JPH07148426A - Synthetic diamond, manufacture of the same, and method for measuring strain of diamond - Google Patents
Synthetic diamond, manufacture of the same, and method for measuring strain of diamondInfo
- Publication number
- JPH07148426A JPH07148426A JP6169154A JP16915494A JPH07148426A JP H07148426 A JPH07148426 A JP H07148426A JP 6169154 A JP6169154 A JP 6169154A JP 16915494 A JP16915494 A JP 16915494A JP H07148426 A JPH07148426 A JP H07148426A
- Authority
- JP
- Japan
- Prior art keywords
- less
- diamond
- crystal
- ppm
- synthetic diamond
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光学部品、分光結晶、モ
ノクロメーター、レーザー窓材、放射光又は放射線用窓
材、アンビル、装飾用途や半導体基板などに用いられる
無色透明で不純物、結晶欠陥、歪み等の少ない高純度で
結晶性の良い合成ダイヤモンド、その製造方法ならびに
ダイヤモンドの歪み測定方法に関するものである。BACKGROUND OF THE INVENTION The present invention relates to an optical component, a dispersive crystal, a monochromator, a laser window material, a window material for synchrotron radiation or radiation, an anvil, a colorless and transparent impurity and a crystal defect used for decorative purposes and semiconductor substrates. The present invention relates to a synthetic diamond having a high degree of purity and good crystallinity with less distortion, a method for producing the same, and a method for measuring the distortion of diamond.
【0002】[0002]
【従来の技術】ダイヤモンドは高硬度、高強度で熱伝導
性、耐食性にも優れ、光の透過性がよい。このことから
ダイヤモンド結晶は、ヒートシンク、線引き用ダイス、
精密加工用バイト、光学部品、レーザー窓、超高圧発生
用アンビルなど幅広い用途に適用されている。天然に産
出するダイヤモンドは、その殆どがIa型と呼ばれ、窒
素を1000ppm程度含む。この天然ダイヤモンド中
の窒素は凝集した形で結晶内に分布するため、結晶欠陥
や内部歪みが大きく、また、赤外領域にこの窒素による
光の吸収がある。また原石により、バラツキが大きい。
そのため、適用できる用途がヒートシンクや工具関係に
限られていた。また、天然ダイヤモンドで窒素不純物が
数ppm以下の高純度品はIIa型と呼ばれ、このような
ダイヤモンドは天然産出総量の約2%程度と稀少なもの
である。天然のIIa型ダイヤモンドは不純物が少なく、
無色透明で光の透過特性が優れているため、装飾用途や
光学部品、レーザー窓材等に用いられている。しかしな
がら、地球内部での複雑な成長過程を経てきたことを反
映し、結晶内部に欠陥や、歪みがかなり多く残留する。
歪みに関しては、窒素を含む合成ダイヤモンドよりむし
ろ多い。また、天然のIIa型は産出量が少なく、極めて
高価なもので、入手にかなり問題がある。2. Description of the Related Art Diamond has high hardness, high strength, excellent thermal conductivity, corrosion resistance, and good light transmittance. From this, the diamond crystal is a heat sink, wire drawing die,
It is used in a wide range of applications such as precision machining tools, optical parts, laser windows, and anvils for generating ultra-high pressure. Most naturally occurring diamonds are called type Ia and contain about 1000 ppm of nitrogen. Since nitrogen in the natural diamond is distributed in the crystal in an aggregated form, crystal defects and internal strain are large, and the nitrogen absorbs light in the infrared region. Also, due to the rough stones, the variation is large.
Therefore, the applicable applications have been limited to heat sinks and tools. A high-purity natural diamond having nitrogen impurities of several ppm or less is called type IIa, and such a diamond is rare, about 2% of the total amount of natural production. Natural type IIa diamond has few impurities,
Since it is colorless and transparent and has excellent light transmission properties, it is used for decorative purposes, optical parts, laser window materials and the like. However, reflecting the fact that it has undergone a complicated growth process inside the earth, many defects and strains remain inside the crystal.
In terms of strain, it is more than synthetic diamond containing nitrogen. In addition, natural type IIa has a small amount of production and is extremely expensive, and there is a problem in obtaining it.
【0003】超高圧高温下で人工的に合成される通常の
ダイヤモンドはIb型と呼ばれ、数100ppmの窒素
を含む。この窒素は、ダイヤモンド結晶中に孤立置換型
不純物として含まれるため、結晶は黄色を呈し、装飾用
としては価値が低い。また、成長セクターにより窒素の
濃度が極端に異なり、結晶内部で窒素の分布に大きなム
ラがある。そのため結晶内に歪みが多い。一方、ダイヤ
モンド合成時に、溶媒金属中にAlなどの窒素ゲッター
を添加することにより合成されたダイヤモンド中の窒素
を数ppm程度にまで除去できて合成IIa型ダイヤモン
ドを得ることが知られている。しかし、窒素ゲッターを
溶媒金属中に添加すると、通常は結晶中に内包物が多く
取り込まれやすくなり、良質な結晶の製造歩留りが大き
く低下する。このため、従来の合成IIa型ダイヤモンド
は天然のIIa型ダイヤモンドより製造コストが高くなっ
ていた。また、合成ダイヤモンド中の窒素の除去も1p
pm程度が限度で、装飾用としての評価もGIAスケー
ルでH〜J程度であった(特開昭52−88289号公
報)。以上のように、従来の合成ダイヤモンドにおいて
は、殆ど窒素を含まずしかも内包物や内部欠陥のない結
晶は知られていなかった。A normal diamond artificially synthesized under ultrahigh pressure and high temperature is called type Ib and contains several hundred ppm of nitrogen. Since this nitrogen is contained in the diamond crystal as an isolated substitution type impurity, the crystal exhibits a yellow color and is of little value for decoration. Further, the concentration of nitrogen is extremely different depending on the growth sector, and there is a large unevenness in the distribution of nitrogen inside the crystal. Therefore, there are many distortions in the crystal. On the other hand, it is known that by adding a nitrogen getter such as Al to a solvent metal at the time of diamond synthesis, nitrogen in the synthesized diamond can be removed to about several ppm and a synthetic IIa type diamond can be obtained. However, when the nitrogen getter is added to the solvent metal, it is usually easy for a large amount of inclusions to be incorporated into the crystal, and the production yield of good-quality crystals is greatly reduced. For this reason, the conventional synthetic type IIa diamond has a higher manufacturing cost than the natural type IIa diamond. Also, removal of nitrogen in synthetic diamond is 1p
The limit was about pm, and the evaluation for decoration was about H to J on the GIA scale (JP-A-52-88289). As described above, in the conventional synthetic diamond, a crystal containing almost no nitrogen and containing neither inclusions nor internal defects was not known.
【0004】本発明者等は、窒素除去効率の高いIVa族
およびVa族元素から選ばれる少なくとも1種以上を窒
素ゲッターとして用い、同時に内包物が結晶中に取り込
まれないように、IVa族元素の炭化物の生成を抑制する
物質や、炭化物を拡散させる物質、または溶媒金属中の
炭素の活量を向上させる物質を溶媒金属中に添加するこ
とにより、窒素含有量0.1ppm以下の内包物のない
IIa型合成ダイヤモンドの製造に成功した。しかし、結
晶中にはやはり数ppmのホウ素が含まれ、そのため赤
外領域にホウ素による光の吸収があり、また結晶内に若
干の歪みや欠陥もあった。The present inventors have used at least one element selected from the group IVa and group Va elements having a high nitrogen removal efficiency as a nitrogen getter, and at the same time, to prevent inclusions from being incorporated into the crystal, a group IVa element By adding a substance that suppresses the formation of carbides, a substance that diffuses carbides, or a substance that improves the activity of carbon in the solvent metal to the solvent metal, inclusions with a nitrogen content of 0.1 ppm or less can be eliminated.
