention satisfies condition B instead of condition A of the third invention.

【0014】第5発明のGaAs単結晶ウェハの製造方
法は、第3発明及び第4発明の混合水溶液の組成比を、
5%C6 8 7 :49%HF:H2 O=1〜3:50
〜100:1〜50としたものである。
In the method for producing a GaAs single crystal wafer of the fifth invention, the composition ratio of the mixed aqueous solution of the third invention and the fourth invention is
5% C 6 H 8 O 7 : 49% HF: H 2 O = 1~3: 50
.About.100: 1 to 50.

【0015】第6発明のGaAs単結晶ウェハの製造方
法は、第5発明の組成比に代えてその組成比を、5%C
3 CO2 H:49%HF:H2 O=1〜3:50〜1
00:1〜50としたものである。
In the method for producing a GaAs single crystal wafer according to the sixth aspect of the invention, the composition ratio is changed to 5% C instead of the composition ratio of the fifth aspect.
H 3 CO 2 H: 49% HF: H 2 O = 1~3: 50~1
It is set to 00: 1 to 50.

【0016】第7発明のGaAs単結晶ウェハの製造方
法は、第5発明の組成比に代えてその組成比を、5%C
6 8 7 :98%H2 SO4 :H2 O=1〜3:10
0:1〜5としたものである。
In the method of manufacturing a GaAs single crystal wafer according to the seventh aspect of the invention, the composition ratio is changed to 5% C instead of the composition ratio of the fifth aspect.
6 H 8 O 7: 98% H 2 SO 4: H 2 O = 1~3: 10
It is set to 0: 1 to 5.

【0017】第8発明のGaAs単結晶ウェハの製造方
法は、第5発明の組成比に代えてその組成比を、5%C
3 CO2 H:98%H2 SO4 :H2 O=1〜3:1
00:1〜5としたものである。
In the method for producing a GaAs single crystal wafer according to the eighth aspect of the invention, the composition ratio is changed to 5% C instead of the composition ratio of the fifth aspect.
H 3 CO 2 H: 98% H 2 SO 4: H 2 O = 1~3: 1
It is set to 00: 1 to 5.

【0018】第9発明のGaAs単結晶ウェハの選別方
法は、GaAs単結晶ウェハについての光電子スペクト
ルをX線光電子分光法で測定し、その測定条件を、X線
源にAlKα、試料表面に対するX線の入射角が20
°、試料表面に対するアナライザーインプットレンズの
角度が75°としたときに得られる光電子スペクトル
が、条件Aを満たすGaAs単結晶ウェハを選別するも
のである。
In the method for selecting a GaAs single crystal wafer according to the ninth aspect of the invention, the photoelectron spectrum of the GaAs single crystal wafer is measured by X-ray photoelectron spectroscopy, and the measurement conditions are AlKα for the X-ray source and X-rays for the sample surface. Incident angle of 20
, And the photoelectron spectrum obtained when the angle of the analyzer input lens with respect to the sample surface is 75 ° is for selecting a GaAs single crystal wafer that satisfies the condition A.

【0019】第10発明のGaAs単結晶ウェハの選別
方法は、第9発明の条件Aに代えて条件Bを満たすよう
にしたものである。
The method for selecting a GaAs single crystal wafer according to the tenth aspect of the invention is such that the condition B is satisfied instead of the condition A of the ninth aspect.

【0020】[0020]

【作用】本発明において、光電子スペクトルを測定する
GaAs単結晶ウェハは、エピタキシャル成長前の前処
理が行われる鏡面ウェハが対象となる。
In the present invention, the GaAs single crystal wafer whose photoelectron spectrum is to be measured is a mirror-finished wafer which is pretreated before epitaxial growth.

