JPH07164209A - Composite cutting tool - Google Patents
Composite cutting toolInfo
- Publication number
- JPH07164209A JPH07164209A JP5313837A JP31383793A JPH07164209A JP H07164209 A JPH07164209 A JP H07164209A JP 5313837 A JP5313837 A JP 5313837A JP 31383793 A JP31383793 A JP 31383793A JP H07164209 A JPH07164209 A JP H07164209A
- Authority
- JP
- Japan
- Prior art keywords
- cutting
- thick film
- composite
- thickness
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、例えば高シリコン含
有のAl−Si系合金等の非鉄金属の切削に用いた場
合、優れた切削性能を長期に亘って発揮する人工ダイヤ
モンド厚膜からなる複合切削工具に関する。BACKGROUND OF THE INVENTION The present invention, when used for cutting non-ferrous metals such as Al-Si alloys with high silicon content, is a composite composed of artificial diamond thick film that exhibits excellent cutting performance for a long period of time. Regarding cutting tools.
【0002】[0002]
【従来の技術】従来、上記の非鉄金属切削には、1〜1
0mmの厚さと98%以上の理論密度比を有するWC基超
硬合金基体の表面を気相合成により形成された0.00
3〜0.01mmの厚さの人工ダイヤモンド薄膜で被覆し
てなる表面被覆WC基超硬合金製切削工具が用いられて
いる。2. Description of the Related Art Conventionally, 1 to 1 have been used for the above non-ferrous metal cutting.
0.00 formed on the surface of a WC-based cemented carbide substrate having a thickness of 0 mm and a theoretical density ratio of 98% or more by vapor phase synthesis
A surface-coated WC-based cemented carbide cutting tool coated with an artificial diamond thin film having a thickness of 3 to 0.01 mm is used.
【0003】[0003]
【発明が解決しようとする課題】一方、近時非鉄金属の
切削加工の高性能化および省力化に対する要求が強く、
これに伴いより一段の高速切削や高送りおよび高切込み
などの重切削が避けられない状況にあるが、上記の従来
表面被覆WC基超硬合金工具では、上記の様な過酷な切
削条件下では、ダイヤモンド薄膜とWC超硬合金との間
の大きな熱膨張係数の差が原因でダイヤモンド薄膜に剥
離が発生し易く、かつその膜厚も薄いことと合いまっ
て、比較的短時間で使用寿命に達するのが現状である。On the other hand, recently, there is a strong demand for high performance and labor saving in cutting of non-ferrous metals,
Along with this, heavy cutting such as higher speed cutting, high feed and high depth of cut is unavoidable, but with the conventional surface-coated WC-based cemented carbide tool, under the severe cutting conditions as described above, Due to the large difference in the coefficient of thermal expansion between the diamond thin film and the WC cemented carbide, the diamond thin film easily peels off, and this thin film also contributes to a relatively short service life. It is the current situation.
【0004】[0004]
【課題を解決するための手段】そこで、本発明者等は、
上述の観点から、過酷な切削条件下でも優れた耐摩耗性
を長期に亘って発揮する切削工具を開発すべく研究した
結果、切削工具をW、Ti、およびMoの炭化物および
炭窒化物並びにこれらの2種以上の複合炭化物および複
合炭窒化物のうちのいずれかからなり、かつ理論密度比
が90〜96%にして、厚さを1〜10mmとしたセラミ
ックス焼結基体と、厚さが0.1〜5mmの前記セラミッ
クス焼結基体と、厚さが0.1〜5mmの前記セラミック
ス焼結基体の表面に気相合成により形成された人工ダイ
ヤモンド厚膜とで構成すると、この結果の複合切削工具
は前記基体とダイヤモンド厚膜との熱膨張係数が、ほぼ
同等となるので過酷な条件下での切削加工でも、これら
両者間での剥離はなく、更に加えてダイヤモンド厚膜が
0.1〜5mmの極めて厚いことと合まって著しく長期に
亘って優れた切削性能を発揮するという知見を得たので
ある。Therefore, the present inventors have
From the above viewpoints, as a result of research to develop a cutting tool that exhibits excellent wear resistance for a long period of time even under severe cutting conditions, the results show that the cutting tool is made of carbides and carbonitrides of W, Ti, and Mo, and these. Of two or more kinds of composite carbides and composite carbonitrides and having a theoretical density ratio of 90 to 96% and a thickness of 1 to 10 mm; .. 1 to 5 mm of the ceramics sintered base and an artificial diamond thick film formed by vapor phase synthesis on the surface of the ceramics sintered base having a thickness of 0.1 to 5 mm. In the tool, since the coefficient of thermal expansion of the substrate and the diamond thick film are almost the same, there is no peeling between the two even in the cutting process under severe conditions. 5mm extreme Thicker and covering waited it was obtained a finding that excellent cutting performance over a considerably long.