Successfully manufactured IIa type synthetic diamond. However, the crystal still contained several ppm of boron, so that light was absorbed by boron in the infrared region, and there were some distortions and defects in the crystal.
【0005】[0005]
【発明が解決しようとする課題】上記のように天然のダ
イヤモンドは、結晶内部に多くの欠陥や大きな歪みがあ
る。天然IIa型ダイヤモンドは不純物が少ないものの、
欠陥や歪みなどの結晶性に関しては良くない。そのた
め、加工中に亀裂が入りやすく、また、超高圧発生用ア
ンビル、FT−IR用コンプレッションセル、レーザー
の窓材など、ダイヤモンドとしての強度を必要とする分
野に用いると、場合によっては直ぐに壊れてしまうとい
う問題があった。また、モノクロメーターや半導体基板
などは高度な結晶性が要求されるため、この分野には適
用できなかった。一方、人工合成によるIIa型ダイヤモ
ンドは結晶性に関しては天然のものに比べてはるかに優
れているものの、充分とはいえず、加工歩留りが低いこ
と、ダイヤモンド本来の特性と比べると機械的強度が低
いこと、モノクロメーターや半導体基板などの結晶性を
要求される用途には適用できないなどの問題があった。
また、従来の合成IIa型ダイヤモンド結晶には数ppm
のホウ素が含まれ、そのため赤外領域にホウ素による光
の吸収があり、光学部品としての応用に問題があった。
また、結晶内に若干の歪みや欠陥も存在した。すなわ
ち、温度差法によるダイヤモンドの合成においては、炭
素源にダイヤモンド粉末を用いるが、市販の合成ダイヤ
モンド粉末には10〜1000ppmのホウ素を含み、
天然ダイヤモンド粉末にも数十から数百ppmのホウ素
を含みバラツキも大きい。このような炭素源を用いてダ
イヤモンドを合成すると、結晶中には数ppm〜十数p
pmのホウ素を含有し、結晶は青色を呈する。このた
め、赤外領域および紫外〜可視領域にホウ素による吸収
があり、光学部品としては好ましくない。また、結晶の
成長セクターによりホウ素の濃度が極端に異なるなど、
結晶内部でのホウ素の分布に大きなムラがある。この点
が結晶性の良くない理由の一つであると考えられる。As described above, natural diamond has many defects and large strains inside the crystal. Although natural type IIa diamond has few impurities,
It is not good in terms of crystallinity such as defects and distortion. Therefore, cracks are likely to occur during processing, and when used in fields requiring strength as diamond, such as an ultra-high pressure generating anvil, FT-IR compression cell, and laser window material, in some cases, it immediately breaks. There was a problem of being lost. Further, since a monochromator, a semiconductor substrate and the like are required to have a high degree of crystallinity, they cannot be applied to this field. On the other hand, although artificially synthesized type IIa diamond is far superior in crystallinity to natural ones, it cannot be said to be sufficient, and the processing yield is low, and its mechanical strength is lower than the original characteristics of diamond. However, there is a problem that it cannot be applied to applications requiring crystallinity such as a monochromator and a semiconductor substrate.
In addition, it is several ppm for conventional synthetic type IIa diamond crystals.
Since boron is contained therein, light is absorbed by boron in the infrared region, and there is a problem in application as an optical component.
There were also some distortions and defects in the crystal. That is, in the synthesis of diamond by the temperature difference method, diamond powder is used as a carbon source, but commercially available synthetic diamond powder contains 10 to 1000 ppm of boron,
Natural diamond powder also contains tens to hundreds of ppm of boron and has a large variation. When diamond is synthesized using such a carbon source, it is several ppm to several tens of p in the crystal.
It contains pm boron and the crystals are blue in color. Therefore, there is absorption by boron in the infrared region and the ultraviolet to visible region, which is not preferable as an optical component. In addition, the concentration of boron is extremely different depending on the crystal growth sector,
There is a large unevenness in the distribution of boron inside the crystal. This point is considered to be one of the reasons for poor crystallinity.
【0006】ところで、ダイヤモンドの歪みの測定につ
いては、従来偏向光透過顕微鏡による目視測定が行われ
ていたが、この方法は定量という点ではあまり精密では
ない。また、二結晶法のX線回折法において第一結晶と
してよく用いられているSi(004)またはGe(0
04)を用いてダイヤモンドの歪みを測定する方法も提
案されているが、回折に使用する結晶面間隔がダイヤモ
ンドと同じではないのでロッキングカーブの半値幅が非
常に広がり(例えば60秒程度)、精密かつ定量的な歪
み評価には結びつかなかった。本発明は以上のような現
状に鑑み、高純度で不純物、結晶欠陥、歪み等の少ない
合成ダイヤモンドとその製造方法および合成ダイヤモン
ドの歪みの測定方法を提供しようと意図したものであ
る。[0006] By the way, the measurement of the strain of diamond has conventionally been performed by visual measurement using a polarized light transmission microscope, but this method is not very precise in terms of quantification. Further, Si (004) or Ge (0) which is often used as the first crystal in the X-ray diffraction method of the two-crystal method.
A method for measuring the strain of diamond using 04) has also been proposed, but the half-width of the rocking curve is extremely wide (for example, about 60 seconds) because the crystal plane spacing used for diffraction is not the same as that of diamond, And it did not lead to quantitative distortion evaluation. In view of the above situation, the present invention is intended to provide a synthetic diamond having high purity and less impurities, crystal defects, strain, etc., a method for producing the same, and a method for measuring strain of the synthetic diamond.