【0021】また、結晶表面の構造解析を行う種々の方
法の中で、特にX線光電子分光法(X-ray Photoelectro
n Spectroscopy:XPS)によってGaAs単結晶ウェ
ハ表面の光電子スペクトルを測定する理由は、X線を励
起源として用いると物質構成の原子に局在している内殻
電子の結合エネルギーを測定することが可能であり、こ
れを利用して元素の結合状態を調べることができるから
である。
Among various methods for analyzing the structure of the crystal surface, especially X-ray photoelectron spectroscopy (X-ray Photoelectron spectroscopy)
The reason for measuring the photoelectron spectrum on the surface of a GaAs single crystal wafer by n spectroscopy (XPS) is that it is possible to measure the binding energy of the inner-shell electrons localized in the atoms of the material constituent by using X-rays as the excitation source. This is because the bonding state of elements can be investigated by utilizing this.

【0022】Ga3dスペクトルのGa−As結合のピ
ーク高さに対するGa−O結合のピーク高さを条件A
または条件Bとしたのは、Ga酸化物は昇華温度が高
く除去しにくいため、条件値より大きい場合、完全に除
去することが難しいからである。
The peak height of the Ga—O bond relative to the peak height of the Ga—As bond in the Ga3d spectrum is defined as condition A.
Alternatively, the condition B is adopted because Ga oxide has a high sublimation temperature and is difficult to be removed, and therefore, if it is higher than the condition value, it is difficult to completely remove it.

【0023】また、As3dスペクトルのAs−Ga結
合のピーク高さに対するAs−As結合のピーク高さを
条件Aまたは条件Bとしたのは、As3dスペクト
ルのAs−As結合ピークはAs層の存在を意味してい
るが、As層はAs層下のGaAs結晶の酸化を防ぐた
めにある程度厚さが必要であり、条件値より小さいと、
酸化を防ぐ厚さが得られないからである。
The As-As bond peak height relative to the As-Ga bond peak height in the As3d spectrum is defined as condition A or condition B because the As3d spectrum As-As bond peak indicates the presence of the As layer. This means that the As layer needs to have a certain thickness in order to prevent the GaAs crystal under the As layer from being oxidized.
This is because the thickness that prevents oxidation cannot be obtained.

【0024】但し、 0.05<(Ga-O 結合のピーク高さ) /(Ga-As結合のピーク
高さ) ≦0.06 0.47≦(As-As結合のピーク高さ) /(As-Ga結合のピーク
高さ) <0.5 のウェハは特性が不安定であるので、条件Bを満たすこ
とが好ましい。
However, 0.05 <(Ga-O bond peak height) / (Ga-As bond peak height) ≤ 0.06 0.47 ≤ (As-As bond peak height) / (As-Ga bond peak) Since a wafer having a height of <0.5 has unstable characteristics, it is preferable to satisfy the condition B.

【0025】このような条件を満たすGaAs単結晶ウ
ェハを製造するには、半絶縁性GaAsウェハを所定の
溶剤を組み合わせて得られる各種混合水溶液に浸漬して
表面処理するが、このとき電解液組成を調整して上記条
件を満たすようにする。電解液の組合せは、とりわけク
エン酸または酢酸と硫酸またはフッ酸との混合水溶液を
用いた場合に良好な結果が得られる。
In order to manufacture a GaAs single crystal wafer satisfying such conditions, the semi-insulating GaAs wafer is immersed in various mixed aqueous solutions obtained by combining predetermined solvents and surface-treated. To meet the above conditions. The combination of electrolytes gives good results especially when a mixed aqueous solution of citric acid or acetic acid and sulfuric acid or hydrofluoric acid is used.

【0026】光電子スペクトルを測定したGaAs単結
晶ウェハの中から上記条件を満足するウェハをエピタキ
シャル成長前に予め選別しておくと、選別されたGaA
s単結晶ウェハは、エピタキシャル成長前のエッチング
処理をする必要がなくなる上、エピタキシャル成長前の
サーマルクリーニングが安定かつ容易に行え、その後、
高品質なエピタキシャル層を成長できる。
If a wafer satisfying the above conditions is selected in advance from the GaAs single crystal wafer whose photoelectron spectrum is measured before epitaxial growth, the selected GaA
The s single crystal wafer does not need to be subjected to etching treatment before epitaxial growth, and thermal cleaning before epitaxial growth can be performed stably and easily.
High quality epitaxial layer can be grown.