【0005】本発明は、上記知見に基づいて得られたも
のであってW、Ti、TaおよびMoの炭化物および炭
窒化物並びにこれらの2種以上の複合炭化物および複合
炭窒化物のうちのいずれかからなり、かつ理論密度が9
0〜96%にして、厚さが1〜10mmとしたセラミック
ス焼結基体と、厚さが0.1〜5mmの前記セラミックス
焼結基体の表面に気相合成により形成された人工ダイヤ
モンド厚膜とで構成してなる複合切削工具に特徴を有す
るものである。The present invention has been achieved based on the above findings, and includes any of carbides and carbonitrides of W, Ti, Ta, and Mo, and two or more kinds of composite carbides and composite carbonitrides thereof. And has a theoretical density of 9
A ceramic sintered base having a thickness of 0 to 96% and a thickness of 1 to 10 mm, and an artificial diamond thick film formed by vapor phase synthesis on the surface of the ceramic sintered base having a thickness of 0.1 to 5 mm. It is characterized by a composite cutting tool constituted by.
【0006】また以下にこの発明の複合切削工具におい
て、上記の如く、数値限定した理由について説明する。 (a)焼結基体の理論密度比 焼結基体の理論密度比において、ダイヤモンド膜の熱膨
張係数との差を調節するものであるが、その理論密度比
が96%を越えると、熱膨張係数が大きくなり、ダイヤ
モンド厚膜との熱膨張係数との差が大きくなり過ぎ、ダ
イヤモンド膜の剥離が生じ易くなり、一方その理論密度
比が90%未満では熱膨張係数が小さくなって、ダイヤ
モンド厚膜との熱膨張係数との差が大きくなり、かつ焼
結基体に十分な強度が得られないことからその理論密度
比を90〜96%と定めた。The reason why the numerical values are limited as described above in the composite cutting tool of the present invention will be described below. (A) Theoretical density ratio of the sintered substrate The theoretical density ratio of the sintered substrate adjusts the difference from the coefficient of thermal expansion of the diamond film. If the theoretical density ratio exceeds 96%, the coefficient of thermal expansion exceeds And the difference in thermal expansion coefficient from the diamond thick film becomes too large, and the diamond film is liable to peel off. On the other hand, when the theoretical density ratio is less than 90%, the thermal expansion coefficient becomes small and the diamond thick film Therefore, the theoretical density ratio was determined to be 90 to 96% because the difference between the coefficient of thermal expansion and the coefficient of thermal expansion becomes large and sufficient strength cannot be obtained in the sintered substrate.
【0007】(b)焼結基体の厚さ その厚さが1mm以下では所望の強度が得られず、一方そ
の厚さが10mmあれば強度的には十分であることからそ
の厚さを1〜10mmと定めた。(B) Thickness of Sintered Substrate If the thickness is less than 1 mm, the desired strength cannot be obtained. On the other hand, if the thickness is 10 mm, the strength is sufficient. It was set to 10 mm.
【0008】(c)ダイヤモンド厚膜の厚さ その厚さが0.1mm以下では所望の切削寿命が得られ
ず、一方その厚さが5mmあれば所望の長期に亘る切削寿
命が得られるのでその厚さは0.1〜5mmと定めた。(C) Thickness of diamond thick film If the thickness is less than 0.1 mm, the desired cutting life cannot be obtained. On the other hand, if the thickness is 5 mm, the desired long-term cutting life can be obtained. The thickness was set to 0.1-5 mm.