【0007】[0007]
【課題を解決するための手段】上記の課題を解決する本
発明は、(1)窒素含有量が10ppm以下、好ましく
は0.1ppm以下、かつホウ素含有量が1ppm以
下、好ましくは0.1ppm以下であることを特徴とす
る歪みの少ない合成ダイヤモンド、(2)二結晶法によ
るX線回折において、第一結晶にダイヤモンド結晶を用
い、(004)面平行配置で、CuKα線により測定し
た場合のX線回折ロッキングカーブの半値幅が6秒以下
であることを特徴とする歪みの少ない合成ダイヤモン
ド、(3)分解能が1cm-1以下のラマン分光分析装置
で測定したダイヤモンドのラマン分光スペクトルの13
32〜1333cm-1におけるピークの半値幅が2.3
cm-1以下、好ましくは2cm-1以下であることを特徴
とする歪みの少ない合成ダイヤモンドを提供するもので
ある。また本発明は上記(1)〜(3)の特徴の内の少
なくとも2つの特徴を組み合わせて有する歪みの少ない
合成ダイヤモンドにも関するものである。更に、本発明
は上記の歪みの少ない合成ダイヤモンドを製造する方法
も提供するものであり、本発明の製造方法は温度差法に
よるダイヤモンド単結晶の合成方法において、ホウ素含
有量が10ppm以下の炭素源およびホウ素含有量が1
ppm以下の溶媒金属を用い、かつ該溶媒金属中に窒素
ゲッターを添加して上記(1)〜(3)のいずれかの特
徴を有する歪みの少ないダイヤモンドを合成することを
特徴とする。本発明においては、上記炭素源としてハロ
ゲン化処理によりホウ素を除去してホウ素含有量を1p
pm以下とされた黒鉛を用いることが特に好ましい。ま
た本発明においては、上記窒素ゲッターが周期律表のIV
a族およびVa族元素から選ばれる少なくとも1種以上
であることが特に好ましい。また本発明においては、上
記溶媒金属が周期律表のIVa族およびVa族元素から選
ばれる元素の炭化物の生成を抑制する元素を添加された
ものであることが特に好ましい。また本発明において
は、上記溶媒金属と種面との間に結晶の初期成長の安定
化のための緩衝材を配することが特に好ましい。また本
発明においては、温度差法により超高圧高温下でダイヤ
モンドを合成した後に、試料部の温度および圧力を常温
常圧に降温、除圧する際に、該試料部の温度が300〜
1000℃の状態で除圧を完了することも特に好ましい
実施態様として挙げられる。さらに本発明は合成ダイヤ
モンドの歪みの測定方法を提供するものであり、その第
一は第一結晶としてダイヤモンド結晶を用いてX線回折
ロッキングカーブを測定しその半値幅に基づき合成ダイ
ヤモンド中の歪みを評価することを特徴とする。第二
は、Si、Ge又はダイヤモンド結晶を用いた四結晶法
によりX線回折ロッキングカーブを測定しその半値幅に
基づき合成ダイヤモンド中の歪みを評価することを特徴
とする。第三は、ラマン分光スペクトルの1332cm
-1のピークを測定しその半値幅に基づき合成ダイヤモン
ド中の歪みを評価することを特徴とする合成ダイヤモン
ドの歪み測定方法である。Means for Solving the Problems The present invention for solving the above-mentioned problems includes (1) a nitrogen content of 10 ppm or less, preferably 0.1 ppm or less, and a boron content of 1 ppm or less, preferably 0.1 ppm or less. (2) X-ray diffraction measured by CuKα ray in a (004) plane parallel arrangement, using a diamond crystal as the first crystal in X-ray diffraction by the two-crystal method. A synthetic diamond with little distortion characterized by a half-width of the line diffraction rocking curve of 6 seconds or less, (3) 13 Raman spectroscopic spectra of diamond measured by a Raman spectroscopic analyzer having a resolution of 1 cm -1 or less.
The full width at half maximum of the peak at 32 to 1333 cm -1 is 2.3.
The present invention provides a synthetic diamond with a low strain, which is characterized in that it is not more than cm -1 , preferably not more than 2 cm -1 . The present invention also relates to a synthetic diamond having a small strain, which has a combination of at least two of the features (1) to (3). Further, the present invention also provides a method for producing the above-mentioned synthetic diamond having less strain, and the production method of the present invention is a carbon source having a boron content of 10 ppm or less in the method for synthesizing a diamond single crystal by a temperature difference method. And boron content is 1
It is characterized in that a solvent metal of ppm or less is used, and a nitrogen getter is added to the solvent metal to synthesize a diamond having a small strain having any one of the characteristics (1) to (3). In the present invention, boron is removed by halogenation as the carbon source so that the boron content is 1 p
It is particularly preferable to use graphite of pm or less. Further, in the present invention, the nitrogen getter is IV of the periodic table.
It is particularly preferable that it is at least one selected from the group a and group Va elements. Further, in the present invention, it is particularly preferable that the solvent metal is added with an element that suppresses the formation of carbide of an element selected from the IVa group and the Va group elements of the periodic table. Further, in the present invention, it is particularly preferable to dispose a buffer material between the solvent metal and the seed surface for stabilizing the initial growth of crystals. Further, in the present invention, after synthesizing diamond under an ultrahigh pressure and high temperature by a temperature difference method, when the temperature and pressure of the sample part are lowered to room temperature and normal pressure and depressurized, the temperature of the sample part is 300 to
Completion of depressurization at 1000 ° C. is also mentioned as a particularly preferred embodiment. Further, the present invention provides a method for measuring the strain of synthetic diamond, the first of which is to measure the X-ray diffraction rocking curve using a diamond crystal as the first crystal and to determine the strain in the synthetic diamond based on the half width. Characterized by evaluation. The second is characterized in that the X-ray diffraction rocking curve is measured by the four-crystal method using Si, Ge or diamond crystals and the strain in the synthetic diamond is evaluated based on the half-value width. Third, the Raman spectrum of 1332 cm
A method for measuring strain of a synthetic diamond, which comprises measuring a peak of -1 and evaluating a strain in the synthetic diamond based on a half width thereof.
【0008】[0008]
【作用】上記の問題を解決するため、本発明者等は各種
ダイヤモンドの結晶性を種々の手段で評価した。その研
究途上、本発明等が開発した非常に高純度で歪みの少な
い合成ダイヤモンドを第一結晶として用いたX線回折法
を開発できた。この手法によれば、非常に精密かつ定量
的に歪みを測定できる。そして、ダイヤモンド結晶中の
歪みは、第一結晶としてダイヤモンド結晶を用いて測定
したX線回折ロッキングカーブの半値幅、四結晶法によ
り測定したX線回折ロッキングカーブの半値幅またはラ
マン分光スペクトルの1332〜1333cm-1のピー
ク半値幅で的確にかつ定量的に評価できるという新規な
知見を得た。この手法により検討の結果、天然ダイヤモ
ンドではIb型、IIa型ともにかなり多くの歪みが存在
し、合成ダイヤモンドの方がはるかに歪みが少ないこと
が判明した。さらに、合成ダイヤモンドでも窒素やホウ
素等の不純物がある程度以上含まれているものには歪み
が多く、これらの不純物量が0.1ppm以下の場合
に、ダイヤモンド結晶中の歪みが殆どなくなることを見
いだした。すなわち、二結晶法によるX線回折におい
て、第一結晶にダイヤモンド結晶を用い、(004)面
平行配置で、CuKα線により測定したX線回折のロッ
キングカーブの半値幅が6秒以下、あるいは上記ラマン
分光スペクトルの1332〜1333cm-1のピークの
半値幅が2cm-1以下であるとき、結晶中の歪みは殆ど
なくなることを見いだした。In order to solve the above problems, the present inventors evaluated the crystallinity of various diamonds by various means. During the research, an X-ray diffraction method using a very high purity and low strain synthetic diamond developed by the present invention as a first crystal could be developed. According to this method, the strain can be measured very accurately and quantitatively. The strain in the diamond crystal is the full width at half maximum of the X-ray diffraction rocking curve measured using the diamond crystal as the first crystal, the full width at half maximum of the X-ray diffraction rocking curve measured by the four-crystal method, or the Raman spectroscopic spectrum of 1332-. A new finding was obtained that the peak half width of 1333 cm −1 can be evaluated accurately and quantitatively. As a result of examination by this method, it was found that in natural diamond, both Ib type and IIa type have considerably large strains, and synthetic diamond has much less strain. Further, it has been found that even synthetic diamonds containing impurities such as nitrogen and boron to a certain extent have a large amount of strain, and when the amount of these impurities is 0.1 ppm or less, the strain in the diamond crystal is almost eliminated. . That is, in the X-ray diffraction by the two-crystal method, a diamond crystal is used as the first crystal, and the rocking curve of the X-ray diffraction measured by CuKα ray in the (004) plane parallel arrangement has a half value width of 6 seconds or less, or the Raman when the half-value width of the peak of 1332~1333Cm -1 of the spectrum is 2 cm -1 or less, the strain in the crystal was found that almost no.