【0027】[0027]

【実施例】【Example】

<実施例1>試料には、LEC法で製造したノンドープ
半絶縁性GaAs結晶ウェハを用いた。この結晶ウェハ
を陽極、Ptを陰極、飽和カロメル電極を参照電極とし
た。電解液にはHCl、H2 SO4 、H2 2 、HF、
NaOHを組み合わせて得られる各種混合水溶液と、こ
の各種混合水溶液に更にクエン酸(C6 8 7 )また
は酢酸(CH3 CO2 H)を組み合わせた混合水溶液を
用い、参照電極に対する陽極電位を0〜5Vの範囲で電
解を行なった。
<Example 1> As a sample, a non-doped semi-insulating GaAs crystal wafer manufactured by the LEC method was used. This crystal wafer was used as an anode, Pt as a cathode, and a saturated calomel electrode as a reference electrode. The electrolyte is HCl, H 2 SO 4 , H 2 O 2 , HF,
Using various mixed aqueous solutions obtained by combining NaOH and mixed aqueous solutions obtained by further combining the various mixed aqueous solutions with citric acid (C 6 H 8 O 7 ) or acetic acid (CH 3 CO 2 H), the anode potential with respect to the reference electrode was adjusted. Electrolysis was performed in the range of 0 to 5V.

【0028】電解液組成と陽極電位とを調整することに
より、XPSのスペクトルが、Ga3dにおいてGa−
As結合のピーク高さとGa−O結合のピーク高さの比
が1:(0〜0.2)、As3dにおいてAs−Ga結
合のピーク高さとAs−As結合のピーク高さの比が
1:(0〜1)であるウェハを100枚作成した。
By adjusting the composition of the electrolytic solution and the anode potential, the XPS spectrum becomes Ga-d in Ga3d.
The ratio of the peak height of the As bond to the peak height of the Ga—O bond is 1: (0 to 0.2), and the ratio of the peak height of the As—Ga bond to the peak height of the As—As bond in As3d is 1 :. 100 wafers of (0-1) were prepared.

【0029】ここでXPSのスペクトル測定条件は、X
線源にAlKα、試料表面に対するX線の入射角を20
°、試料表面に対するアナライザーインプットレンズの
角度を75°とした。
Here, the XPS spectrum measurement condition is X
The source is AlKα, and the incident angle of X-ray on the sample surface is 20
The angle of the analyzer input lens with respect to the sample surface was 75 °.

【0030】上記ウェハをMBE装置に投入し、次に述
べるプロセスでエピタキシャル成長した。まず、基板温
度600℃でAs分子線を照射しながらサーマルクリー
ニングを行った。基板温度が600℃に達してから反射
高エネルギー電子線回折(RHEED)観察により、基
板の最表面が最も安定な状態になる原子配列を示す(2
×4)パターンが現れるまでの時間をサーマルクリーニ
ング時間とした。この後、520℃に降温し、アンドー
プGaAsを0.8μm 、SiドープGaAsを0.2
μm 成長した。
The above wafer was put into an MBE apparatus and epitaxially grown by the process described below. First, thermal cleaning was performed at a substrate temperature of 600 ° C. while irradiating As molecular beams. High-energy electron diffraction (RHEED) observation after the substrate temperature reaches 600 ° C shows the atomic arrangement in which the outermost surface of the substrate becomes the most stable state (2
X4) The time until the pattern appeared was taken as the thermal cleaning time. After that, the temperature is lowered to 520 ° C., undoped GaAs is 0.8 μm, and Si-doped GaAs is 0.2 μm.
μm grown.

