JPH0713050B2 - Method for producing dimethylaminoethyl acrylate - Google Patents
Method for producing dimethylaminoethyl acrylateInfo
- Publication number
- JPH0713050B2 JPH0713050B2 JP1249689A JP24968989A JPH0713050B2 JP H0713050 B2 JPH0713050 B2 JP H0713050B2 JP 1249689 A JP1249689 A JP 1249689A JP 24968989 A JP24968989 A JP 24968989A JP H0713050 B2 JPH0713050 B2 JP H0713050B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- reaction
- present
- distillation
- acrylate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】 イ.発明の目的 〔産業上の利用分野〕 本発明はテトラn−ブチルチタネート(以降TBTと略称
する)を触媒とするn−ブチルアクリレート(以降BAと
略称する)とジメチルアミノエチルアルコール(以降DM
AEと略称する)とのエステル交換反応による高純度ジメ
チルアミノエチルアクリレート(以降DAと略称する)の
製造方法及び触媒の再使用に関するものである。Detailed Description of the Invention a. OBJECT OF THE INVENTION [Industrial field of use] The present invention uses tetra-n-butyl titanate (hereinafter abbreviated as TBT) as a catalyst and n-butyl acrylate (hereinafter abbreviated as BA) and dimethylaminoethyl alcohol (hereinafter DM.
The present invention relates to a method for producing high-purity dimethylaminoethyl acrylate (hereinafter abbreviated as DA) by a transesterification reaction with AE) and reuse of a catalyst.
DA、ジメチルアミノエチルメタクリレート、ジエチルア
ミノエチルメタクリレート等のジアルキルアミノ(メ
タ)アクリレート等は、そのまま、またはアミノ基を3
級もしくは4級アンモニウム塩としたものが、繊維の染
色性改良剤、プラスチックの帯電防止剤、塗料における
顔料分散剤、紫外線硬化助剤として、さらに単独重合ま
たは他の不飽和化合物との共重合により生じた重合体は
繊維処理剤、トナーバインダー、塗料、潤滑油添加剤、
紙力増強剤、接着剤、イオン交換樹脂さらには高分子凝
集剤などとして用いられるものであって、幅広い分野で
利用されている。従って、それらの薬剤を使用する分野
で、本発明は有効に活用されるものである。Dialkylamino (meth) acrylates such as DA, dimethylaminoethylmethacrylate, diethylaminoethylmethacrylate, etc. can be used as they are or with an amino group of 3
The quaternary or quaternary ammonium salt is used as a dyeing property improver for fibers, an antistatic agent for plastics, a pigment dispersant in paints, an ultraviolet curing aid, and further by homopolymerization or copolymerization with other unsaturated compounds. The resulting polymer is a fiber treatment agent, a toner binder, a paint, a lubricant additive,
It is used as a paper-strengthening agent, an adhesive, an ion exchange resin, a polymer coagulant, and the like, and is used in a wide range of fields. Therefore, the present invention can be effectively utilized in the field of using those drugs.
〔従来の技術〕 アルキルアクリレートとジアルキルアミノアルキルアル
コールとのエステル交換反応によるジアルキルアミノア
ルキルアクリレートの製造方法は既に公知であり、触媒
としてアルカリ金属アルコラート、マグネシウムアルコ
ラート、チタアルコラート、ジブチルスズオキサイド等
の錫化合物またはアセチルアセトン等のアセチルアセト
ン金属錯体化合物などを用いることが知られている。[Prior Art] A method for producing a dialkylaminoalkyl acrylate by transesterification of an alkyl acrylate and a dialkylaminoalkyl alcohol is already known, and as a catalyst, a tin compound such as an alkali metal alcoholate, magnesium alcoholate, tita alcoholate, or dibutyltin oxide, or It is known to use acetylacetone metal complex compounds such as acetylacetone.
得られたジアルキルアミノアルキルアクリレートの精製
は一般に蒸留操作により行なわれており、その際の雰囲
気としては空気あるいは5%ON(酸素/窒素)雰囲気が
広く採用されている。Purification of the obtained dialkylaminoalkyl acrylate is generally carried out by a distillation operation, and as the atmosphere at that time, air or a 5% ON (oxygen / nitrogen) atmosphere is widely adopted.
又、特に高純度化を意図した精製法としては、活性炭で
処理する方法(特開昭63−79858号公報)、ゼオライト
で処理する方法(特開昭63−230714号公報)等が知られ
ている。Further, as a purification method particularly intended for high purification, a method of treating with activated carbon (JP-A-63-79858), a method of treating with zeolite (JP-A-63-230714) and the like are known. There is.
しかしながらDAの合成にナトリウムメチラートのような
アルカリ金属アルコラートを触媒として用いる場合には
原料のジアルキルアミノアルキルアルコールや反応で副
生するアルコールが原料のアルキルアクリレートや目的
物質であるジアルキルアミノアルキルアクリレートの2
重結合部分へ付加する反応が生じ易く、目的とするジア
ルキルアミノアルキルアクリレートの収率及び純度を著
しく低下させる。また、触媒が反応系内の微量水分と反
応して失活するため予め充分な脱水を行なう等の操作を
必要とするうえに、その様な操作を施こしても経時的に
触媒は失活するので、反応系に連続的に触媒を加える必
要がある。However, when an alkali metal alcoholate such as sodium methylate is used as a catalyst in the synthesis of DA, the raw material dialkylaminoalkyl alcohol or the alcohol by-produced in the reaction is used as the raw material alkyl acrylate or the target dialkylaminoalkyl acrylate.