【0009】本発明の製造方法においては、結晶中の内
部欠陥や歪みを少なくするため、まず原料や溶媒金属中
のホウ素不純物を極力減らして、なおかつ、窒素ゲッタ
ーを該溶媒金属重量に対し0.1〜5重量%添加して、
結晶中の窒素含有量およびホウ素含有量を各々0.1p
pm以下にする。該溶媒金属としては例えばFe、C
o、Ni、Mn、Cr等の金属あるいはこれらの金属か
らなる合金が挙げられる。また該窒素ゲッターとしては
窒素との反応性が高い物質でダイヤモンドの結晶成長を
阻害しないものを用いるが、例えば周期律表のIVa族お
よびVa元素例えばTi、Zr、Hf等から選ばれる元
素の少なくとも1種以上である金属、合金が挙げられ
る。本発明の炭素源としてはホウ素含有量10ppm以
下の高純度なダイヤモンド粉末を用いることが好まし
く、さらに好ましくはハロゲン処理してホウ素量を殆ど
除去した高純度黒鉛を原料とすれば、より効果的であ
る。また同時に、IVa族およびVa族元素から選ばれる
元素の炭化物の生成を抑制する元素例えばCu、Ag、
Au等から選ばれる元素を溶媒金属に対し0.1〜20
重量%添加することも効果的である。In the production method of the present invention, in order to reduce internal defects and distortion in the crystal, first, boron impurities in the raw material and the solvent metal are reduced as much as possible, and the nitrogen getter is added to the solvent metal weight of 0. Add 1-5% by weight,
The nitrogen content and the boron content in the crystal are each 0.1 p
pm or less. Examples of the solvent metal include Fe and C
Examples thereof include metals such as o, Ni, Mn, and Cr, or alloys containing these metals. As the nitrogen getter, a substance having a high reactivity with nitrogen that does not inhibit the crystal growth of diamond is used. For example, at least an element selected from Group IVa of the periodic table and Va elements such as Ti, Zr, and Hf. Examples include metals and alloys of one or more kinds. As the carbon source of the present invention, it is preferable to use high-purity diamond powder having a boron content of 10 ppm or less, and it is more effective to use a high-purity graphite that has been subjected to a halogen treatment to remove most of the boron amount. is there. At the same time, elements that suppress the formation of carbides of elements selected from the IVa group and Va group elements, such as Cu, Ag,
The element selected from Au and the like is 0.1 to 20 with respect to the solvent metal.
Addition by weight% is also effective.
【0010】さらに、種面と溶媒金属との間に結晶初期
の成長状態の安定化のためAl、Ni、Cu、Zn、G
a、Ag、Cd、In、Sn、Au、Tl及びPbから
なる群から選ばれる元素を材質とする緩衝材、例えばA
l板やCu板などの薄板で厚さ0.01mm〜0.5mmの
ものを配することが非常に効果的である。このような手
段を採用することにより、内包物の混入による歪みや、
結晶成長初期の不安定成長による結晶中の結晶欠陥や歪
みを低減させることができる。さらには、温度差法によ
るダイヤモンド合成の技術分野での一般的な超高圧高温
条件でダイヤモンドを合成させた後、内部温度が300
〜1000℃の状態で、好ましくは400〜800℃、
より好ましくは500〜600℃の状態で加圧を解除す
ると、より効果的で、結晶に応力による歪みが残らない
ようになる。Further, Al, Ni, Cu, Zn, and G are formed between the seed surface and the solvent metal in order to stabilize the growth state in the initial stage of the crystal.
A buffer material made of an element selected from the group consisting of a, Ag, Cd, In, Sn, Au, Tl and Pb, for example, A
It is very effective to dispose a thin plate such as a 1 plate or a Cu plate having a thickness of 0.01 mm to 0.5 mm. By adopting such means, distortion due to inclusion of inclusions,
It is possible to reduce crystal defects and strain in the crystal due to unstable growth in the initial stage of crystal growth. Furthermore, after synthesizing diamond under the superhigh-pressure and high-temperature conditions generally used in the technical field of diamond synthesis by the temperature difference method, the internal temperature is 300
~ 1000 ° C, preferably 400-800 ° C,
More preferably, releasing the pressure at a temperature of 500 to 600 ° C. is more effective, and the strain due to stress does not remain in the crystal.
【0011】以下に本発明の実施態様を要約して示す。 (1)窒素ゲッターを溶媒に対して0.1〜5重量%添
加する請求項15〜20のいずれかに記載された歪みの
少ない合成ダイヤモンドの製造方法。 (2)溶媒金属がFe、Co、Ni、Mn、Crの金属
又はこれらの合金から選ばれる少なくとも1種である請
求項15〜20のいずれかに記載された歪みの少ない合
成ダイヤモンドの製造方法。 (3)請求項15〜20のいずれかと上記(1)及び
(2)を組み合わせた合成ダイヤモンドの製造方法。 (4)周期律表のIVa族およびVa族元素から選ばれる
元素の炭化物の生成を抑制する元素を溶媒金属に対して
0.1〜20重量%添加する請求項18の歪みの少ない
合成ダイヤモンドの製造方法。 (5)周期律表のIVa族およびVa族元素から選ばれる
元素の炭化物の生成を抑制する元素がCu、Ag及びA
uから選ばれる上記(4)に記載された歪みの少ない合
成ダイヤモンドの製造方法。 (6)緩衝材がAl、Ni、Cu、Zn、Ga、Ag、
Cd、In、Sn、Au、Tl及びPbからなる群から
選ばれる元素を材質とする薄板である請求項19の歪み
の少ない合成ダイヤモンドの製造方法。 (7)薄板が0.01〜0.5mmの厚さを有する上記
(6)に記載された歪みの少ない合成ダイヤモンドの製
造方法。 (8)請求項15〜20のいずれかと上記(4)〜
(7)を組み合わせた合成ダイヤモンドの製造方法。 (9)除圧の完了を500〜600℃で行う請求項15
〜19のいずれかに記載された歪みの少ない合成ダイヤ
モンドの製造方法。The embodiments of the present invention will be summarized below. (1) The method for producing a synthetic diamond with less strain according to any one of claims 15 to 20, wherein the nitrogen getter is added in an amount of 0.1 to 5% by weight with respect to the solvent. (2) The method for producing a synthetic diamond with low strain according to any one of claims 15 to 20, wherein the solvent metal is at least one selected from metals of Fe, Co, Ni, Mn and Cr or alloys thereof. (3) A method for producing a synthetic diamond, which is a combination of any one of claims 15 to 20 with the above (1) and (2). (4) The synthetic diamond with low strain according to claim 18, wherein 0.1 to 20 wt% of an element that suppresses the formation of carbides of elements selected from the IVa group and the Va group elements of the periodic table is added to the solvent metal. Production method. (5) The elements that suppress the formation of carbides of the elements selected from the IVa group and Va group elements of the periodic table are Cu, Ag and A.
The method for producing a synthetic diamond with a small strain described in (4) above, which is selected from u. (6) The buffer material is Al, Ni, Cu, Zn, Ga, Ag,
20. The method for producing a synthetic diamond with less strain according to claim 19, which is a thin plate made of an element selected from the group consisting of Cd, In, Sn, Au, Tl and Pb. (7) The method for producing a synthetic diamond with a small strain described in (6) above, wherein the thin plate has a thickness of 0.01 to 0.5 mm. (8) Any one of claims 15 to 20 and the above (4) to.
A method for producing a synthetic diamond, which is a combination of (7). (9) The completion of depressurization is performed at 500 to 600 ° C.