【0031】エピタキシャル表面特性に対するサーマル
クリーニング時間の測定結果を図1及び図2に示す。図
中のプロットにおいて良好なエピタキシャル表面であっ
たものは白丸、ヘイズなどの表面異常が発生したものは
三角とした。(Ga−O結合ピーク高さ)/(Ga−A
s結合ピーク高さ)≦0.05で、かつ(As−As結
合ピーク高さ)/(As−Ga結合ピーク高さ)≧0.
5であるウェハは、それ以外のものに比較してサーマル
クリーニング時間は約1/10の1分以内と短く、その
時間は安定していた。またエピタキシャル層の鏡面状態
も良好であった。
The measurement results of the thermal cleaning time with respect to the epitaxial surface characteristics are shown in FIGS. In the plots in the figure, those with a good epitaxial surface are shown as white circles, and those with a surface abnormality such as haze are shown as triangles. (Ga-O bond peak height) / (Ga-A
s bond peak height) ≦ 0.05, and (As-As bond peak height) / (As-Ga bond peak height) ≧ 0.
The wafer No. 5 had a short thermal cleaning time of about 1/10 within 1 minute as compared with the other wafers, and the time was stable. Moreover, the mirror surface state of the epitaxial layer was also good.

【0032】したがって、上記値を満たすようにウェハ
の電解時に電解液組成と陽極電位とを調整して電解すれ
ば、サーマルクリーニング時間が短く安定し、エピタキ
シャル層の鏡面状態も良好がウェハが得られる。
Therefore, by adjusting the electrolytic solution composition and the anodic potential during electrolysis of the wafer so as to satisfy the above values, electrolysis is performed, the thermal cleaning time is short and stable, and the wafer is obtained with a good mirror surface condition of the epitaxial layer. .

【0033】なお、電解液としては、上記した溶剤の組
合せの中でも、クエン酸または酢酸と硫酸またはフッ酸
との混合水溶液を用いた場合に良好な結果が得られてお
り、そのときの電解液の組成比は次の通りである。
As the electrolytic solution, among the above-mentioned solvent combinations, good results were obtained when a mixed aqueous solution of citric acid or acetic acid and sulfuric acid or hydrofluoric acid was used. The composition ratio of is as follows.

【0034】5%C6 8 7 :49%HF:H2
=1〜3:50〜100:1〜50 5%CH3 CO2 H:49%HF:H2 O=1〜3:
50〜100:1〜50 5%C6 8 7 :98%H2 SO4 :H2 O=1〜
3:100:1〜5 5%CH3 CO2 H:98%H2 SO4 :H2 O=1
〜3:100:1〜5 これらの電解液を使用する場合には、電解液にGaAs
単結晶ウェハを所定時間浸漬して表面をエッチングすれ
ば良く、上述の電極を用いて5V以下の陽極電位を印加
すれば更に短時間で処理できる。
5% C 6 H 8 O 7 : 49% HF: H 2 O
= 1~3: 50~100: 1~50 5% CH 3 CO 2 H: 49% HF: H 2 O = 1~3:
50~100: 1~50 5% C 6 H 8 O 7: 98% H 2 SO 4: H 2 O = 1~
3: 100: 1~5 5% CH 3 CO 2 H: 98% H 2 SO 4: H 2 O = 1
~ 3: 100: 1 ~ 5 When using these electrolytes, GaAs is used as the electrolyte.
It is sufficient to immerse the single crystal wafer for a predetermined time to etch the surface, and it is possible to perform the treatment in a shorter time by applying an anode potential of 5 V or less using the above electrode.

【0035】また、上記したXPSのスペクトル測定条
件で、上記値を満たすGaAs単結晶ウェハをエピタキ
シャル成長前に予め選別しておくと、選別されたGaA
s単結晶ウェハは、エピタキシャル成長前のエッチング
処理をする必要がなくなる上、エピタキシャル成長前の
サーマルクリーニングが安定かつ容易に行え、その後、
高品質なエピタキシャル層を成長できる。
If a GaAs single crystal wafer satisfying the above values under the XPS spectrum measurement conditions is selected in advance before the epitaxial growth, the selected GaA
The s single crystal wafer does not need to be subjected to etching treatment before epitaxial growth, and thermal cleaning before epitaxial growth can be performed stably and easily.
High quality epitaxial layer can be grown.