【0009】[0009]
【実施例】次に、この発明の複合切削工具を実施例によ
り、具体的に説明する。原料粉末として、1〜3μmの
範囲内の所定の平均粒径を有するTiC粉末、WC粉
末、TaC粉末、(TiMo)C粉末、(TiTa)C
粉末、(TiW)C粉末、TaCN粉末(TiW)CN
粉末TaCN粉末(TiTa)CN粉末を用意し、これ
ら原料粉末を長さ:30mm、巾:20mm、厚さ:20mm
の大きさに圧縮成形し、Ar雰囲気中で1600〜17
00℃、3時間の焼結後、この焼結体と夫々温度:15
00〜1600℃、圧力:1000〜1500気圧、時
間:1時間の条件で静水圧プレスすることにより各種セ
ラミックス焼結素材を作製し、夫々2辺が5mmの直角3
角形で、厚さ12mmの寸法に加工し、その片面を研磨
後、ダイヤモンド粉末を用いてキズ付け処理して、第1
表に示される理論密度比および厚さを持ったセラミック
ス焼結基体A〜Oを夫々製造した。ついでセラミックス
焼結基体A〜Oの表面に気相合成法としての熱フィラメ
ント法、マイクロ波プラズマ法およびDCアークプラズ
マ法を用い、以下に示す条件、 (a)熱フィラメント法 原料ガス流量 H2 :500SCCM C2H5OH:13SCCM 圧力 :30Torr フィラメント温度 :2250℃ (b)マイクロ波プラズマ法 原料ガス流量 H2 :300SCCM CH4 :2.5SCCM 圧力 :50Torr マイクロ波電力 :800W(13.50MH
z) (c)DCアークプラズマ法 原料ガス流量 Ar :65SLM H2 :4SLM CH4 :0.10SLM 圧力 :80Torr 導入電力 :10KVA で表2に示される膜厚のダイヤモンド厚膜を形成するこ
とにより、本発明複合切削工具1〜15を作製した。ま
た比較の目的で基体がCo:5.5wt% WC:残量から
なる組成を有し、かつ理論密度比が99.9%で、厚さ
が4.8mmのWC基超硬合金からなり、かつこの表面に
上記条件での熱フィラメント法にて、厚さ:0.008
mmの人工ダイヤモンド薄膜を形成することにより、市販
の表面被覆WC基超硬合金製切削工具(以下従来切削工
具という)を製造した。EXAMPLES Next, the composite cutting tool of the present invention will be specifically described by way of examples. As raw material powder, TiC powder, WC powder, TaC powder, (TiMo) C powder, (TiTa) C having a predetermined average particle size within the range of 1 to 3 μm
Powder, (TiW) C powder, TaCN powder (TiW) CN
Powder TaCN powder (TiTa) CN powder is prepared, and these raw material powders have a length of 30 mm, a width of 20 mm, and a thickness of 20 mm.
Compression-molded to the size of 1600 to 17 in Ar atmosphere
After sintering at 00 ° C. for 3 hours, the temperature of each of the sintered bodies was 15
Various ceramics sintered materials are produced by hydrostatic pressing under the conditions of 00 to 1600 ° C, pressure: 1000 to 1500 atm, and time: 1 hour.
It was processed into a square shape with a thickness of 12 mm, one side of which was polished and then scratched with diamond powder.
Ceramic sintered substrates A to O having theoretical density ratios and thicknesses shown in the table were manufactured, respectively. Then, using the hot filament method, the microwave plasma method and the DC arc plasma method as the gas phase synthesis method on the surfaces of the ceramics sintered substrates A to O, the following conditions are provided: (a) Hot filament method Raw material gas flow rate H 2 : 500SCCM C 2 H 5 OH: 13SCCM Pressure: 30 Torr Filament temperature: 2250 ° C. (b) Microwave plasma method Raw material gas flow rate H 2 : 300 SCCM CH 4 : 2.5 SCCM Pressure: 50 Torr Microwave power: 800 W (13.50 MH)
z) (c) DC arc plasma method material gas flow rate Ar: 65SLM H 2: 4SLM CH 4: 0.10SLM Pressure: 80 Torr introduced Power: by forming the film thickness of the diamond thick film shown in Table 2 at 10KVA, The composite cutting tools 1 to 15 of the present invention were produced. For the purpose of comparison, the substrate has a composition of Co: 5.5 wt% WC: balance, and has a theoretical density ratio of 99.9% and a 4.8 mm thick WC-based cemented carbide, And, on this surface, by the hot filament method under the above conditions, the thickness: 0.008
A commercially available surface-coated WC-based cemented carbide cutting tool (hereinafter referred to as a conventional cutting tool) was manufactured by forming an artificial diamond thin film of mm.