The reaction of addition to the heavy bond portion is likely to occur, and the yield and purity of the target dialkylaminoalkyl acrylate are significantly reduced. Further, since the catalyst reacts with a small amount of water in the reaction system to be deactivated, it requires an operation such as sufficient dehydration in advance, and even if such an operation is performed, the catalyst is deactivated with time. Therefore, it is necessary to continuously add the catalyst to the reaction system.
マグネシウムアルコラートの場合もアルカリ金属アルコ
ラートの場合と同様前述の付加反応が生じ易くDAの収率
を著しく低下させるものである。In the case of magnesium alcoholate as well as in the case of alkali metal alcoholate, the above-mentioned addition reaction is likely to occur and the yield of DA is significantly reduced.
ジブチルスズオキサイド等の錫化合物を触媒として用い
た場合は、アルカリ金属アルコラート等に比べて触媒活
性が低いため、触媒量を多く必要とするか、あるいは反
応時間を長くしなければならないという問題点を有して
いる。When a tin compound such as dibutyltin oxide is used as a catalyst, its catalytic activity is lower than that of an alkali metal alcoholate, so that there is a problem that a large amount of catalyst is required or the reaction time must be lengthened. is doing.
チタンアルコラートを触媒とした場合にも反応系中の微
量水分の影響を受けて触媒が失活する他に原因は不明で
あるが、アルカリ金属アルコラートと同様に経時的失活
も認められる。When titanium alcoholate is used as a catalyst, the catalyst is deactivated due to the influence of a small amount of water in the reaction system, and the cause is unknown, but like the alkali metal alcoholate, deactivation over time is also observed.
特に、工業的製法においては微量水分の混入を避けるこ
とは極めて困難なためある程度の触媒失活はやむをえ
ず、多量の触媒を使用しなければならないという問題点
を有している。In particular, in the industrial production method, it is extremely difficult to avoid the inclusion of a trace amount of water, so the catalyst deactivation is unavoidable to some extent, and there is a problem that a large amount of catalyst must be used.
また、チタンアルコラートはアルカリ金属アルコラート
に比べて触媒活性が低く、この点においても触媒量を多
く必要とするとかあるいは反応時間を長くしなければな
らないという問題点を有している。Further, titanium alcoholate has a lower catalytic activity than that of alkali metal alcoholate, and also in this respect, there is a problem that a large amount of catalyst is required or the reaction time must be lengthened.
従来、チタンアルコラートを触媒として用いて得られた
反応液はそのまま蒸留により精製されるが、微量のDMAE
等が混入し高純度のDAを得ることができなかった。ま
た、精留缶残中の触媒にはほとんど触媒活性が認められ
ず、また多少活性が認められる場合でも缶残粘度が相当
高い為触媒の回収は行なわれていないのが実状である。Conventionally, the reaction solution obtained by using titanium alcoholate as a catalyst is purified by distillation as it is, but a trace amount of DMAE
However, high-purity DA could not be obtained. Further, the catalyst in the bottom of the rectification bottom hardly shows any catalytic activity, and even if some activity is recognized, the fact that the bottom residue viscosity is considerably high does not recover the catalyst.
アセチルアセトン金属化合物の幾つかも触媒として提案
されているが、触媒活性が低く反応に長時間を要すると
ともに、用いる金属によってはDA等の重合を促進すると
いう欠点を有している。さらに、アセチルアセトン系錯
体は高価であるため工業的には不向きなものである。Although some of the acetylacetone metal compounds have been proposed as catalysts, they have the drawbacks of low catalytic activity, requiring a long reaction time, and accelerating the polymerization of DA and the like depending on the metal used. Further, the acetylacetone-based complex is expensive and is not suitable industrially.
DAをそのままるいは、3級もしくは4級塩として重合を
行なう場合DA中に原料であるアクリレート、DMAEやその
他の副生成物が含まれると生成する重合体の物性を低下
させる原因となることから、用いられるDAとしてはより
不純物の少ない高純度のものであることが望まれてい
る。特に、各種排水の凝集剤として該重合体を使用する
場合その分子量は数百万という高分子量が要求される
為、原料であるDAはより高純度の物である必要がある。When DA is used as a tertiary or quaternary salt for polymerization, if the raw material acrylate, DMAE or other by-products are contained in DA, it may cause deterioration of the physical properties of the resulting polymer. It is desired that the DA used has a high purity with less impurities. In particular, when the polymer is used as a coagulant for various kinds of waste water, its molecular weight is required to have a high molecular weight of several millions, so that the raw material DA needs to be of higher purity.
DAの精製は前記した様に従来、蒸留により行なわれてい
るが、蒸留時の高温による副生成物の分解等により低沸
分が生成し製品DAの純度を向上させることは不可能であ
った。さらに、原料であるアクリレート及び目的のジメ
チルアミノエチルアクリレートはメタクリレートに比べ
極めて重合し易く、従来行なわれている空気あるいは5
%ON雰囲気中での減圧蒸留では蒸留塔内、コンデンサー
内、特に、蒸留塔釜及び加熱器での重合が激しいため、
釜液への多量の重合防止剤の投入等の手段が採用されて
いるが決して満足できるものではない。As described above, the purification of DA has conventionally been carried out by distillation, but it was impossible to improve the purity of the product DA by producing a low boiling point due to decomposition of by-products due to high temperature during distillation. . Furthermore, the acrylate that is the raw material and the target dimethylaminoethyl acrylate are much more easily polymerized than the methacrylate, and it is not possible to use air or 5
In vacuum distillation in% ON atmosphere, polymerization in the distillation column, condenser, especially in the distillation column kettle and heater is vigorous, so
Means such as adding a large amount of polymerization inhibitor to the kettle liquid have been adopted, but they are not completely satisfactory.