【0036】<実施例2>Crドープした半絶縁性Ga
As単結晶ウェハ、Siドープしたn型GaAs単結晶
ウェハ、およびZnドープしたp型GaAs単結晶ウェ
ハについても実施例1と同様の実験を行ったところ、実
施例1の場合と同じ結果が得られた。
Example 2 Cr-doped semi-insulating Ga
When the same experiment as in Example 1 was performed on the As single crystal wafer, the Si-doped n-type GaAs single crystal wafer, and the Zn-doped p-type GaAs single crystal wafer, the same results as in Example 1 were obtained. It was

【0037】[0037]

【発明の効果】【The invention's effect】

(1) 請求項1、2に記載のGaAs単結晶ウェハによれ
ば、短時間に安定してサーマルクリーニングできるた
め、MBEプロセスによるエピタキシャル成長時間を大
幅に短縮することができる。また、ほぼ完全にサーマル
クリーニングできるため、その後高品質なエピタキシャ
ル層を安定して成長でき、歩留を上げることができる。
(1) According to the GaAs single crystal wafers of the first and second aspects, thermal cleaning can be stably performed in a short time, so that the epitaxial growth time by the MBE process can be significantly shortened. Further, since the thermal cleaning can be performed almost completely, a high quality epitaxial layer can be stably grown thereafter, and the yield can be increased.

【0038】(2) 請求項3〜8に記載のGaAs単結晶
ウェハの製造方法によれば、電解液組成を調整して電解
するという簡単な方法により、結合ピーク高さからGa
酸化物の少ないウェハを製造できる。
(2) According to the method for producing a GaAs single crystal wafer according to any one of claims 3 to 8, a simple method of adjusting the composition of the electrolytic solution to perform electrolysis allows the Ga peak to be calculated from the height of the bond peak.
Wafers with less oxide can be manufactured.

【0039】(3) 請求項9、10に記載のGaAs単結
晶ウェハの選別方法によれば、予め結合ピーク高さから
Ga酸化物の少ないウェハが選ばれるので、エピタキシ
ャル成長前のエッチング処理をする必要がなく、工程省
略による経済的効果が大きい。
(3) According to the method for selecting a GaAs single crystal wafer according to claims 9 and 10, since a wafer containing a small amount of Ga oxide is selected in advance from the bond peak height, it is necessary to perform an etching treatment before epitaxial growth. There is no such thing, and the economical effect is large by omitting the process.

【図面の簡単な説明】[Brief description of drawings]

【図1】(Ga−O結合ピーク高さ)/(Ga−As結
合ピーク高さ)に対するサーマルクリーニング時間との
関係を示す特性図。
FIG. 1 is a characteristic diagram showing a relationship between (Ga—O bond peak height) / (Ga—As bond peak height) and thermal cleaning time.

【図2】(As−As結合ピーク高さ)/(As−Ga
結合ピーク高さ)に対するサーマルクリーニング時間と
の関係を示す特性図。
FIG. 2 (As-As binding peak height) / (As-Ga
FIG. 5 is a characteristic diagram showing the relationship between the thermal cleaning time and the binding peak height).