20. A method for producing a synthetic diamond with low strain according to any one of 19 to 19 above.
【0012】[0012]
【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本発明はこれに限定されるものではない。 〔実施例1〕図1に以下の実施例、比較例で用いたダイ
ヤモンド合成の試料室構成を示す。ここで炭素源(1)
としてはホウ素含有量が3ppmの合成ダイヤモンド粉
末を用いた。溶媒金属(2)にはホウ素含有量1ppm
以下のFe、Coを用い、溶媒金属組成はFe/Co=
60/40(重量比)とした。この溶媒金属に、窒素ゲ
ッターとしてTiを1.5重量%(溶媒金属重量に対
し)添加し、更にCuを1重量%(溶媒金属重量に対
し)添加した。種結晶(3)には500μmサイズのダ
イヤモンド結晶を用いた。そして、炭素源(1)と種結
晶(3)部に約30℃の温度差がつくように加熱用黒鉛
ヒーター(5)内にセットした。これを、超高圧発生装
置を用いて、圧力5.5Pa、温度1300℃で70時
間保持して種結晶上にダイヤモンドを育成した。その
後、先ず温度を室温まで降温し、次いで減圧を行い、合
成したダイヤモンドを取り出した。その結果、0.7〜
0.9カラットの無色透明な、内包物の殆どない良質な
IIa型ダイヤモンド結晶が得られた。ESRで結晶中の
窒素量を測定した結果、いずれも0.1ppm以下であ
った。紫外可視、赤外のスペクトルを測定したところ、
ダイヤモンド自体の吸収以外の窒素やホウ素による吸収
は見られなかった。得られたダイヤモンドを偏向光透過
顕微鏡で偏向光透過像を観察し、歪みを評価した結果、
殆ど歪みがないことが判った。また、第一結晶として合
成ダイヤモンド結晶(004)面を用い平行配置した二
結晶法によるCuKαでのX線回折のロッキングカーブ
の半値幅を測定したところ、5.8秒であった。また、
分解能0.5cm-1のダブルモノクロメーターラマン分
光装置でラマン分光スペクトルを測定し、1332cm
-1の半値幅を求めたところ、1.8cm-1であった。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. [Embodiment 1] FIG. 1 shows the sample chamber structure for diamond synthesis used in the following embodiments and comparative examples. Carbon source here (1)
As the material, a synthetic diamond powder having a boron content of 3 ppm was used. Boron content of solvent metal (2) is 1ppm
The following Fe and Co are used, and the solvent metal composition is Fe / Co =
It was set to 60/40 (weight ratio). To this solvent metal, 1.5% by weight of Ti (based on the weight of the solvent metal) was added as a nitrogen getter, and 1% by weight (based on the weight of the solvent metal) of Cu was further added. As the seed crystal (3), a diamond crystal having a size of 500 μm was used. Then, the carbon source (1) and the seed crystal (3) were set in the heating graphite heater (5) so that there was a temperature difference of about 30 ° C. This was held at a pressure of 5.5 Pa and a temperature of 1300 ° C. for 70 hours using an ultrahigh pressure generator to grow diamond on the seed crystal. Then, the temperature was first lowered to room temperature and then depressurized to take out the synthesized diamond. As a result, 0.7-
0.9 carat colorless and transparent, with high quality with almost no inclusions
A type IIa diamond crystal was obtained. As a result of measuring the amount of nitrogen in the crystal by ESR, all were 0.1 ppm or less. When UV-visible and infrared spectra were measured,
No absorption by nitrogen or boron other than absorption by diamond itself was observed. The polarized light transmission image of the obtained diamond was observed with a polarized light transmission microscope, and the distortion was evaluated.
It turns out that there is almost no distortion. Further, the half width of the rocking curve of the X-ray diffraction of CuKα by the double crystal method in which the synthetic diamond crystal (004) plane was used as the first crystal and was arranged in parallel was measured and found to be 5.8 seconds. Also,
The Raman spectroscopic spectrum was measured with a double monochromator Raman spectroscope with a resolution of 0.5 cm −1 , and 1332 cm
Was determined the full width at half maximum of -1, it was 1.8cm -1.
【0013】〔実施例2〜4、比較例1〕炭素源(1)
にホウ素を23ppm含む合成ダイヤモンド粉末を用
い、溶媒金属に添加するTi、Cuの添加量(いずれも
溶媒金属重量に対し)を下記のように変えた。 実施例2:Ti添加量1.5重量%、Cu添加量2重量
% 実施例3:Ti添加量1.0重量%、Cu添加量1重量
% 実施例4:Ti添加量0.5重量%、Cu添加量1重量
% 比較例1:Ti、Cu共に添加せず 上記の他の条件は実施例1と同様にして、ダイヤモンド
結晶を合成した。このようにして得られた結晶4種類と
天然産のIIa型ダイヤモンド6個および天然産のIb型
ダイヤモンド6個の、各々の窒素不純物、ホウ素不純
物、ロッキングカーブの半値幅、ラマンピーク半値幅、
および偏向光透過像観察による歪み評価、を実施例1と
同様に測定、評価した。結果を、実施例1の結果とあわ
せて表1に示す。[Examples 2 to 4, Comparative Example 1] Carbon source (1)
A synthetic diamond powder containing 23 ppm of boron was used, and the amounts of Ti and Cu added to the solvent metal (both with respect to the weight of the solvent metal) were changed as follows. Example 2: Ti addition amount 1.5% by weight, Cu addition amount 2% by weight Example 3: Ti addition amount 1.0% by weight, Cu addition amount 1% by weight Example 4: Ti addition amount 0.5% by weight , Cu addition amount 1% by weight Comparative Example 1: No Ti and Cu were added, and diamond crystals were synthesized under the same conditions as in Example 1 except for the above conditions. Each of the four types of crystals thus obtained, and six naturally-occurring type IIa diamonds and six naturally-occurring type Ib diamonds, nitrogen impurities, boron impurities, rocking curve half-widths, Raman peak half-widths,
And, the distortion evaluation by observation of the polarized light transmission image was measured and evaluated in the same manner as in Example 1. The results are shown in Table 1 together with the results of Example 1.
【0014】[0014]
【表1】 [Table 1]
【0015】〔実施例5〕溶媒金属と種結晶の間に、初
期の結晶成長の安定化のための緩衝材として、厚み0.
05mmのAl板を配置した他は、実施例1と同様にして
IIa型ダイヤモンドを合成した。その結果、ロッキング
カーブ半値幅は5.6秒、ラマン分光スペクトルピーク
の半値幅は1.6cm-1で、結晶性がさらに改良され
た。[Embodiment 5] Between the solvent metal and the seed crystal, a thickness of 0.
In the same manner as in Example 1 except that a 05 mm Al plate is arranged.
A type IIa diamond was synthesized. As a result, the rocking curve half-width was 5.6 seconds, and the Raman spectroscopic spectrum peak half-width was 1.6 cm −1 , and the crystallinity was further improved.
【0016】〔実施例6〕ダイヤモンドを合成後、降
温、減圧を同時に行い、内部温度が500℃の状態で、
除圧を完了するようにした他は、実施例1と同様にして
IIa型ダイヤモンドを合成した。その結果、ロッキング
カーブ半値幅は5.7秒、ラマン分光スペクトルピーク
の半値幅は1.6cm-1で、結晶性が改良された。Example 6 After synthesizing diamond, the temperature is lowered and the pressure is reduced at the same time, and the internal temperature is 500 ° C.
In the same manner as in Example 1 except that the depressurization was completed.
A type IIa diamond was synthesized. As a result, the rocking curve full width at half maximum was 5.7 seconds, the full width at half maximum of the Raman spectroscopic spectrum peak was 1.6 cm −1 , and crystallinity was improved.