ロ.発明の構成 〔課題を解決するための手段〕 本発明者らは前記問題点のないジメチルアミノエチルア
クリレートの製造方法を求めるべく、触媒としてチタン
アルコラートを用い各種のアルキルアクリレートとDMAE
とのエステル交換反応を鋭意検討した結果、チタンアル
コラートとして、アルキルアクリレートとして及びDMAE
を用い、副生するn−ブタノールを減圧下好ましくは酸
素非存在下に反応液から留去しながら反応を進めると、
通常の触媒量において、反応前に脱水操作を施すことを
せずとも、触媒活性が消失することなく、4〜5時間の
反応でDAが85%以上の極めて高い反応収率で得られるこ
と、さらに得られた反応液を酸素非存在下に蒸留により
触媒を除去回収し、DAを含む留出液を酸素非存在下に再
度蒸留精製すること(以降脱高沸蒸留法と略す)によ
り、極めて高純度のDAを得ることができ、又、回収した
触媒を含む缶残は何等精製等の処理することなく反応に
再使用しても充分な触媒活性が認められ、数回以上再使
用できることを見出し、本発明を完成するに至った。B. Structure of the Invention [Means for Solving the Problems] In order to find a method for producing dimethylaminoethyl acrylate that does not have the above-mentioned problems, the present inventors have used titanium alcoholate as a catalyst and various alkyl acrylates and DMAE.
As a result of diligently studying the transesterification reaction with, as titanium alcoholate, as alkyl acrylate and DMAE
When n-butanol produced as a by-product is distilled off from the reaction solution under reduced pressure, preferably in the absence of oxygen, the reaction proceeds,
In a usual amount of catalyst, DA can be obtained in a very high reaction yield of 85% or more in the reaction for 4 to 5 hours without losing the catalytic activity without performing dehydration operation before the reaction, In addition, the reaction solution obtained is recovered by removing the catalyst by distillation in the absence of oxygen, and the distillate containing DA is purified by distillation again in the absence of oxygen (hereinafter abbreviated as high boiling distillation method), It is possible to obtain high-purity DA, and the bottoms containing the recovered catalyst have sufficient catalytic activity even if they are reused in the reaction without any treatment such as purification, and can be reused several times or more. Heading out, the present invention has been completed.
すなわち、本発明はテトラn−ブチルチタネートを触媒
として、減圧下で副生するn−ブタノールを留去しなが
ら反応させたn−ブチルアクリレートとジメチルアミノ
エチルアルコールの反応液を、酸素の実質的非存在下に
蒸留することによって、まずテトラn−ブチルチタネー
トを回収し、ついで精製することを特徴とするジメチル
アミノエチルアクリレートの製造方法に関するものであ
る。That is, in the present invention, a reaction liquid of n-butyl acrylate and dimethylaminoethyl alcohol, which is reacted by distilling off by-produced n-butanol under reduced pressure using tetra-n-butyl titanate as a catalyst, is used to substantially eliminate oxygen. The present invention relates to a method for producing dimethylaminoethyl acrylate, which comprises first recovering tetra-n-butyl titanate by distillation in the presence and then purifying it.
本発明者らが先に特許出願した(特願平1−049987号)
方法に従い得られた反応液を直接窒素雰囲気中で蒸留す
る方法によっても高純度のDAが得られるが、本発明によ
れば近年のより高品質DAをという要求を満足し、省資源
及びコストダウンに大きく寄与する方法が得られるので
ある。The present inventors applied for a patent first (Japanese Patent Application No. 1-049987)
High-purity DA can also be obtained by a method in which the reaction solution obtained according to the method is directly distilled in a nitrogen atmosphere, but according to the present invention, the demand for higher quality DA in recent years is satisfied, and resource saving and cost reduction are achieved. A method that greatly contributes to
本発明の製造方法におけるBAとDMAEの反応モル比は1.0
〜10.0が好ましく、より好ましくは1.1〜5.0の範囲であ
る。モル比が10.0を越えると大きな反応器が必要とな
り、また、過剰のBAのリサイクルに大きなエネルギーを
必要とする様になり避けるのが望ましい。本発明に使用
されるTBTは市販のものがそのまま適用できる。TBTの使
用量は原料であるDMAEに対して好ましくは0.1〜10モル
%、より好ましくは0.5〜5モル%の範囲である。TBTの
仕込方法は一度に仕込む方法、連続あるいは分割仕込の
方法のいずれも採用可能であるが、原料仕込時に一度に
仕込む方法が有利であり好ましい。The reaction molar ratio of BA and DMAE in the production method of the present invention is 1.0
˜10.0 is preferable, and 1.1 to 5.0 is more preferable. When the molar ratio exceeds 10.0, a large reactor is required, and a large amount of energy is required for recycling excess BA, which is desirable to avoid. The TBT used in the present invention may be a commercially available product as it is. The amount of TBT used is preferably 0.1 to 10 mol% and more preferably 0.5 to 5 mol% with respect to the starting material DMAE. As the charging method of TBT, either a charging method at a time or a continuous charging method or a dividing charging method can be adopted, but the charging method at the time of charging the raw materials is advantageous and preferable.