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】光電子スペクトルが次の2条件を満たすこ
とを特徴とするGaAs単結晶ウェハ。 Ga3dスペクトルにおいて (Ga−O結合のピーク高さ)/(Ga−As結合のピ
ーク高さ)≦0.06 As3dスペクトルにおいて (As−As結合のピーク高さ)/(As−Ga結合の
ピーク高さ)≧0.47
1. A GaAs single crystal wafer having a photoelectron spectrum satisfying the following two conditions. In Ga3d spectrum (Ga-O bond peak height) / (Ga-As bond peak height) ≤ 0.06 In As3d spectrum (As-As bond peak height) / (As-Ga bond peak height) Sa) ≧ 0.47
【請求項2】光電子スペクトルが次の2条件を満たすこ
とを特徴とするGaAs単結晶ウェハ。 Ga3dスペクトルにおいて (Ga−O結合のピーク高さ)/(Ga−As結合のピ
ーク高さ)≦0.05 As3dスペクトルにおいて (As−As結合のピーク高さ)/(As−Ga結合の
ピーク高さ)≧0.5
2. A GaAs single crystal wafer having a photoelectron spectrum satisfying the following two conditions. In Ga3d spectrum (Ga-O bond peak height) / (Ga-As bond peak height) ≤0.05 In As3d spectrum (As-As bond peak height) / (As-Ga bond peak height) Sa) ≧ 0.5
【請求項3】半絶縁性GaAsウェハをクエン酸または
酢酸と、硫酸またはフッ酸との混合水溶液に浸漬して、
X線光電子分光法のスペクトルが次の2条件を満たすよ
うに表面処理することを特徴とするGaAs単結晶ウェ
ハの製造方法。 Ga3dスペクトルにおいて (Ga−O結合のピーク高さ)/(Ga−As結合のピ
ーク高さ)≦0.06 As3dスペクトルにおいて (As−As結合のピーク高さ)/(As−Ga結合の
ピーク高さ)≧0.47
3. A semi-insulating GaAs wafer is immersed in a mixed aqueous solution of citric acid or acetic acid and sulfuric acid or hydrofluoric acid,
A method for producing a GaAs single crystal wafer, which is characterized in that surface treatment is performed so that the spectrum of X-ray photoelectron spectroscopy satisfies the following two conditions. In Ga3d spectrum (Ga-O bond peak height) / (Ga-As bond peak height) ≤ 0.06 In As3d spectrum (As-As bond peak height) / (As-Ga bond peak height) Sa) ≧ 0.47
【請求項4】半絶縁性GaAsウェハをクエン酸または
酢酸と、硫酸またはフッ酸との混合水溶液に浸漬して、
X線光電子分光法のスペクトルが次の2条件を満たすよ
うに表面処理することを特徴とするGaAs単結晶ウェ
ハの製造方法。 Ga3dスペクトルにおいて (Ga−O結合のピーク高さ)/(Ga−As結合のピ
ーク高さ)≦0.05 As3dスペクトルにおいて (As−As結合のピーク高さ)/(As−Ga結合の
ピーク高さ)≧0.5
4. A semi-insulating GaAs wafer is immersed in a mixed aqueous solution of citric acid or acetic acid and sulfuric acid or hydrofluoric acid,
A method for producing a GaAs single crystal wafer, which is characterized in that surface treatment is performed so that the spectrum of X-ray photoelectron spectroscopy satisfies the following two conditions. In Ga3d spectrum (Ga-O bond peak height) / (Ga-As bond peak height) ≤0.05 In As3d spectrum (As-As bond peak height) / (As-Ga bond peak height) Sa) ≧ 0.5
【請求項5】上記混合水溶液の組成比が 5%C6 8 7 :49%HF:H2 O=1〜3:50
〜100:1〜50 である請求項3または4に記載のGaAs単結晶ウェハ
の製造方法。
5. The composition ratio of the mixed aqueous solution is 5% C 6 H 8 O 7 : 49% HF: H 2 O = 1 to 3:50.
The method of manufacturing a GaAs single crystal wafer according to claim 3 or 4, wherein: 100: 1 to 50.
【請求項6】上記混合水溶液の組成比が 5%CH3 CO2 H:49%HF:H2 O=1〜3:5
0〜100:1〜50 である請求項3または4に記載のGaAs単結晶ウェハ
の製造方法。
6. The composition ratio of the mixed aqueous solution is 5% CH 3 CO 2 H: 49% HF: H 2 O = 1 to 3: 5.
It is 0-100: 1-50, The manufacturing method of the GaAs single crystal wafer of Claim 3 or 4.