【0017】なお、以上の実施例、比較例ではX線回折
としてダイヤモンドの(004)面を第一結晶として用
いて平行配置した例を示したが、本発明のX線回折によ
る歪み測定方法はダイヤモンドの例えば(111)面と
いったその他の面を用いてもよいし、平行配置以外の例
えば非対称な配置にしても有効である。In the above Examples and Comparative Examples, an example was shown in which the (004) plane of diamond was used as the first crystal for X-ray diffraction and arranged in parallel, but the strain measurement method by X-ray diffraction of the present invention is Other planes such as the (111) plane of diamond may be used, and it is effective to use, for example, an asymmetrical arrangement other than the parallel arrangement.
【0018】[0018]
【発明の効果】以上説明のように、本発明の合成ダイヤ
モンドは、不純物が少なく、歪み、結晶欠陥が少ないた
め、加圧中の割れや亀裂などの不具合点が少なくなり、
また超高圧発生用ダイヤモンドアンビル、FT−IR用
ダイヤモンドアンビルとして用いた場合、その寿命や安
定性が大幅に向上する。さらにモノクロメーター、放射
光又は放射線用窓材、半導体基板など、ダイヤモンドの
高度な結晶性が要求される用途にも適用して非常に効果
的である。また、本発明の製造方法により上記した高品
質な合成ダイヤモンドを実現できる。さらに、本発明の
合成ダイヤモンドの歪み測定方法は従来法より精密且つ
定量的な歪み測定を可能としたもので、非常に有利であ
る。As described above, the synthetic diamond of the present invention has few impurities, few distortions, and few crystal defects, so that defects such as cracks and cracks during pressurization are reduced.
When it is used as a diamond anvil for generating ultra-high pressure and a diamond anvil for FT-IR, its life and stability are significantly improved. Furthermore, it is also very effective when applied to applications requiring high crystallinity of diamond, such as monochromators, radiant light or radiation window materials, and semiconductor substrates. Further, the above-described high-quality synthetic diamond can be realized by the manufacturing method of the present invention. Furthermore, the strain measuring method of the synthetic diamond of the present invention enables more precise and quantitative strain measurement than the conventional method, and is very advantageous.
【図1】は本発明のダイヤモンド合成における試料室の
構成の概略説明図である。FIG. 1 is a schematic explanatory view of a structure of a sample chamber in diamond synthesis of the present invention.
1 炭素源 2 溶媒金属 3 種結晶 4 絶縁体 5 黒鉛ヒーター 6 圧力媒体 1 Carbon source 2 Solvent metal 3 Seed crystal 4 Insulator 5 Graphite heater 6 Pressure medium
Claims (24)
素含有量が1ppm以下であることを特徴とする歪みの
少ない合成ダイヤモンド。1. A synthetic diamond with a low strain, which has a nitrogen content of 10 ppm or less and a boron content of 1 ppm or less.
結晶にダイヤモンド結晶を用い、(004)面平行配置
で、CuKα線により測定した場合のX線回折ロッキン
グカーブの半値幅が10秒以下であることを特徴とする
歪みの少ない合成ダイヤモンド。2. In the X-ray diffraction by the two-crystal method, a diamond crystal is used as the first crystal, and the half-width of the X-ray diffraction rocking curve is 10 seconds or less when measured by CuKα ray in a (004) plane parallel arrangement. A synthetic diamond with little distortion characterized by:
装置で測定したダイヤモンドのラマン分光スペクトルの
1332〜1333cm-1におけるピークの半値幅が
2.3cm-1以下であることを特徴とする歪みの少ない
合成ダイヤモンド。Strain wherein resolution FWHM of the peak at 1332~1333Cm -1 of Raman spectrum of diamond, measured in 1 cm -1 or less of the Raman spectroscopic analysis apparatus is characterized in that it is 2.3 cm -1 or less Low synthetic diamond.
ウ素含有量が1ppm以下であり、かつ、二結晶法によ
るX線回折において、第一結晶にダイヤモンド結晶を用
い、(004)面平行配置で、CuKα線により測定し
た場合のX線回折ロッキングカーブの半値幅が10秒以
下であることを特徴とする歪みの少ない合成ダイヤモン
ド。4. A nitrogen content of 10 ppm or less and a boron content of 1 ppm or less, and in X-ray diffraction by a two-crystal method, a diamond crystal is used as a first crystal and a (004) plane parallel arrangement is used. , A synthetic diamond with little distortion, characterized in that the full width at half maximum of the X-ray diffraction rocking curve measured by CuKα ray is 10 seconds or less.
ウ素含有量が1ppm以下であり、かつ、分解能が1c
m-1以下のラマン分光分析装置で測定したダイヤモンド
のラマン分光スペクトルの1332〜1333cm-1に
おけるピークの半値幅が2.3cm-1以下であることを
特徴とする歪みの少ない合成ダイヤモンド。5. A nitrogen content of 10 ppm or less, a boron content of 1 ppm or less, and a resolution of 1c.
small synthetic diamond distortion, wherein a half-value width of the peak at 1332~1333Cm -1 of Raman spectrum of diamond, measured in m -1 or less of the Raman spectrometer is 2.3 cm -1 or less.
ウ素含有量が1ppm以下の合成ダイヤモンドであっ
て、二結晶法によるX線回折において、第一結晶にダイ
ヤモンド結晶を用い、(004)面平行配置で、CuK
α線により測定した場合のX線回折ロッキングカーブの
半値幅が10秒以下であり、かつ、分解能が1cm-1以
下のラマン分光分析装置で測定したダイヤモンドのラマ
ン分光スペクトルの1332〜1333cm-1における
ピークの半値幅が2.3cm-1以下であることを特徴と
する歪みの少ない合成ダイヤモンド。6. A synthetic diamond having a nitrogen content of 10 ppm or less and a boron content of 1 ppm or less, wherein a diamond crystal is used as a first crystal in X-ray diffraction by a two-crystal method, and (004) plane parallel Arrangement, CuK
half-width of X-ray diffraction rocking curve as measured by α-rays is 10 seconds or less, and, in 1332~1333Cm -1 of Raman spectrum of diamond resolution was measured at 1 cm -1 or less of the Raman spectroscopic analysis device A synthetic diamond with little distortion, which is characterized by having a peak half-width of 2.3 cm -1 or less.
結晶にダイヤモンド結晶を用い、(004)面平行配置
で、CuKα線により測定した場合のX線回折ロッキン
グカーブの半値幅が10秒以下であり、かつ、分解能が
1cm-1以下のラマン分光分析装置で測定したダイヤモ
ンドのラマン分光スペクトルの1332〜1333cm
-1におけるピークの半値幅が2.3cm-1以下であるこ
とを特徴とする歪みの少ない合成ダイヤモンド。7. In the X-ray diffraction by the two-crystal method, a diamond crystal is used as the first crystal, the half-width of the X-ray diffraction rocking curve is 10 seconds or less when measured by CuKα ray in a (004) plane parallel arrangement. And the Raman spectroscopic spectrum of the diamond measured with a Raman spectroscopic analyzer having a resolution of 1 cm -1 or less is 1332 to 1333 cm.
-Synthetic diamond with little distortion, characterized in that the half-value width of the peak at -1 is 2.3 cm -1 or less.
ウ素含有量が0.1ppm以下であることを特徴とする
歪みの少ない合成ダイヤモンド。8. A synthetic diamond having a low strain, which has a nitrogen content of 0.1 ppm or less and a boron content of 0.1 ppm or less.