【0010】ついて上記本発明切削工具1〜15および
従来切削工具について、これらの基体側にスパッター法
により、Ni金属を蒸着した後、この蒸着金属側を市販
のTi含有のロー材により減圧H2雰囲気中で1000
℃、10分間超硬合金製シャンクにロー付けした後、ス
クイ面を#2000のダイヤモンド砥石により研磨した
状態で、 被削材料:A390−T6(Al−18%Si合金) 切削速度:900m/min 切り込み 1.2mm 送り 0.3mm/rev 切削時間 20分間 冷却剤 水溶性油剤 の条件でAl−Si系合金の湿式高速連続切削試験を行
ない、切刃の逃げ面摩耗幅を測定したこの測定結果を表
2に示した。Then, with respect to the cutting tools 1 to 15 of the present invention and the conventional cutting tool, Ni metal is vapor-deposited on the substrate side by a sputtering method, and then the vapor-deposited metal side is decompressed in a H 2 atmosphere with a commercially available Ti-containing brazing material. 1000 in
After brazing to a cemented carbide shank at 10 ° C for 10 minutes, with the rake surface polished with a # 2000 diamond grindstone, work material: A390-T6 (Al-18% Si alloy) Cutting speed: 900 m / min Depth of cut 1.2 mm Feed 0.3 mm / rev Cutting time 20 minutes Wet high speed continuous cutting test of Al-Si alloy under the condition of coolant and water-soluble oil, and measured the flank wear width of the cutting edge. The results are shown in Table 2.
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【表2】 [Table 2]
【0013】[0013]
【発明の効果】表2に示された結果から、本発明切削工
具1〜15はいずれも難削材である高Si含有Al合金
の高速切削にもダイヤモンド厚膜に剥離が発生すること
なく、優れた耐摩耗性を示すのに対して、従来切削工具
では切削開始後比較的短時間でダイヤモンド膜に剥離が
発生し、使用寿命に至ることが明かである。上述の様に
この発明の複合切削工具はダイヤモンド厚膜のセラミッ
クス焼結基体に対する密着性が著しく優れているので、
高速切削は勿論のことより過酷な条件での重切削におい
てもダイヤモンド厚膜に剥離の発生なく、著しく長期に
亘って優れた切削性能を発揮するのである。From the results shown in Table 2, all of the cutting tools 1 to 15 of the present invention do not cause peeling in the diamond thick film even at high speed cutting of high Si content Al alloy which is a difficult-to-cut material. While it exhibits excellent wear resistance, it is clear that the conventional cutting tool causes delamination of the diamond film within a relatively short time after the start of cutting, leading to the end of its service life. As described above, the composite cutting tool of the present invention has extremely excellent adhesion to the ceramics sintered substrate of the diamond thick film.