反応溶媒は通常使用する必要はないが、副生n−ブタノ
ールの共沸溶媒として例えばキシレン、トルエン、ヘキ
サン等を使用することも可能である。The reaction solvent does not usually need to be used, but it is also possible to use xylene, toluene, hexane or the like as an azeotropic solvent for the by-product n-butanol.
反応温度は仕込原料組成にも影響されるが、ほぼ減圧度
で決定される。The reaction temperature is affected by the composition of the raw materials used, but is determined by the degree of vacuum.
本発明に好ましい反応温度は60〜150℃より好ましくは9
0〜120℃であり、この温度は減圧度の調整により行な
う。対応する減圧度は200〜500Torrである。The reaction temperature preferred in the present invention is 60 to 150 ° C, more preferably 9
The temperature is 0 to 120 ° C., and this temperature is adjusted by adjusting the degree of pressure reduction. The corresponding degree of vacuum is 200-500 Torr.
反応時間は反応温度、触媒量等によって左右されるが通
常4〜5時間である。The reaction time is usually 4 to 5 hours, though it depends on the reaction temperature, the amount of catalyst and the like.
本発明において反応中の熱重合案農を抑制する目的で重
合防止剤を反応系に添加することが好ましい。この場合
使用される重合防止剤としては公知のもの例えば、ハイ
ドロキノンモノメチルエーテル、フェノチアジン等でよ
く、これらの1種あるいは2種以上が使用される。これ
らの重合防止剤は全仕込量に対して好ましくは0.01〜2w
t%、より好ましくは0.05〜1wt%の範囲で使用される。In the present invention, it is preferable to add a polymerization inhibitor to the reaction system for the purpose of suppressing the thermal polymerization plan during the reaction. The polymerization inhibitor used in this case may be a known one such as hydroquinone monomethyl ether or phenothiazine, and one or more of these may be used. These polymerization inhibitors are preferably 0.01 to 2w with respect to the total amount charged.
t%, more preferably 0.05 to 1 wt% is used.
反応終了後、反応液より酸素非存在下で、減圧下に未反
応のBA、DMAE、副生n−ブタノール、目的化合物である
DA等を留出せしめ、触媒TBTを除去した後、再度留出液
に重合防止剤を添加し常法により酸素非存在下で蒸留す
ることで高純度のDAを得ることができる。回収された触
媒は何等精製することなくそのまま繰り返し反応に使用
することができるが、繰り返し回数が多くなるにつれて
若干粘度が上昇する傾向にある為、工業的な製造な安定
性という点からは回収した触媒を一部抜き出し、新たに
触媒を追加して用いることが好ましい。After completion of the reaction, unreacted BA, DMAE, by-product n-butanol, and target compound under reduced pressure in the reaction solution in the absence of oxygen.
Highly pure DA can be obtained by distilling DA and the like and removing the catalyst TBT, then again adding a polymerization inhibitor to the distillate and distilling in the absence of oxygen by a conventional method. The recovered catalyst can be used as it is for repeated reaction without any purification, but the viscosity tends to increase slightly as the number of repetitions increases, so it was recovered from the viewpoint of stability in industrial production. It is preferable to extract a part of the catalyst and add a new catalyst for use.
従来行われている酸素存在下の蒸留ではDAは極めて着色
し易く、又重合も起き易く、温度が高いとこの傾向は更
に顕著でありそのような方法は採用しがたいものであ
る。In the conventional distillation in the presence of oxygen, DA is extremely likely to be colored and polymerization is also likely to occur, and this tendency becomes more remarkable when the temperature is high, and such a method is difficult to adopt.
蒸留により触媒除去を行なう場合高沸点不純物が殆どな
いため揮発成分を完全に留出させる事も可能であるが、
再使用時の取り扱いを考慮すると反応終了液の90〜95%
を留出させることが好ましい。留出率を小さくするとDA
の生産性が低下するため避けることが望ましい。When removing the catalyst by distillation, it is possible to completely distill off the volatile components because there are almost no high-boiling impurities.
90-95% of the reaction completed solution considering handling during reuse
Is preferably distilled. DA when the distillation rate is reduced
It is desirable to avoid it because it lowers the productivity.
該再蒸留時に添加される重合防止剤としては公知のもの
でよく例えば、ハイドロキノン、ハイドロキノモノメチ
ルエーテル、フェノチアジン等でこれらの1種あるいは
2種以上が使用される。これらの重合防止剤は全仕込量
に対して好ましくは0.01〜2wt%、より好ましくは0.05
〜1wt%の範囲で使用される。The polymerization inhibitor added at the time of the redistillation may be a known one, for example, hydroquinone, hydroquinomonomethyl ether, phenothiazine, etc., and one or more of them may be used. These polymerization inhibitors are preferably 0.01 to 2 wt% with respect to the total amount charged, more preferably 0.05
Used in the range of ~ 1wt%.
触媒除去及びDAの精製工程は熱重合反応の抑制という点
から130℃以下で行なうことが望ましい。重合抑制のた
めシリコンオイル等の熱媒の使用も可能であるが、特に
用いなくとも重合の問題は生じない。The catalyst removal and DA purification steps are preferably performed at 130 ° C. or lower from the viewpoint of suppressing the thermal polymerization reaction. It is possible to use a heat medium such as silicone oil for suppressing polymerization, but the problem of polymerization does not occur even if it is not particularly used.
本発明の反応工程で留出させる留出液中には、n−ブタ
ノールと少量のBAが含まれるだけであるので、該n−ブ
タノールを主成分とする留出液はそのまま例えばアクリ
ル酸と反応させればBAを容易に得ることができ、このBA
は本発明の原料としてリサイクルさせることができ、副
生アルコールが有効利用出来るというのも本発明の特徴
の一つである。Since the distillate distilled in the reaction step of the present invention contains only n-butanol and a small amount of BA, the distillate containing n-butanol as a main component is directly reacted with acrylic acid, for example. If you do, you can easily get BA, and this BA
It is also one of the features of the present invention that it can be recycled as a raw material of the present invention, and by-product alcohol can be effectively used.
従来減圧下に、TBT触媒を用い、BAとDMAEとをエステル
交換反応させ、副生するn−ブタノールを留去しながら
DAを得る技術については報告されておらず、なぜこれら
を内容とする本発明によりDAが高選択率、高収率で得ら
れ、さらに、触媒が再使用できるという作用が示される
のか不明であるが、従来米国特許第2,822,348等で公知
のTBT触媒は、前記した如く、経時的失活、微量水分に
よる失活、低活性の為反応が長い等の欠点が指摘されて
いるものであって、これらの問題のない触媒が検討され
ている現状から考えると、本発明における作用は全く予
測できないものである。Conventionally, using a TBT catalyst under a reduced pressure, BA and DMAE are transesterified to distill off n-butanol as a by-product.
No technique for obtaining DA has been reported, and it is unclear why the present invention having these contents provides DA with high selectivity and high yield, and further shows that the catalyst can be reused. However, conventional TBT catalysts known in U.S. Pat.No. 2,822,348 and the like have been pointed out to have drawbacks such as long-term deactivation due to deactivation over time, deactivation by a small amount of water, and low activity, as described above. Considering the present situation where these problem-free catalysts are being studied, the action in the present invention is completely unpredictable.
例えば、アルキルアクリレートとしてメチルアクリレー
ト(以降MAと略す)を用い、副生メタノールはMAとの共
沸により常圧下で抜き出すDAの製法では、TBT触媒を本
発明同様に使用しても反応速度が極めて遅く6時間反応
させてもDAの収率は30%程度である。For example, in the method for producing DA in which methyl acrylate (hereinafter abbreviated as MA) is used as the alkyl acrylate and the by-product methanol is azeotropically distilled with MA under atmospheric pressure, the reaction rate is extremely high even when the TBT catalyst is used in the same manner as in the present invention. The yield of DA is about 30% even if the reaction is allowed to proceed for 6 hours.
又、アルキルアクリレートとしてエチルアクリレート
(以降EAと略す)を用い同様の操作で反応させた場合、
7時間の反応でDAの収率は70%程度でありDAの選択率も
85〜95%である。In addition, when ethyl acrylate (hereinafter abbreviated as EA) is used as the alkyl acrylate and reacted in the same manner,
The DA yield is about 70% after 7 hours of reaction, and the DA selectivity is also high.
85-95%.
又、BAを用い減圧下状態を維持することなく常圧下で副
生n−ブタノールを留去しながら反応を進める(以降常
圧法と略す)と、原因は不明であるが反応途中から反応
液が白濁し、反応速度が極端に遅くなりTBTの経時的失
活を生じる事実が観察される。減圧法と同様常圧法も副
生するn−ブタノールを選択的に抜き出さなければなら
ないが、常圧法においてブタノールを選択的に効率よく
抜き出すためには反応温度を130〜150℃とする必要があ
り、その結果BA、DAの重合がおこり、DAの収率を低下さ
せることとなり、いずれの点においても常圧法には本発
明における優れた作用は全く見出されないのである。When the reaction is carried out while distilling off the by-product n-butanol under atmospheric pressure without maintaining the reduced pressure state using BA (hereinafter abbreviated as atmospheric pressure method), the cause is unknown, but the reaction solution is The fact that it becomes cloudy and the reaction rate becomes extremely slow and TBT is inactivated over time is observed. Similar to the depressurization method, the atmospheric method also requires selective extraction of n-butanol as a by-product, but the reaction temperature must be 130 to 150 ° C. in order to selectively and efficiently extract butanol in the atmospheric method. As a result, polymerization of BA and DA occurs, and the yield of DA is reduced, and no excellent action in the present invention is found in the atmospheric method at any point.
さらに本発明においては前記したように反応溶媒を使用
しなくても本発明の作用は発揮され、反応溶媒を使用し
ないプロセスは極めてシンプルであり本発明は工業的に
より有効に利用されるものである。Furthermore, in the present invention, as described above, the action of the present invention is exhibited without using a reaction solvent, and the process without using a reaction solvent is extremely simple, and the present invention is industrially more effectively utilized. .
本発明の最も顕著な効果は工業的に汎用で有利な蒸留操
作により高純度のDAを得ることができること及び触媒の
再使用ができることにある。The most remarkable effect of the present invention is that highly pure DA can be obtained by an industrially versatile and advantageous distillation operation and that the catalyst can be reused.
本発明者らの検討によれば本発明の方法に従い得られた
反応液を触媒除去を行なうことなく蒸留する(以降直接
蒸留法と略す)と精留効果の大きい条件をもってしても
留出DA中に0.3〜0.5%の低沸分の混入が認められるのに
対し、前記した脱高沸蒸留法により触媒TBTの存在しな
い状態で蒸留するとDMAE等の低沸分が容易に除去でき、
99.9%以上という高純度のDAが得られることが判明し
た。このような作用が得られることについての詳細も不
明である。According to the study by the present inventors, when the reaction solution obtained according to the method of the present invention is distilled without removing the catalyst (hereinafter abbreviated as direct distillation method), the distillate DA is obtained even under the condition that the rectification effect is large. While low-boiling components of 0.3 to 0.5% are found in the product, low-boiling components such as DMAE can be easily removed by distillation in the absence of the catalyst TBT by the above-described deboiling distillation method.
It was found that DA with a high purity of 99.9% or more can be obtained. The details of obtaining such an action are also unknown.
又、触媒は触媒を含む蒸留缶残を精製等の処理すること
なくそのまま再使用することも可能であり、本発明の方
法によれば新たに触媒を追加しなくとも数回以上に及び
再使用が可能である。一方、直接蒸留法によって得られ
る缶残では該触媒活性が低く、脱高沸蒸留法に見られる
ような作用は認められない。In addition, the catalyst can be reused as it is without treating the distillation bottom containing the catalyst such as purification, and according to the method of the present invention, the catalyst can be reused several times or more without adding a new catalyst. Is possible. On the other hand, in the bottoms obtained by the direct distillation method, the catalytic activity is low, and the action as seen in the deboiling distillation method is not recognized.
本発明によれば合成工程でも触媒は殆ど失活せず、蒸留
工程においても触媒活性を維持できるという作用が示さ
れるのである。According to the present invention, the catalyst is hardly deactivated even in the synthesis step, and it is possible to maintain the catalytic activity even in the distillation step.
従来TBTは不可避と考えられていた触媒の経時的失活と
いう現象からは本発明における作用は全く予測出来ない
ものである。The action in the present invention is completely unpredictable from the phenomenon of catalyst deactivation over time, which was conventionally considered inevitable in TBT.
尚、回収された触媒はそのまま使用できること、さらに
DA精製工程における精留残缶は重合による粘度上昇とい
った現象も認められず、精留原料としてリサイクルする
ことも可能であることから、本発明の触媒除去を行なっ
てもDAの収率を低下させるといったデメリットは生じな
い。The recovered catalyst can be used as it is.
The rectification residue in the DA purification step does not show a phenomenon such as an increase in viscosity due to polymerization, and can be recycled as a rectification raw material, so that the yield of DA is reduced even when the catalyst of the present invention is removed. There is no such disadvantage.
以下、本発明をより具体的に説明するために、実施例及
び比較例を挙げて詳細に説明する。尚、本明細書におい
て用いる転化率、選択率及び収率の定義は次の通りであ
る。Hereinafter, in order to describe the present invention more specifically, examples and comparative examples will be described in detail. The definitions of conversion rate, selectivity and yield used in the present specification are as follows.
総合収率(%)=収率(%)×蒸留収率(%)/100 実施例1. 攪拌機、温度計、冷却器及び分留塔をつけた、精留塔を
備えた三口フラスコにBA1,920g(15.0モル)、DMAE445g
(5.0モル)、TBT34.1g(0.1モル)及び重合防止剤とし
てフェノチアジン2.4g(1,000ppm)、を加え300Torrの
減圧下、攪拌しながら加熱を開始した。30分間全還流し
た後、反応液温度を110〜120℃、精留塔塔頂温度を96〜
98℃に維持して生成するn−ブタノールを還流比3.0〜
5.0で抜き出しながら4時間反応を行なった。 Overall yield (%) = Yield (%) x Distillation yield (%) / 100 Example 1. BA1 in a three-necked flask equipped with a stirrer, a thermometer, a condenser and a fractionation column and equipped with a rectification column. , 920g (15.0mol), DMAE445g
(5.0 mol), TBT 34.1 g (0.1 mol) and phenothiazine 2.4 g (1,000 ppm) as a polymerization inhibitor were added, and heating was started under reduced pressure of 300 Torr with stirring. After totally refluxing for 30 minutes, the reaction liquid temperature is 110 to 120 ° C, and the rectification tower overhead temperature is 96 to
The n-butanol produced by maintaining at 98 ° C has a reflux ratio of 3.0-
The reaction was performed for 4 hours while extracting at 5.0.
反応液をガスクロマトグラフによって分析したところDM
AEの反応率は92%、DAの収率は90%であった。When the reaction solution was analyzed by gas chromatography, DM
The reaction rate of AE was 92% and the yield of DA was 90%.
次に、この反応液を窒素雰囲気下、30Torr、90〜100℃
で触媒を除去しDAを含む留出液を1,944gを得た。さら
に、留出液にフェノチアジン1.9gを加えた後、冷却器、
分留塔を備えた精留塔(理論段15段)を用い、窒素雰囲
気下、20Torr、70〜85℃、還流比1.0〜10.0でn−ブタ
ノール、BA、DMAEを留去した後、同じく窒素雰囲気下、
20Torr、85〜95℃、還流比1.0〜2.0で蒸留し、DA611gを
得た。DAの総合収率は86%、純度は99.9%であった。Next, this reaction solution is placed in a nitrogen atmosphere at 30 Torr and 90 to 100 ° C.
The catalyst was removed with to obtain 1,944 g of a distillate containing DA. Furthermore, after adding 1.9 g of phenothiazine to the distillate, a condenser,
Using a rectification column (15 theoretical plates) equipped with a fractionation column, after distilling off n-butanol, BA, and DMAE under a nitrogen atmosphere at 20 Torr, 70 to 85 ° C., and a reflux ratio of 1.0 to 10.0, the same nitrogen was used. Under the atmosphere,
Distilled at 20 Torr, 85 to 95 ° C., and a reflux ratio of 1.0 to 2.0 to obtain DA611g. The overall yield of DA was 86% and the purity was 99.9%.
比較例1. 実施例1.と同様の装置にMA1,290g(15.0モル)、DMAE44
5g(5.0モル)、TBT34.1g(0.1モル)及び重合防止剤と
してフェノチアジン1.8g(1,000ppm)を加え、攪拌しな
がら加熱を開始した。生成したメタノールとMAの共沸混
合物を30分全還流させた後、さらに精留塔塔頂温度を60
〜65℃に維持して共沸混合物を系外に抜き出しながら6
時間反応させた。反応液をガスクロマトグラフで分析し
た結果、DAの収率は28%であった。Comparative Example 1. MA1,290 g (15.0 mol), DMAE44 in the same apparatus as in Example 1.
5 g (5.0 mol), TBT 34.1 g (0.1 mol) and phenothiazine 1.8 g (1,000 ppm) as a polymerization inhibitor were added, and heating was started while stirring. The resulting azeotropic mixture of methanol and MA was completely refluxed for 30 minutes, and then the rectification column overhead temperature was further adjusted to 60
Keeping the temperature at ~ 65 ° C and drawing the azeotrope out of the system 6
Reacted for hours. As a result of analyzing the reaction liquid by gas chromatography, the yield of DA was 28%.
比較例2. 実施例1.と同様に操作を行ない、4時間反応を行なっ
た。Comparative Example 2. The same operation as in Example 1 was carried out and the reaction was carried out for 4 hours.
反応液をガスクロマトグラフで分析したところDMAEの転
化率は92%、DAの収率は91%であった。When the reaction solution was analyzed by gas chromatography, the conversion rate of DMAE was 92% and the yield of DA was 91%.
次に冷却器、分留塔を備えた精留塔(理論段15)を用
い、窒素雰囲気下、20Torr、70〜85゜、還流比1.0〜30.
0でn−ブタノール、BA、DMAEを留去した後、同じく窒
素雰囲気下、20Torr、85〜95℃、還流比1.0〜2.0で蒸留
し、DA586gを得た。DAの総合収率は86%、純度は99.6%
であった。Next, using a rectification column (theoretical plate 15) equipped with a condenser and a fractionation column, under a nitrogen atmosphere, 20 Torr, 70 to 85 °, a reflux ratio of 1.0 to 30.
After n-butanol, BA and DMAE were distilled off at 0, they were also distilled under a nitrogen atmosphere at 20 Torr, 85 to 95 ° C and a reflux ratio of 1.0 to 2.0 to obtain DA586g. Total yield of DA is 86%, purity is 99.6%
Met.
実施例2. 実施例1.と同様の操作を行ない、4時間反応を行なっ
た。Example 2. The same operation as in Example 1 was performed and the reaction was carried out for 4 hours.
反応液をガスクロマトグラフによって分析したところDM
AEの反応率は91%、DAの収率は90%であった。When the reaction solution was analyzed by gas chromatography, DM
The reaction rate of AE was 91% and the yield of DA was 90%.
この反応液を窒素雰囲気下、30Torr、90〜100℃で触媒
を除去しDAを含む留出液を20,121gを得た。実施例1.と
同様の装置に実施例1.で回収した触媒106g、BA1,920g
(15.0モル)、DMAE445g(5.0モル)を加え300Torrの減
圧下、攪拌しながら加熱を開始した。反応液温度を110
〜120℃、精留塔塔頂温度を96〜98℃に維持して生成す
るn−ブタノールを還流比3.0〜5.0で抜き出しながら4
時間反応を行なった。The catalyst was removed from this reaction solution under a nitrogen atmosphere at 30 Torr and 90 to 100 ° C. to obtain 20,121 g of a distillate containing DA. 106 g of the catalyst recovered in Example 1 and BA1,920 g in the same apparatus as in Example 1.
(15.0 mol) and DMAE445g (5.0 mol) were added, and heating was started under reduced pressure of 300 Torr with stirring. The reaction solution temperature is 110
˜120 ° C., while maintaining the overhead temperature of the rectification column at 96 to 98 ° C., while extracting n-butanol produced at a reflux ratio of 3.0 to 5.0, 4
A time reaction was performed.
反応液をガスクロマトグラフによって分析したところDM
AEの反応率は90%、DAの収率は89%であった。同様にし
て反応を計4回実施した結果を次表に示す。When the reaction solution was analyzed by gas chromatography, DM
The reaction rate of AE was 90% and the yield of DA was 89%. The following table shows the results of carrying out the reaction a total of four times in the same manner.
表からも明かなように回収した触媒を繰り返し使用して
も触媒の活性に低下は認められなかった。さらに高沸点
不純物の蓄積も認められなかった。 As is clear from the table, no decrease in the activity of the catalyst was observed even after repeated use of the recovered catalyst. Furthermore, accumulation of high boiling impurities was not observed.
ハ.発明の効果 本発明によればジメチルアミノエチルアクリレートを高
純度、高収率、低コストで製造することができ、高分子
凝集剤、繊維処理剤等の製造に非常に好適な原料を供給
することができ、それらを使用する業界に寄与する効果
は多大なものである。C. EFFECTS OF THE INVENTION According to the present invention, dimethylaminoethyl acrylate can be produced with high purity, high yield and low cost, and a very suitable raw material for producing a polymer flocculant, a fiber treating agent, etc. is supplied. And the effect of contributing to the industry using them is enormous.
Claims (1)
て、減圧下で副生するn−ブタノールを留去しながら反
応させたn−ブチルアクリレートとジメチルアミノエチ
ルアルコールの反応液を、酸素の実質的非存在下に蒸留
することによって、まずテトラn−ブチルチタネートを
回収し、ついで精製することを特徴とするジメチルアミ
ノエチルアクリレートの製造方法。1. A reaction liquid of n-butyl acrylate and dimethylaminoethyl alcohol, which is reacted with tetra-n-butyl titanate as a catalyst while distilling off by-product n-butanol under reduced pressure, and a reaction liquid containing substantially no oxygen. A method for producing dimethylaminoethyl acrylate, characterized in that tetra-n-butyl titanate is first recovered by distillation in the presence and then purified.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1249689A JPH0713050B2 (en) | 1989-09-26 | 1989-09-26 | Method for producing dimethylaminoethyl acrylate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1249689A JPH0713050B2 (en) | 1989-09-26 | 1989-09-26 | Method for producing dimethylaminoethyl acrylate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03112949A JPH03112949A (en) | 1991-05-14 |
JPH0713050B2 true JPH0713050B2 (en) | 1995-02-15 |
Family
ID=17196741
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1249689A Expired - Lifetime JPH0713050B2 (en) | 1989-09-26 | 1989-09-26 | Method for producing dimethylaminoethyl acrylate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0713050B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69807406T2 (en) | 1997-10-01 | 2003-04-24 | Nippon Shokubai Co. Ltd., Osaka | Process for the preparation of alkylamino (meth) acrylate and an apparatus therefor |
FR2777561B1 (en) * | 1998-04-21 | 2000-06-02 | Atochem Elf Sa | PROCESS FOR THE CONTINUOUS MANUFACTURE OF DIALKYLAMINOALKYL (METH) ACRYLATES |
FR2811986B1 (en) * | 2000-07-18 | 2004-02-27 | Atofina | PROCESS FOR THE CONTINUOUS MANUFACTURE OF DIALKYLAMINOALKYL (METH) ACRYLATES |
DE10127938A1 (en) | 2001-06-08 | 2002-07-25 | Basf Ag | Production of basic dialkylaminoethyl(meth)acrylates, useful for production of (co)polymers for paints, dispersion or adhesives comprises esterification of (meth)acrylic acid alkyl esters. |
WO2004106278A1 (en) | 2003-05-28 | 2004-12-09 | Mitsubishi Rayon Co., Ltd. | Process for the production of n-alkylaminoalkyl (meth)acrylates |
EP3263551B1 (en) * | 2016-06-28 | 2020-10-14 | Evonik Operations GmbH | Preparation of n, n- (di) alkylaminoalkyl (meth) acrylamide or n, n- (di) alkylaminoalkyl (meth) acrylate and their quaternary ammonium salts as flocculants and gelling agents |
-
1989
- 1989-09-26 JP JP1249689A patent/JPH0713050B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03112949A (en) | 1991-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2761707A1 (en) | The production of n,n-dialkylaminoethyl(meth)acrylates | |
JP5399915B2 (en) | Process for the synthesis of (meth) acrylic esters catalyzed by polyol titanates | |
EP0321256A2 (en) | Process of preparing unsaturated carboxylic acid amides | |
JP2818640B2 (en) | Process for producing alkyl imidazolidone (meth) acrylate | |
EP0118639B1 (en) | Synthesis of acrylic or methacrylic acid esters | |
KR101689905B1 (en) | Method for continuously producing alkylamino(meth)acrylamides | |
JPH0713050B2 (en) | Method for producing dimethylaminoethyl acrylate | |
JP2884433B2 (en) | Method for producing 4-hydroxybutyl acrylate or methacrylate | |
JP5369438B2 (en) | Continuous production method of dialkylaminoalkyl (meth) acrylate | |
CN111556862B (en) | Process for producing 2-dimethylaminoethyl (meth) acrylate | |
US5587515A (en) | Method of manufacturing N-monosubstituted (meth)acrylamides | |
US4059617A (en) | Synthesis of dimethylaminoethyl methylmethacrylate | |
JPH089582B2 (en) | Method for producing dimethylaminoethyl acrylate | |
JPH0217155A (en) | Production of dialkylaminoalkyl (meth)acrylate | |
JP2793045B2 (en) | Process for producing alkylaminoalkyl esters of acrylic acid or methacrylic acid and quaternary salts thereof | |
JP2003171345A (en) | Method for ester interchange reaction, and new catalyst usable therefor | |
JPH06199752A (en) | Production of n-mono-substituted-@(3754/24)meth)acrylamide | |
CN1434793A (en) | Method for the production of esters of unsaturated carboxylic acids | |
CN1039410C (en) | Process for preparing alkyl aminoalkyl methylacrylate | |
JPH0651664B2 (en) | Process for producing alkylaminoalkyl ester of acrylic acid or methacrylic acid | |
JPH0747568B2 (en) | Process for producing alkylaminoalkyl ester of acrylic acid or methacrylic acid | |
JP2001247513A (en) | Method of producing monomer | |
JP3466904B2 (en) | Method for producing alkylamino (meth) acrylate | |
JP3442285B2 (en) | Method for producing N-substituted (meth) acrylamide | |
JPH0585997A (en) | Production of dialkylaminoalkyl acrylate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080215 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090215 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100215 Year of fee payment: 15 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100215 Year of fee payment: 15 |