【請求項7】上記混合水溶液の組成比が 5%C6 8 7 :98%H2 SO4 :H2 O=1〜
3:100:1〜5 である請求項3または4に記載のGaAs単結晶ウェハ
の製造方法。
7. The composition ratio of the mixed aqueous solution is 5% C 6 H 8 O 7 : 98% H 2 SO 4 : H 2 O = 1 to
The method for producing a GaAs single crystal wafer according to claim 3 or 4, wherein the ratio is 3: 100: 1-5.
【請求項8】上記混合水溶液の組成比が 5%CH3 CO2 H:98%H2 SO4 :H2 O=1〜
3:100:1〜5 である請求項3または4に記載のGaAs単結晶ウェハ
の製造方法。
8. The composition ratio of the mixed aqueous solution is 5% CH 3 CO 2 H: 98% H 2 SO 4 : H 2 O = 1 to
The method for producing a GaAs single crystal wafer according to claim 3 or 4, wherein the ratio is 3: 100: 1-5.
【請求項9】X線源にAlKα、試料表面に対するX線
の入射角が20°、試料表面に対するアナライザーイン
プットレンズの角度が75°の測定条件で、GaAs単
結晶ウェハをX線光電子分光法で測定したときに得られ
る光電子スペクトルが、次の2条件を満たすGaAs単
結晶ウェハを選別することを特徴とするGaAs結晶ウ
ェハの選別方法。 Ga3dスペクトルにおいて (Ga−O結合のピーク高さ)/(Ga−As結合のピ
ーク高さ)≦0.06 As3dスペクトルにおいて (As−As結合のピーク高さ)/(As−Ga結合の
ピーク高さ)≧0.47
9. A GaAs single crystal wafer is subjected to X-ray photoelectron spectroscopy under the measurement conditions of AlKα as an X-ray source, an incident angle of X-rays with respect to the sample surface of 20 °, and an angle of an analyzer input lens with respect to the sample surface of 75 °. A method for selecting a GaAs crystal wafer, characterized in that a GaAs single crystal wafer satisfying the following two conditions is selected based on a photoelectron spectrum obtained by measurement. In Ga3d spectrum (Ga-O bond peak height) / (Ga-As bond peak height) ≤ 0.06 In As3d spectrum (As-As bond peak height) / (As-Ga bond peak height) Sa) ≧ 0.47
【請求項10】X線源にAlKα、試料表面に対するX
線の入射角が20°、試料表面に対するアナライザーイ
ンプットレンズの角度が75°の測定条件で、GaAs
単結晶ウェハをX線光電子分光法で測定したときに得ら
れる光電子スペクトルが、次の2条件を満たすGaAs
単結晶ウェハを選別することを特徴とするGaAs結晶
ウェハの選別方法。 Ga3dスペクトルにおいて (Ga−O結合のピーク高さ)/(Ga−As結合のピ
ーク高さ)≦0.05 As3dスペクトルにおいて (As−As結合のピーク高さ)/(As−Ga結合の
ピーク高さ)≧0.5
10. The X-ray source is AlKα, and X is for the sample surface.
Under the measurement condition that the incident angle of the line is 20 ° and the angle of the analyzer input lens with respect to the sample surface is 75 °, GaAs
The photoelectron spectrum obtained when a single crystal wafer is measured by X-ray photoelectron spectroscopy is GaAs that satisfies the following two conditions.
A method for selecting a GaAs crystal wafer, which comprises selecting a single crystal wafer. In Ga3d spectrum (Ga-O bond peak height) / (Ga-As bond peak height) ≤0.05 In As3d spectrum (As-As bond peak height) / (As-Ga bond peak height) Sa) ≧ 0.5
JP31163493A 1993-12-13 1993-12-13 Manufacturing method of GaAs single crystal wafer Expired - Fee Related JP3232833B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31163493A JP3232833B2 (en) 1993-12-13 1993-12-13 Manufacturing method of GaAs single crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31163493A JP3232833B2 (en) 1993-12-13 1993-12-13 Manufacturing method of GaAs single crystal wafer