結晶にダイヤモンド結晶を用い、(004)面平行配置
で、CuKα線により測定した場合のX線回折ロッキン
グカーブの半値幅が6秒以下であることを特徴とする歪
みの少ない合成ダイヤモンド。9. In the X-ray diffraction by the two-crystal method, a diamond crystal is used as the first crystal, and the half-width of the X-ray diffraction rocking curve is 6 seconds or less when measured by CuKα ray in a (004) plane parallel arrangement. A synthetic diamond with little distortion characterized by:
析装置で測定したダイヤモンドのラマン分光スペクトル
の1332〜1333cm-1におけるピークの半値幅が
2cm-1以下であることを特徴とする歪みの少ない合成
ダイヤモンド。Less distortion, characterized in that 10. A resolution FWHM of the peak at 1332~1333Cm -1 of Raman spectrum of diamond, measured in 1 cm -1 or less of the Raman spectrometer is 2 cm -1 or less Synthetic diamond.
つホウ素含有量が0.1ppm以下であり、かつ、二結
晶法によるX線回折において、第一結晶にダイヤモンド
結晶を用い、(004)面平行配置で、CuKα線によ
り測定した場合のX線回折ロッキングカーブの半値幅が
6秒以下であることを特徴とする歪みの少ない合成ダイ
ヤモンド。11. A nitrogen crystal having a nitrogen content of 0.1 ppm or less and a boron content of 0.1 ppm or less, and using a diamond crystal as a first crystal in X-ray diffraction by a two-crystal method, (004) A synthetic diamond with little distortion, characterized in that the half-width of the X-ray diffraction rocking curve when measured by CuKα ray in a plane parallel arrangement is 6 seconds or less.
つホウ素含有量が0.1ppm以下であり、かつ、分解
能が1cm-1以下のラマン分光分析装置で測定したダイ
ヤモンドのラマン分光スペクトルの1332〜1333
cm-1におけるピークの半値幅が2cm-1以下であるこ
とを特徴とする歪みの少ない合成ダイヤモンド。12. A Raman spectroscopic spectrum 1332 of diamond measured with a Raman spectroscopic analyzer having a nitrogen content of 0.1 ppm or less, a boron content of 0.1 ppm or less, and a resolution of 1 cm -1 or less. ~ 1333
A synthetic diamond with little distortion, which has a half-value width of a peak at cm -1 of 2 cm -1 or less.
つホウ素含有量が0.1ppm以下の合成ダイヤモンド
であって、二結晶法によるX線回折において、第一結晶
にダイヤモンド結晶を用い、(004)面平行配置で、
CuKα線により測定した場合のX線回折ロッキングカ
ーブの半値幅が6秒以下であり、かつ、分解能が1cm
-1以下のラマン分光分析装置で測定したダイヤモンドの
ラマン分光スペクトルの1332〜1333cm-1にお
けるピークの半値幅が2cm-1以下であることを特徴と
する歪みの少ない合成ダイヤモンド。13. A synthetic diamond having a nitrogen content of 0.1 ppm or less and a boron content of 0.1 ppm or less, wherein a diamond crystal is used as a first crystal in X-ray diffraction by a two-crystal method, 004) In the plane parallel arrangement,
The half width of the X-ray diffraction rocking curve measured by CuKα ray is 6 seconds or less, and the resolution is 1 cm.
Small synthetic diamond distortion, wherein a half-value width of the peak is 2 cm -1 or less at -1 or less 1332~1333Cm -1 of Raman spectrum of diamond, measured by Raman spectroscopy device.
一結晶にダイヤモンド結晶を用い、(004)面平行配
置で、CuKα線により測定した場合のX線回折ロッキ
ングカーブの半値幅が6秒以下であり、かつ、分解能が
1cm-1以下のラマン分光分析装置で測定したダイヤモ
ンドのラマン分光スペクトルの1332〜1333cm
-1におけるピークの半値幅が2cm-1以下であることを
特徴とする歪みの少ない合成ダイヤモンド。14. In the X-ray diffraction by the two-crystal method, a diamond crystal is used as the first crystal, the half-width of the X-ray diffraction rocking curve is 6 seconds or less when measured by CuKα ray in a (004) plane parallel arrangement. And the Raman spectroscopic spectrum of the diamond measured with a Raman spectroscopic analyzer having a resolution of 1 cm -1 or less is 1332 to 1333 cm.
-Synthetic diamond with little distortion, characterized in that the full width at half maximum of the peak at -1 is 2 cm -1 or less.
合成方法において、ホウ素含有量が10ppm以下の炭
素源およびホウ素含有量が1ppm以下の溶媒金属を用
い、かつ該溶媒金属中に窒素ゲッターを添加してダイヤ
モンドを合成することを特徴とする請求項8ないし請求
項14のいずれかに記載の歪みの少ない合成ダイヤモン
ドの製造方法。15. A method for synthesizing a diamond single crystal by a temperature difference method, wherein a carbon source having a boron content of 10 ppm or less and a solvent metal having a boron content of 1 ppm or less are used, and a nitrogen getter is added to the solvent metal. 15. The method for producing a synthetic diamond with a small strain according to claim 8, wherein the diamond is synthesized by means of a method.
りホウ素を除去してホウ素含有量を1ppm以下とされ
た黒鉛を用いることを特徴とする請求項15記載の歪み
の少ない合成ダイヤモンドの製造方法。16. The method for producing a synthetic diamond with low strain according to claim 15, wherein graphite having a boron content of 1 ppm or less by removing boron by halogenation is used as the carbon source.
およびVa族元素から選ばれる少なくとも1種以上であ
ることを特徴とする請求項15または請求項16に記載
の歪みの少ない合成ダイヤモンドの製造方法。17. The production of synthetic diamond with low strain according to claim 15 or 16, characterized in that the nitrogen getter is at least one element selected from Group IVa and Group Va elements of the periodic table. Method.
びVa族元素から選ばれる元素の炭化物の生成を抑制す
る元素を添加されたものであることを特徴とする請求項
15ないし請求項17のいずれかに記載の歪みの少ない
合成ダイヤモンドの製造方法。18. The method according to claim 15, wherein the solvent metal is added with an element that suppresses the formation of carbide of an element selected from the IVa group and Va group elements of the periodic table. 5. The method for producing a synthetic diamond with little distortion according to any one of 1.
期成長の安定化のための緩衝材を配することを特徴とす
る製造方法15ないし請求項18のいずれかに記載の歪
みの少ない合成ダイヤモンドの製造方法。19. The strain according to claim 15, wherein a buffering material for stabilizing the initial growth of crystals is provided between the solvent metal and the seed surface. Manufacturing method of few synthetic diamonds.
モンドを合成した後に、試料部の温度および圧力を常温
常圧に降温、除圧する際に、該試料部の温度が300〜
1000℃の状態で除圧を完了することを特徴とする請
求項15ないし請求項19のいずれかに記載の歪みの少
ない合成ダイヤモンドの製造方法。20. When the temperature and pressure of the sample part are decreased to room temperature and normal pressure after synthesizing diamond under the super high pressure and high temperature by the temperature difference method, and the pressure of the sample part is 300 to 300 ° C.
20. The method for producing a synthetic diamond with less strain according to claim 15, wherein depressurization is completed at 1000 ° C.
ヤモンド結晶の回折面のブラッグ角と10秒以内で同じ
回折角を持っているダイヤモンド結晶を用いて、二結晶
法によりロッキングカーブを測定し、その半値幅に基づ
き合成ダイヤモンド中の歪みを評価することを特徴とす
る合成ダイヤモンドの歪み測定方法。21. As the first crystal, a rocking curve is measured by the two-crystal method using a diamond crystal having the same diffraction angle within 10 seconds as the Bragg angle of the diffraction surface of the diamond crystal used for measurement, A method for measuring strain of synthetic diamond, which comprises evaluating strain in synthetic diamond based on the half width.