Not only high-speed cutting but also heavy cutting under harsh conditions does not cause peeling of the diamond thick film and exhibits excellent cutting performance for a remarkably long time.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/56 301 F C23C 16/26 C30B 25/02 P 29/04 X 8216−4G C04B 35/56 S ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical indication C04B 35/56 301 F C23C 16/26 C30B 25/02 P 29/04 X 8216-4G C04B 35 / 56 S
Claims (1)
窒化物並びにこれらの2種以上の複合炭化物および複合
炭窒化のうちのいずれかからなり、かつ理論密度比が9
0〜96%にして、厚さを1〜10mmとしたセラミック
ス焼結基体と、厚さが0.1〜5mmの前記セラミックス
焼結基体の表面に気相合成により形成された人工ダイヤ
モンド厚膜とで構成したことを特徴とする複合切削工
具。1. A carbide and carbonitride of W, Ti, Ta and Mo, or a composite carbide or composite carbonitride of two or more of these, and having a theoretical density ratio of 9
A ceramics sintered base having a thickness of 0 to 96% and a thickness of 1 to 10 mm, and an artificial diamond thick film formed on the surface of the ceramics sintered base having a thickness of 0.1 to 5 mm by vapor phase synthesis. A composite cutting tool characterized by being configured with.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5313837A JPH07164209A (en) | 1993-12-14 | 1993-12-14 | Composite cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5313837A JPH07164209A (en) | 1993-12-14 | 1993-12-14 | Composite cutting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07164209A true JPH07164209A (en) | 1995-06-27 |
Family
ID=18046113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5313837A Pending JPH07164209A (en) | 1993-12-14 | 1993-12-14 | Composite cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07164209A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998030357A1 (en) * | 1997-01-13 | 1998-07-16 | Winter Cvd Technik Gmbh | Abrasive body |
JP2008274439A (en) * | 2008-05-21 | 2008-11-13 | Akita Prefecture | W-ti-c-based composite body and production method therefor |
WO2012147737A1 (en) * | 2011-04-26 | 2012-11-01 | 日本タングステン株式会社 | Tungsten carbide-based sinter and abrasion-resistant members using same |
-
1993
- 1993-12-14 JP JP5313837A patent/JPH07164209A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998030357A1 (en) * | 1997-01-13 | 1998-07-16 | Winter Cvd Technik Gmbh | Abrasive body |
JP2008274439A (en) * | 2008-05-21 | 2008-11-13 | Akita Prefecture | W-ti-c-based composite body and production method therefor |
WO2012147737A1 (en) * | 2011-04-26 | 2012-11-01 | 日本タングステン株式会社 | Tungsten carbide-based sinter and abrasion-resistant members using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3866305B2 (en) | Composite high hardness material for tools | |
EP0695731A1 (en) | Super hard composite material for tools | |
JP3402146B2 (en) | Surface-coated cemented carbide end mill with a hard coating layer with excellent adhesion | |
JPH08104583A (en) | Composite high hardness material for tool | |
JP2004100004A (en) | Coated cemented carbide and production method therefor | |
JP4375691B2 (en) | Composite high hardness material | |
JP2007136655A (en) | Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting excellent wear resistance in high-speed heavy cutting of high-hardness steel | |
JPH07164209A (en) | Composite cutting tool | |
JP2625923B2 (en) | Surface coated cermet for cutting tools | |
JPH10237650A (en) | Wc base cemented carbide and its production | |
JP2005153098A (en) | Surface coated cutting tool | |
JPH0813148A (en) | Peeling resistant diamond-coated member | |
JP2003236710A (en) | Cutting tip made of cubic crystal boron nitride group ultrahigh pressure sintered material having excellent resistance to chipping | |
JPH0873289A (en) | Composite high hardness material for tool | |
JPH0222453A (en) | Surface-treated tungsten carbide-base sintered hard alloy for cutting tool | |
JPH0353070A (en) | Surface coated tool member having excellent wear resistance | |
RU2018411C1 (en) | Article, mainly cutting tool, containing sintered base of tungsten carbide base and diamond coating | |
JP3174464B2 (en) | Gas phase synthetic diamond coated sintered body | |
JP2001162411A (en) | Surface-coated cutting tool of cemented carbide provided with excellent abrasion resistance and chipping resistance | |
JPS63306805A (en) | Diamond coated cutting tool | |
JP4484500B2 (en) | Surface coated cutting tool | |
JP2003236705A (en) | Covering member covering hard membrane containing rare earth oxide | |
JP4817799B2 (en) | Surface covering | |
JP2662692B2 (en) | Hard polycrystalline diamond tool | |
JP2970199B2 (en) | Surface-coated Ti-carbon boride based cermet cutting tool with excellent adhesion of hard coating layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20000808 |