Publications (2)

Publication Number Publication Date
JPH07165499A true JPH07165499A (en) 1995-06-27
JP3232833B2 JP3232833B2 (en) 2001-11-26

Family

ID=18019633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31163493A Expired - Fee Related JP3232833B2 (en) 1993-12-13 1993-12-13 Manufacturing method of GaAs single crystal wafer

Country Status (1)

Country Link
JP (1) JP3232833B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210038A (en) * 2003-12-26 2005-08-04 Renesas Technology Corp Fabrication method of semiconductor integrated circuit device
EP2003697A2 (en) * 2007-06-01 2008-12-17 Sumitomo Electric Industries, Ltd. GaAs semiconductor substrate and fabrication method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11891720B2 (en) 2020-03-02 2024-02-06 Sumitomo Electric Industries, Ltd. Gallium arsenide single crystal substrate and method for producing gallium arsenide single crystal substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210038A (en) * 2003-12-26 2005-08-04 Renesas Technology Corp Fabrication method of semiconductor integrated circuit device
EP2003697A2 (en) * 2007-06-01 2008-12-17 Sumitomo Electric Industries, Ltd. GaAs semiconductor substrate and fabrication method thereof
EP2003697A3 (en) * 2007-06-01 2009-08-05 Sumitomo Electric Industries, Ltd. GaAs semiconductor substrate and fabrication method thereof
US7619301B2 (en) 2007-06-01 2009-11-17 Sumitomo Electric Industries, Ltd. GaAs semiconductor substrate and fabrication method thereof

Also Published As

Publication number Publication date
JP3232833B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
EP2629319B1 (en) Process for cleaning compound semiconductor wafer
US5962883A (en) Article comprising an oxide layer on a GaAs-based semiconductor body
WO2010122821A1 (en) Process for producing indium-phosphorus substrate, process for producing epitaxial wafer, indium-phosphorus substrate, and epitaxial wafer
JP6070548B2 (en) Compound semiconductor substrate
US4555301A (en) Formation of heterostructures by pulsed melting of precursor material
TWI502635B (en) Method for manufacturing iii-v compound semiconductor substrate, method for manufacturing epitaxial wafer, iii-v compound semiconductor substrate, and epitaxial wafer
US10763339B2 (en) Method for manufacturing a semiconductor device having a Schottky contact
EP0226931B1 (en) A method of preparing semiconductor substrates
Fronius et al. Elimination of GaAs oval defects and high-throughput fabrication of selectively doped AlxGa1− xAs/GaAs heterostructures by MBE
JP3232833B2 (en) Manufacturing method of GaAs single crystal wafer
US4597825A (en) Intermediate passivation and cleaning of compound semiconductor surfaces
JP3218374B2 (en) Evaluation method for InP semiconductor surface and interface
Hansen et al. Scattering mechanisms and defects in InP epitaxially grown on (001) Si substrates
KR910009409B1 (en) Thermal etching processing method and its device with using molecular beam epitaxy
JP3306894B2 (en) GaAs compound semiconductor substrate
Horn-von Hoegen et al. Bi surfactant mediated epitaxy of Ge on Si (111)
JP2970236B2 (en) GaAs wafer and method of manufacturing the same
JP2784364B2 (en) Method for epitaxial growth of compound semiconductor
JPH0218579B2 (en)
JP2586626B2 (en) Epitaxial growth method
TW465019B (en) Device isolation process for gallium arsenide integrated circuit
JP2639376B2 (en) Method of growing III-V compound semiconductor
JPH06140326A (en) Manufacture of compound semiconductor substrate
JPH0473609B2 (en)
JPH06177100A (en) Processing method for surface of semiconductor wafer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010821

LAPS Cancellation because of no payment of annual fees