モンド結晶の回折面と同一の面を利用することを特徴と
する合成ダイヤモンドの歪み測定方法。22. A method for measuring strain of synthetic diamond, wherein the same diffraction surface as that of the diamond crystal to be measured is used as the diffraction surface of the first crystal.
を用いた四結晶法により、合成ダイヤモンドのロッキン
グカーブを測定し、その半値幅に基づき合成ダイヤモン
ド中の歪みを評価することを特徴とする合成ダイヤモン
ドの歪み測定方法。23. A rocking curve of a synthetic diamond is measured by a four-crystal method using a crystal of Si, Ge or diamond, and the strain in the synthetic diamond is evaluated based on the half width thereof. Strain measurement method.
333cm-1付近の、LOフォノンによるスペクトルの
ピークを測定し、その半値幅に基づき合成ダイヤモンド
中の歪みを評価することを特徴とする合成ダイヤモンド
の歪み測定方法。24. Raman spectroscopy spectrum 1332-1
A strain measuring method for synthetic diamond, comprising measuring a spectrum peak due to LO phonons near 333 cm −1 and evaluating strain in the synthetic diamond based on the half width.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16915494A JP3456263B2 (en) | 1993-10-08 | 1994-07-21 | Synthetic diamond with small distortion, method for producing the same, and method for measuring distortion of synthetic diamond |
KR1019940025640A KR100269924B1 (en) | 1993-10-08 | 1994-10-07 | A synthetic diamond and process for producing the same |
DE69411244T DE69411244T2 (en) | 1993-10-08 | 1994-10-10 | Synthetic diamond and process for its manufacture |
EP94307418A EP0647590B1 (en) | 1993-10-08 | 1994-10-10 | A synthetic diamond and a process for the production of the same |
US08/684,725 US6030595A (en) | 1993-10-08 | 1996-07-22 | Process for the production of synthetic diamond |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25321093 | 1993-10-08 | ||
JP5-253210 | 1993-10-08 | ||
JP16915494A JP3456263B2 (en) | 1993-10-08 | 1994-07-21 | Synthetic diamond with small distortion, method for producing the same, and method for measuring distortion of synthetic diamond |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07148426A true JPH07148426A (en) | 1995-06-13 |
JP3456263B2 JP3456263B2 (en) | 2003-10-14 |
Family
ID=26492592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16915494A Expired - Fee Related JP3456263B2 (en) | 1993-10-08 | 1994-07-21 | Synthetic diamond with small distortion, method for producing the same, and method for measuring distortion of synthetic diamond |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3456263B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11300194A (en) * | 1998-04-23 | 1999-11-02 | Sumitomo Electric Ind Ltd | Superhigh pressure generating diamond anvil |
EP1375423A1 (en) * | 2002-06-14 | 2004-01-02 | Toyo Tanso Co., Ltd. | Low nitrogen concentration carbonaceous material and manufacturing method thereof |
EP1460040A1 (en) * | 2001-12-28 | 2004-09-22 | Toyo Tanso Co., Ltd. | Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same |
JP2013221914A (en) * | 2012-04-19 | 2013-10-28 | Fujifilm Corp | Method for analyzing waveguide spectrum and device therefor |
CN103801352A (en) * | 2013-11-04 | 2014-05-21 | 熊科学 | Catalyst for synthesizing semiconductor diamond monocrystals and production method thereof |
CN103801351A (en) * | 2013-11-04 | 2014-05-21 | 熊科学 | Catalyst for synthesizing semiconductor diamond monocrystals |
WO2022210566A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond, manufacturing method for same, and manufacturing method for single crystal diamond plate |
WO2022210723A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single-crystal diamond and diamond composite comprising same |
WO2022210936A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond and method for producing same |
WO2022209512A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond and method for producing same |
WO2022210935A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond and method for producing same |
WO2022210934A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single-crystal diamond and production method therefor |
-
1994
- 1994-07-21 JP JP16915494A patent/JP3456263B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11300194A (en) * | 1998-04-23 | 1999-11-02 | Sumitomo Electric Ind Ltd | Superhigh pressure generating diamond anvil |
EP1460040A1 (en) * | 2001-12-28 | 2004-09-22 | Toyo Tanso Co., Ltd. | Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same |
EP1460040A4 (en) * | 2001-12-28 | 2005-06-08 | Toyo Tanso Co | Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same |
KR100742059B1 (en) * | 2001-12-28 | 2007-07-23 | 도요탄소 가부시키가이샤 | Graphite material for synthesizing semiconductor diamond and semiconductor diamond produced by using the same |
EP1375423A1 (en) * | 2002-06-14 | 2004-01-02 | Toyo Tanso Co., Ltd. | Low nitrogen concentration carbonaceous material and manufacturing method thereof |
EP2284122A1 (en) * | 2002-06-17 | 2011-02-16 | Toyo Tanso Co., Ltd. | Low nitrogen concentration carbonaceous material and manufacturing method thereof |
JP2013221914A (en) * | 2012-04-19 | 2013-10-28 | Fujifilm Corp | Method for analyzing waveguide spectrum and device therefor |
CN103801351A (en) * | 2013-11-04 | 2014-05-21 | 熊科学 | Catalyst for synthesizing semiconductor diamond monocrystals |
CN103801352A (en) * | 2013-11-04 | 2014-05-21 | 熊科学 | Catalyst for synthesizing semiconductor diamond monocrystals and production method thereof |
WO2022210566A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond, manufacturing method for same, and manufacturing method for single crystal diamond plate |
WO2022210723A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single-crystal diamond and diamond composite comprising same |
WO2022210936A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond and method for producing same |
WO2022209512A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond and method for producing same |
WO2022210935A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single crystal diamond and method for producing same |
WO2022210934A1 (en) | 2021-03-31 | 2022-10-06 | 住友電気工業株式会社 | Single-crystal diamond and production method therefor |
EP4317545A4 (en) * | 2021-03-31 | 2024-11-06 | Sumitomo Electric Industries | Single-crystal diamond and production method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3456263B2 (en) | 2003-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5908503A (en) | Low defect density diamond single crystal and a process for the production of the same | |
US6030595A (en) | Process for the production of synthetic diamond | |
EP0525207B1 (en) | Process for synthesizing diamond | |
Sumiya et al. | Crystalline perfection of high purity synthetic diamond crystal | |
JP5323492B2 (en) | Synthetic diamond with high crystal quality | |
KR101052395B1 (en) | Colored diamonds | |
JP5786214B2 (en) | Single crystal CVD synthetic diamond material | |
EP3312311B1 (en) | Diamond single crystal, tool, and method for manufacturing diamond single crystal | |
JP3456263B2 (en) | Synthetic diamond with small distortion, method for producing the same, and method for measuring distortion of synthetic diamond | |
US20130205680A1 (en) | Diamond tools | |
EP3699330A1 (en) | Synthetic single-crystal diamond | |
Sumiya et al. | Development of high-quality large-size synthetic diamond crystals | |
EP3699329A1 (en) | Synthetic single-crystal diamond, tool, and production method for synthetic single-crystal diamond | |
US9061263B2 (en) | Method of improving the crystalline perfection of diamond crystals | |
JP3339137B2 (en) | Synthetic diamond single crystal and method for producing the same | |
CN116981802A (en) | Single crystal diamond and method for producing same | |
WO2022264705A1 (en) | Synthetic single-crystal diamond and manufacturing method therefor | |
WO2022264706A1 (en) | Synthetic single crystal diamond and method for producing same | |
JPH11300194A (en) | Superhigh pressure generating diamond anvil | |
WO2024150624A1 (en) | Synthetic monocrystalline diamond | |
JP2022139094A (en) | Synthetic single crystal diamond, and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080801 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |