JPH07138602A - Low alloy steel powder for powder metallurgy - Google Patents
Low alloy steel powder for powder metallurgyInfo
- Publication number
- JPH07138602A JPH07138602A JP28523193A JP28523193A JPH07138602A JP H07138602 A JPH07138602 A JP H07138602A JP 28523193 A JP28523193 A JP 28523193A JP 28523193 A JP28523193 A JP 28523193A JP H07138602 A JPH07138602 A JP H07138602A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- low alloy
- alloy steel
- fatigue strength
- powder metallurgy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は粉末冶金用低合金鋼粉に
関し、特に、焼結後の熱処理によって溶製鋼材レベルの
優れた疲労強度の製品が得られる様に改質された粉末冶
金用低合金鋼粉に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low alloy steel powder for powder metallurgy, and more particularly to powder metallurgy modified by heat treatment after sintering so as to obtain a product with excellent fatigue strength at the level of molten steel. It relates to low alloy steel powder.
【0002】[0002]
【従来の技術】粉末冶金技術および焼結技術が進歩する
につれて、低合金鋼粉を用いた焼結製品についても著し
く高強度化され、特に引張強度は通常の溶製鋼材と同等
レベルの値が達成できる様になってきている。ところが
疲労強度については未だ不十分であり、溶製鋼材に比較
すると疲労限界比がかなり小さいという欠点がある。そ
のため焼結鋼材は、主としてあまり大きな負荷を受けな
い部品材料として利用されてきた。2. Description of the Related Art As powder metallurgy technology and sintering technology have advanced, the strength of sintered products made from low alloy steel powder has been remarkably increased. In particular, the tensile strength has the same level as that of ordinary ingot steel. It is becoming possible to achieve. However, the fatigue strength is still insufficient and the fatigue limit ratio is considerably smaller than that of the ingot steel. Therefore, the sintered steel material has been mainly used as a component material which is not so heavily loaded.
【0003】焼結体が疲労強度に欠ける最大の理由は、
焼結体内に不可避的に残存する空孔に原因するものと考
えられており、こうした疲労強度不足を補うための手段
として、焼結前の圧粉成形体の密度を高める方法、合金
元素粉末を加えて合金化することにより強化する方法、
あるいは焼結後再加圧加熱処理する方法等が行なわれて
おり、殊に合金化法(合金元素の拡散付着法やプレアロ
イ型鋼粉の使用)は有効な方法として広く実用化されて
いる。しかしながら、これらは合金元素が鋼粉の圧縮性
や焼結金属組織に与える影響を追求し、これらの改質に
よって疲労強度を高めようとするものであるが、最近の
疲労特性に対する厳しい要求を満たすまでには至ってお
らない。The main reason why the sintered body lacks fatigue strength is
It is believed that this is caused by the voids that inevitably remain in the sintered body, and as a means for compensating for this lack of fatigue strength, a method of increasing the density of the green compact before sintering, alloy element powder In addition, a method of strengthening by alloying,
Alternatively, a method of re-pressurizing and heating after sintering has been carried out, and in particular, an alloying method (diffusion and deposition method of alloy elements and use of prealloy type steel powder) has been widely put to practical use as an effective method. However, these attempt to increase the fatigue strength by modifying the alloy elements in order to improve the compressibility of the steel powder and the sintered metal structure and to improve the fatigue strength by satisfying the recent severe requirements for fatigue properties. Has not reached.
【0004】即ち従来の粉末冶金用低合金鋼粉を用いた
焼結製品は、回転曲げ疲労強度で50kgf/mm2 レ
ベルを達成し得るに止まり、たとえば自動車等のミッシ
ョン部品や歯車材等としては疲労強度不足であり、特に
近年における自動車等の軽量化と燃費や排ガス低減の為
に要求される「最低回転曲げ疲労強度で60kgf/m
m2 以上」といった強度レベルを満足することはできな
い。That is, a conventional sintered product using a low alloy steel powder for powder metallurgy can attain a level of 50 kgf / mm 2 in rotating bending fatigue strength, and is not suitable as a mission component for automobiles or a gear material. Insufficient fatigue strength, especially 60 kgf / m at minimum rotational bending fatigue strength required for weight reduction of automobiles and fuel consumption and exhaust gas reduction in recent years.
m 2 or more ”cannot be satisfied.
【0005】[0005]
【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、圧粉
成形時において高レベルの圧縮性を発揮して焼結後の空
孔を可及的に低減し得ると共に、焼結乃至その後の熱処
理工程では優れた焼入性と軟化抵抗を示し、60kgf
/mm2 レベル以上の回転曲げ疲労強度を備えた焼結体
を製造し得る様な粉末冶金用低合金鋼粉を提供しようと
するものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to exhibit a high level of compressibility at the time of compacting and to obtain a material after sintering. Porosity can be reduced as much as possible, and it exhibits excellent hardenability and softening resistance during the sintering and subsequent heat treatment steps.
An object of the present invention is to provide a low alloy steel powder for powder metallurgy capable of producing a sintered body having a rotational bending fatigue strength of at least a level of 1 mm 2 / mm 2 .
【0006】[0006]
【課題を解決するための手段】上記課題を解決すること
のできた本発明の構成は、粉末冶金用低合金鋼基体に、
Ni:0.2〜1%と、下記(1)、(2) 式の要件を満足す
るCrとMoを含有させると共に、Alを0.01%以
下に抑えてなり、 [Cr]+[Mo]≦3.1 ……(1) [Cr]+1.8[Mo]≧1.8……(2) (但し、[Cr]および[Mo]は、低合金鋼中におけ
るCrおよびMoの含有率:重量%を表わす)5t/cm2
の成形圧力下で6.7g/cm3 以上の圧粉体密度を示し、
また焼結により140μm以下のサイズの介在物を生成
するものであるところに要旨を有するものである。尚、
上記における粉末冶金用低合金鋼基体としては、C:
0.02%以下、Si:0.10%以下およびMn:
0.5%以下を含有するものが用いられる。The constitution of the present invention which has been able to solve the above-mentioned problems is to provide a low alloy steel substrate for powder metallurgy,
Ni: 0.2 to 1% and Cr and Mo satisfying the requirements of the following formulas (1) and (2) are contained, and Al is suppressed to 0.01% or less. ] ≦ 3.1 (1) [Cr] +1.8 [Mo] ≧ 1.8 (2) (where [Cr] and [Mo] are the contents of Cr and Mo in the low alloy steel. Rate: represents weight%) 5 t / cm 2
Shows a green compact density of 6.7 g / cm 3 or more under the molding pressure of
Further, it has the gist of producing inclusions having a size of 140 μm or less by sintering. still,
As the low alloy steel substrate for powder metallurgy described above, C:
0.02% or less, Si: 0.10% or less and Mn:
Those containing 0.5% or less are used.
【0007】[0007]
【作用】上記の様に本発明では、粉末冶金用低合金鋼基
体に適量のNiを含有させると共に、圧粉成形時に高レ
ベルの圧縮性を確保すると共に焼結体の強度を高めるた
めCrとMoを適正な配合比率で含有せしめ、更には焼
結体内の介在物サイズが140μm以下となる様に含有
合金元素量を制御したものであって、それにより優れた
疲労強度の焼結体を与える粉末冶金用低合金鋼粉を得る
ことに成功したものである。以下、本発明において添加
合金元素の種類および含有率等を定めた理由を詳述す
る。As described above, according to the present invention, the low alloy steel base for powder metallurgy contains a proper amount of Ni, and in order to secure a high level of compressibility at the time of powder compacting and to increase the strength of the sintered body, Cr is added. Mo is contained in an appropriate mixing ratio, and the content of alloying elements is controlled so that the size of inclusions in the sintered body is 140 μm or less, thereby providing a sintered body with excellent fatigue strength. It succeeded in obtaining low alloy steel powder for powder metallurgy. Hereinafter, the reason why the type and content rate of the additive alloy element are defined in the present invention will be described in detail.
【0008】Ni:0.2〜1.0% Niは、低合金鋼基体に添加することにより焼結製品の
焼入性を高めて引張強度向上に寄与すると共に靭性を高
め、疲労強度の向上にも欠くことのできない添加元素で
あり、それらの効果は0.2%以上含有させることによ
って有効に発揮される。しかしながらNiは鋼粉を硬質
化して圧粉成形時の圧縮性を劣化させる傾向があるの
で、圧縮性に実質的な悪影響を及ぼすことのない添加量
として、1.0%を上限とする。Niのより好ましい含
有量は0.2〜0.5%の範囲である。Ni: 0.2 to 1.0% When Ni is added to a low alloy steel substrate, it enhances the hardenability of the sintered product and contributes to the improvement of tensile strength, as well as toughness and fatigue strength. However, they are indispensable additional elements, and their effects are effectively exhibited by containing 0.2% or more. However, since Ni tends to harden the steel powder and deteriorate the compressibility at the time of powder compaction, the upper limit is 1.0% as an addition amount that does not substantially affect the compressibility. The more preferable content of Ni is in the range of 0.2 to 0.5%.
【0009】 [Cr]+[Mo]≦3.1 ……(1) [Cr]+1.8[Mo]≧1.8……(2)[Cr] + [Mo] ≦ 3.1 (1) [Cr] +1.8 [Mo] ≧ 1.8 (2)
【0010】CrとMoは、低合金鋼基体に適量含有さ
せることによって、その圧縮性にあまり悪影響を及ぼさ
ないで焼結体の強度を高める作用を有しており、鋼粉の
圧縮性に及ぼす影響度はほぼ等価である。一方、焼入性
向上により焼結体の強度を高める効果については、Cr
が1に対しMoが1.8の影響度を有している。そして
これらCrとMoによる強度向上効果を有効に発揮させ
るには上記(2)式の要件を満たす量以上含有させなけ
ればならないが、(1)式で定める上限値を超えると圧
縮性に明確な悪影響が表われ、圧粉成形体の密度を十分
に高め難くなって疲労特性の劣化を来たす。When Cr and Mo are contained in the low alloy steel substrate in appropriate amounts, they have the effect of increasing the strength of the sintered body without adversely affecting the compressibility thereof and affecting the compressibility of the steel powder. The impacts are almost equivalent. On the other hand, regarding the effect of enhancing the strength of the sintered body by improving the hardenability, Cr is
1 has an influence of 1.8 for Mo. And, in order to effectively exert the strength improving effect of Cr and Mo, it is necessary to contain at least an amount satisfying the requirement of the above formula (2), but if it exceeds the upper limit defined by the formula (1), the compressibility becomes clear. This has an adverse effect and makes it difficult to sufficiently increase the density of the green compact, resulting in deterioration of fatigue properties.
【0011】上記の規定要件に合致する量のNi,C
r,Moを含有する粉末冶金用低合金鋼粉は優れた圧縮
性を有しており、5t/cm3 の成形圧力でも6.7g/cm3
以上の圧粉成形体密度を得ることができ、これを焼結
し、若しくは必要により更に熱処理を加えることによっ
て空孔欠陥が少なく優れた疲労強度を有し、且つ適度の
焼入れ硬化によって優れた引張強度の焼結成形体を得る
ことができる。Amounts of Ni and C that meet the above-mentioned requirements
Low alloy steel powder for powder metallurgy containing r and Mo has excellent compressibility, and even at a molding pressure of 5 t / cm 3 , it is 6.7 g / cm 3.
It is possible to obtain the above green compact density, and by sintering it or by further heat treatment if necessary, it has excellent fatigue strength with few pore defects, and excellent tensile strength due to appropriate quench hardening. A strong sintered compact can be obtained.
【0012】ところで、本発明者らが上記合金元素を加
えた低合金鋼粉について焼結体の疲労特性を調べたとこ
ろ、焼結体中に不可避的に混入してくる非金属介在物の
粒径によっても疲労強度が顕著な影響を受け、該介在物
サイズが140μm以下であるものは安定して優れた疲
労強度を発揮し得ることが確認された。そして該非金属
介在物は、特に低合金鋼基体の溶製段階で混入してくる
Alの含有量と密接な関連を有しており、該低合金鋼基
体中のAl含有量を0.01%以下に抑えてやれば、最
終的に得られる焼結体の疲労強度に大きなバラツキを生
じることなく、安定して60kgf/mm2 レベル以上
の回転曲げ疲労強度が保証されることをつきとめた。By the way, when the present inventors investigated the fatigue properties of the low alloy steel powder to which the above alloying elements were added, the particles of non-metallic inclusions inevitably mixed in the sintered body were found. It was confirmed that the fatigue strength is significantly affected by the diameter as well, and that the inclusion size of 140 μm or less can stably exhibit excellent fatigue strength. The non-metallic inclusions are closely related to the content of Al mixed in the low alloy steel base in the melting stage, and the content of Al in the low alloy steel base is 0.01%. It was found that if the content is suppressed below, the fatigue strength of the finally obtained sintered body does not vary greatly, and a stable rotational bending fatigue strength of 60 kgf / mm 2 level or more is guaranteed.
【0013】ちなみに図1は、実施例を含めた種々の実
験データから低合金鋼粉中のAl含有率と焼結体中の非
金属介在物サイズの関係、図2は焼結体中の非金属介在
物サイズと疲労強度の関係を整理して示したグラフであ
り、Al含有率を0.01%以下に抑えたものでは、焼
結体中の非金属介在物サイズが140μm以下に抑えら
れ、また該介在物サイズが140μm以下である焼結体
の疲労強度は60kgf/mm2 レベル以上の高い値を
示していることが分かる。Incidentally, FIG. 1 shows the relationship between the Al content in the low alloy steel powder and the size of non-metallic inclusions in the sintered body, based on various experimental data including the examples, and FIG. It is a graph showing the relationship between the size of metal inclusions and the fatigue strength. When the Al content is suppressed to 0.01% or less, the size of non-metal inclusions in the sintered body can be suppressed to 140 μm or less. Further, it is understood that the fatigue strength of the sintered body having the inclusion size of 140 μm or less shows a high value of 60 kgf / mm 2 level or more.
【0014】従って、本発明で用いる粉末冶金用低合金
鋼基体としては、Al含有率が0.01%以下のものを
使用する必要があり、その他の含有元素については格別
の制限はないが、一般的なのはC:0.02%以下,S
i:0.10%以下およびMn:0.5%以下を含み、
残部がFeおよび不可避不純物からなるものである。Therefore, as the low alloy steel base for powder metallurgy used in the present invention, it is necessary to use one having an Al content of 0.01% or less, and there are no particular restrictions on the other contained elements. Generally, C: 0.02% or less, S
i: 0.10% or less and Mn: 0.5% or less,
The balance is Fe and inevitable impurities.
【0015】ちなみに、CはNと共に鋼に対し侵入型元
素であり、フェライトを硬化させる作用を有する。鋼粉
を圧縮成形する場合、フェライト基地の硬さが柔らかい
方が圧粉体密度を高めることができるのでCは低く抑え
る方がよい。しかも、圧粉体密度を上げると成形体強度
も改善されるので、成形体のハンドリングにおいても望
ましい。よって、Cは0.02%以下が好ましい。Incidentally, C, together with N, is an interstitial element with respect to steel and has a function of hardening ferrite. When the steel powder is compression-molded, the softer the hardness of the ferrite matrix is, the higher the green compact density can be. Therefore, it is better to keep C low. In addition, increasing the green compact density improves the strength of the compact, which is also desirable in handling the compact. Therefore, C is preferably 0.02% or less.
【0016】またSiは焼入性を向上させる効果がある
が、溶鋼をアトマイズする場合、鋼粉表面に酸化物を形
成する。Siは酸素との結合力が強く、還元工程でこの
酸化物を還元することは困難であるばかりでなく、フェ
ライトを硬化させる作用が大きくて鋼粉の圧縮性を損ね
る。また、アトマイズ前の溶鋼中に過度に存在すると酸
化物系介在物源となるので、Si量は低く抑えるべきで
あり、0.01%以下が好ましい。Si has the effect of improving hardenability, but when atomizing molten steel, it forms an oxide on the surface of steel powder. Si has a strong bonding force with oxygen, and it is not only difficult to reduce this oxide in the reduction step, but also the effect of hardening ferrite is large and the compressibility of steel powder is impaired. Further, if excessively present in the molten steel before atomizing, it becomes a source of oxide-based inclusions, so the amount of Si should be kept low, preferably 0.01% or less.
【0017】更にMnは、焼入性を向上させるのに非常
に効果的であり、熱処理特性を改善するのに有効に作用
する。しかし、圧縮性を劣化させる効果も大きい。そこ
で、圧縮性を損ねることなく、優れた機械的特性を確保
することのできる範囲として0.5%以下が好ましい。Further, Mn is very effective in improving the hardenability and effectively acts in improving the heat treatment characteristics. However, it has a great effect of degrading the compressibility. Therefore, 0.5% or less is preferable as a range in which excellent mechanical properties can be secured without impairing the compressibility.
【0018】尚、不可避不純物としてはP,S,O,N
等が挙げられるが、これらはいずれも非金属介在物源と
なって疲労強度に悪影響を及ぼすので、できるだけ少な
くすることが望ましい。The unavoidable impurities include P, S, O and N.
However, since they all act as sources of non-metallic inclusions and adversely affect the fatigue strength, it is desirable to reduce them as much as possible.
【0019】本発明の粉末冶金用低合金鋼粉は、上記の
様な成分組成の低合金鋼基体の溶製段階で前述のNiや
Cr,Moを適量添加し、常法に従ってたとえばガスア
トマイズ法、水アトマイズ等により完全合金化された微
粉状物として得る方法、あるいは添加元素をプレミック
ス粉や合金粉末として基体鋼粉と混合し、表面に付着さ
せて拡散付着型の低合金鋼粉とすることもできる。しか
し、圧粉成形時の圧縮性や焼結体として均質な疲労強度
を得る上では、上記添加合金元素が均一に分布したもの
が好ましく、こうした意味からすると完全合金型の粉体
とするのが望ましい。粒径は特に制限的でないが、取扱
性や圧粉成形性等の観点から好ましいのは平均粒子径で
63〜100μm、最大粒径が250μmのものであ
る。The low alloy steel powder for powder metallurgy of the present invention is prepared by adding appropriate amounts of Ni, Cr, and Mo at the melting stage of the low alloy steel substrate having the above-described composition, and according to a conventional method, for example, a gas atomizing method, A method of obtaining finely powdered material that is completely alloyed by water atomization, or mixing additive elements with base steel powder as premix powder or alloy powder, and adhering to the surface to make a diffusion adhesion type low alloy steel powder You can also However, in order to obtain compressibility at the time of compacting and to obtain a uniform fatigue strength as a sintered body, it is preferable that the above-mentioned additional alloying elements are evenly distributed. From this point of view, a perfect alloy type powder is preferable. desirable. The particle size is not particularly limited, but those having an average particle size of 63 to 100 μm and a maximum particle size of 250 μm are preferable from the viewpoint of handleability and powder compacting property.
【0020】上記の低合金鋼粉を用いた焼結成形体の製
造は常法に従って行なえばよく、たとえば該低合金鋼粉
を黒鉛粉等の炭素、ステアリン酸、亜鉛、ワックス等の
潤滑剤等と均一に混合してから5〜9t/cm2 程度で
所定の製品形状に圧粉成形し、次いでアンモニア分解ガ
ス等の非酸化性雰囲気下で1100〜1250℃程度に
加熱処理することにより焼結させればよい。The production of a sintered compact using the above low alloy steel powder may be carried out by a conventional method. For example, the low alloy steel powder is mixed with carbon such as graphite powder, lubricant such as stearic acid, zinc and wax. After uniformly mixing, the powder is compacted into a predetermined product shape at about 5 to 9 t / cm 2 and then heat-treated at about 1100 to 1250 ° C. in a non-oxidizing atmosphere such as ammonia decomposition gas to sinter. Just do it.
【0021】[0021]
【実施例】以下、実施例を参照しつつ本発明の構成およ
び作用効果をより具体的に説明するが、本発明はもとよ
り下記実施例によって制限を受けるものではなく、前・
後記の趣旨に適合し得る範囲で変更して実施することも
可能であり、それらはいずれも本発明の技術的範囲に包
含される。EXAMPLES The constitution and effects of the present invention will be described in more detail below with reference to examples, but the present invention is not limited to the following examples, and
Modifications can be made within a range that is compatible with the gist of the description below, and all of them are included in the technical scope of the present invention.
【0022】実施例 下記表1に示す化学成分の粉末冶金用低合金鋼粉(最大
粒径:250μm、平均粒子径:63〜100μm)
に、黒鉛粉0.6%を加えて均一に混合し、HIP処理
によって真密度の直径12.5mm×高さ10mmの焼
結体を得た。この焼結体の断面を光学顕微鏡観察し、介
在物検査を行なった。検査面は、直径12.5mm全面
とし、JIS規格よりも観察面積を増やして検査精度を
高め、介在物の最大サイズを測定したところ、表2に示
す結果を得た。Example Low alloy steel powder for powder metallurgy having the chemical composition shown in Table 1 below (maximum particle size: 250 μm, average particle size: 63 to 100 μm)
Then, 0.6% of graphite powder was added and mixed uniformly, and a HIP treatment was performed to obtain a sintered body having a true density of 12.5 mm in diameter and 10 mm in height. The cross section of this sintered body was observed with an optical microscope to inspect inclusions. The inspection surface was a whole surface of 12.5 mm in diameter, and the inspection area was increased more than the JIS standard to improve the inspection accuracy and the maximum size of inclusions was measured. The results shown in Table 2 were obtained.
【0023】また、上記各低合金鋼粉にステアリン酸亜
鉛0.75%を加えて均一に混合し、成形圧力5t/cm3
で圧粉成形したものについて密度を測定し、結果を表2
に併記した。Further, 0.75% of zinc stearate was added to each of the low alloy steel powders and uniformly mixed, and the molding pressure was 5 t / cm 3.
The density was measured for the powder compacted with, and the result is shown in Table 2.
Also described in.
【0024】[0024]
【表1】 [Table 1]
【0025】[0025]
【表2】 [Table 2]
【0026】表1,2からも明らかである様に、本発明
で規定する化学成分の要件を満足するNo.1〜5の低
合金鋼粉を用いた圧粉成形体は、いずれも6.7g/cm3
以上の圧粉成形体密度を有しており、圧縮性に優れたも
のであることが分かる。これに対し、(1) 式の要件を欠
くNo.7および11〜13の比較鋼粉を用いたもので
は、6.7g/cm3 レベルの圧粉成形体密度が得られてい
ない。尚、No.6,8〜10,14については、(1)
式の要件を満足しているため圧粉成形体密度は6.7g/
cm3 以上を得ているが、後述する如く焼結体の引張強度
や疲労強度が不十分である。As is clear from Tables 1 and 2, Nos. Which satisfy the requirements of the chemical composition defined in the present invention. Powder compacts using low alloy steel powders 1 to 5 are all 6.7 g / cm 3
It can be seen that the powder compact has the above density and is excellent in compressibility. On the other hand, in No. In the case of using the comparative steel powders of Nos. 7 and 11 to 13, the powder compact density of 6.7 g / cm 3 level was not obtained. Incidentally, No. For 6, 8, 10 and 14, (1)
Since the requirement of the formula is satisfied, the density of the green compact is 6.7 g /
Although cm 3 or more is obtained, the tensile strength and fatigue strength of the sintered body are insufficient as described later.
【0027】次に、上記No.1の本発明鋼粉とNo.
14の比較鋼粉に、夫々黒鉛粉を0.6%、ステアリン
酸亜鉛を0.75%加えて均一に混合し、これを圧縮成
形して密度7.4g/cm3 ,サイズ12.5×90×1
2.5mmの圧粉成形体を製造した。尚、この密度は、
1回の圧縮成形だけでは得られ難いので2プレス2シン
ター法を採用した。Next, the above No. No. 1 steel powder of the present invention and No. 1 steel powder of the present invention.
Graphite powders (0.6%) and zinc stearate (0.75%) were added to 14 comparative steel powders and uniformly mixed, and the mixture was compression-molded to have a density of 7.4 g / cm 3 , a size of 12.5 ×. 90 x 1
A 2.5 mm powder compact was produced. This density is
The 2 press 2 sinter method was adopted because it is difficult to obtain it by only one compression molding.
【0028】得られた圧粉成形体を、アンモニア分解ガ
ス(75%H2 +25%N2 )中で30分間仮焼結した
後窒素雰囲気中1250℃で60分間焼結した。この焼
結体を機械加工して、引張試験片(JIS 14号:直
径5mm)および疲労試験片(JIS 1号:直径3m
m)を作製し、920℃×3時間の浸炭処理後引き続い
て870℃×1時間の油焼入れ、および200℃の焼戻
し処理を行ない、引張試験および回転曲げ疲労試験に供
した。結果を表3に示す。The green compact thus obtained was pre-sintered in an ammonia decomposition gas (75% H 2 + 25% N 2 ) for 30 minutes and then sintered in a nitrogen atmosphere at 1250 ° C. for 60 minutes. The sintered body was machined to obtain a tensile test piece (JIS No. 14: diameter 5 mm) and a fatigue test piece (JIS No. 1: diameter 3 m).
m) was produced, followed by carburizing treatment at 920 ° C. for 3 hours, oil quenching at 870 ° C. for 1 hour, and tempering treatment at 200 ° C., and subjected to a tensile test and a rotary bending fatigue test. The results are shown in Table 3.
【0029】[0029]
【表3】 [Table 3]
【0030】表3からも明らかである様に、No.1と
No.14は化学成分において殆ど同一と見做せるもの
であるが、No.1は60kgf/mm2 以上を達成している
のに対し、No.14では達成できていない。これは、
No.14の比較鋼粉を用いたものでは140μm以上
の介在物が含まれており、これが疲労強度に悪影響を及
ぼしたものと考えられる。As is clear from Table 3, No. 1 and No. No. 14 has almost the same chemical composition, but No. No. 1 has achieved 60 kgf / mm 2 or more, whereas No. 1 has achieved. 14 did not achieve it. this is,
No. In the case of using the comparative steel powder of No. 14, inclusions of 140 μm or more are included, and it is considered that this adversely affected the fatigue strength.
【0031】また、前記No.1〜5の本発明鋼粉およ
びNo.6〜13の比較鋼粉を使用して上記と全く同様
に引張試験および回転曲げ疲労試験を行ない、表4に示
す結果を得た。Further, in the above No. Steel powders of the present invention 1 to 5 and No. Tensile tests and rotary bending fatigue tests were carried out in the same manner as above using the comparative steel powders 6 to 13, and the results shown in Table 4 were obtained.
【0032】[0032]
【表4】 [Table 4]
【0033】表4からも明らかである様に、No.1〜
5の本発明鋼粉を用いたものでは、いずれも60kgf/mm
2 以上の疲労強度を達成している。これに対し、No.
7,11,12,13の比較鋼粉では、60kgf/mm2 レ
ベルの疲労強度が得られていない。これらより、Crや
Moの含有量を過度に多くしても、本発明の目的は果た
せないことが分かる。又、いずれの比較鋼粉を用いたも
のも、本発明鋼粉を用いたものに比べて引張強度および
疲労強度のいずれも低いことを確認できる。As is clear from Table 4, No. 1 to
In the case of using the steel powder of the present invention of No. 5, both are 60 kgf / mm
Achieved a fatigue strength of 2 or more. On the other hand, No.
No fatigue strength of 60 kgf / mm 2 level was obtained with the comparative steel powders of 7, 11, 12, and 13. From these, it is understood that the object of the present invention cannot be achieved even if the content of Cr or Mo is excessively increased. Further, it can be confirmed that both of the comparative steel powders used have lower tensile strength and fatigue strength than the steel powders of the present invention.
【0034】[0034]
【発明の効果】本発明は以上の様に構成されており、圧
粉成形時における圧縮性に優れ、しかも不純介在物サイ
ズが小さくて引張強度および疲労強度のいずれにも優れ
た焼結体を与える粉末冶金用低合金鋼粉を提供し得るこ
とになった。EFFECTS OF THE INVENTION The present invention is configured as described above and provides a sintered body which is excellent in compressibility at the time of compacting and has a small size of impure inclusions and is excellent in both tensile strength and fatigue strength. It is now possible to provide a low alloy steel powder for powder metallurgy to be given.
【図面の簡単な説明】[Brief description of drawings]
【図1】低合金鋼粉中のAl含有量と、焼結体中の介在
物サイズとの関係を示すグラフである。FIG. 1 is a graph showing the relationship between the Al content in low alloy steel powder and the size of inclusions in a sintered body.
【図2】焼結体中の介在物サイズと回転曲げ疲労強度と
の関係を示すグラフである。FIG. 2 is a graph showing a relationship between inclusion size in a sintered body and rotary bending fatigue strength.
Claims (2)
2〜1%(重量%を意味する、以下同じ)と、下記(1)、
(2) 式の要件を満足するCrとMoを含有させると共
に、Alを0.01%以下に抑えてなり、 [Cr]+[Mo]≦3.1 ……(1) [Cr]+1.8[Mo]≧1.8……(2) (但し、[Cr]および[Mo]は、低合金鋼中におけ
るCrおよびMoの含有率:重量%を表わす)5t/cm2
の成形圧力下で6.7g/cm3 以上の圧粉体密度を示し、
また焼結により140μm以下のサイズの介在物を生成
するものであることを特徴とする高疲労強度の焼結体を
与える粉末冶金用低合金鋼粉。1. A low alloy steel substrate for powder metallurgy is provided with Ni: 0.
2-1% (meaning% by weight, the same applies hereinafter) and the following (1),
Cr and Mo satisfying the requirements of the formula (2) are contained, and Al is suppressed to 0.01% or less, and [Cr] + [Mo] ≦ 3.1 (1) [Cr] +1. 8 [Mo] ≧ 1.8 (2) (However, [Cr] and [Mo] represent Cr and Mo content in the low alloy steel:% by weight) 5 t / cm 2
Shows a green compact density of 6.7 g / cm 3 or more under the molding pressure of
Further, a low alloy steel powder for powder metallurgy which gives a sintered body of high fatigue strength, which is characterized by producing inclusions having a size of 140 μm or less by sintering.
2%以下、Si:0.10%以下およびMn:0.5%
以下を含有するものである請求項1記載の粉末冶金用低
合金鋼粉。2. A low alloy steel substrate for powder metallurgy is C: 0.0
2% or less, Si: 0.10% or less and Mn: 0.5%
The low alloy steel powder for powder metallurgy according to claim 1, which contains:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28523193A JPH07138602A (en) | 1993-11-15 | 1993-11-15 | Low alloy steel powder for powder metallurgy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28523193A JPH07138602A (en) | 1993-11-15 | 1993-11-15 | Low alloy steel powder for powder metallurgy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07138602A true JPH07138602A (en) | 1995-05-30 |
Family
ID=17688814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28523193A Pending JPH07138602A (en) | 1993-11-15 | 1993-11-15 | Low alloy steel powder for powder metallurgy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07138602A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103315A1 (en) * | 2004-04-23 | 2005-11-03 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Iron-based sintered alloy, iron-based sintered alloy member and method for producing those |
JP2012527535A (en) * | 2009-05-22 | 2012-11-08 | ホガナス アクチボラグ (パブル) | High strength low alloy sintered steel |
KR20170054516A (en) * | 2014-09-16 | 2017-05-17 | 회가내스 아베 (피유비엘) | A pre-alloyed iron- based powder, an iron-based powder mixture containing the pre-alloyed iron-based powder and a method for making pressed and sintered components from the iron-based powder mixture |
-
1993
- 1993-11-15 JP JP28523193A patent/JPH07138602A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005103315A1 (en) * | 2004-04-23 | 2005-11-03 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Iron-based sintered alloy, iron-based sintered alloy member and method for producing those |
DE112005000921B4 (en) * | 2004-04-23 | 2013-08-01 | Kabushiki Kaisha Toyota Chuo Kenkyusho | A process for producing an iron-based sintered alloy and an iron-based sintered alloy element |
US9017601B2 (en) | 2004-04-23 | 2015-04-28 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Iron-based sintered alloy, iron-based sintered-alloy member and production process for them |
JP2012527535A (en) * | 2009-05-22 | 2012-11-08 | ホガナス アクチボラグ (パブル) | High strength low alloy sintered steel |
KR20170054516A (en) * | 2014-09-16 | 2017-05-17 | 회가내스 아베 (피유비엘) | A pre-alloyed iron- based powder, an iron-based powder mixture containing the pre-alloyed iron-based powder and a method for making pressed and sintered components from the iron-based powder mixture |
JP2017534754A (en) * | 2014-09-16 | 2017-11-24 | ホガナス アクチボラグ (パブル) | Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method for producing press-molded and sintered parts from iron-based powder mixture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1337468C (en) | Alloyed steel powder for powder metallurgy | |
JP2001081501A (en) | Powder mixture for powder metallurgy, ferrous sintered compact, and manufacturing method therefor | |
US7384446B2 (en) | Mixed powder for powder metallurgy | |
JPH10140206A (en) | Low alloy steel powder for sintering and hardening | |
JP3957331B2 (en) | Method for producing water atomized iron powder for powder metallurgy | |
JP4371003B2 (en) | Alloy steel powder for powder metallurgy | |
JP4060092B2 (en) | Alloy steel powder for powder metallurgy and sintered body thereof | |
JP6528899B2 (en) | Method of manufacturing mixed powder and sintered body for powder metallurgy | |
JPH07138602A (en) | Low alloy steel powder for powder metallurgy | |
KR101029236B1 (en) | Iron-based sintered alloy, iron-based sintered alloy member, method of manufacturing the same, and oil pump rotor | |
JP3351844B2 (en) | Alloy steel powder for iron-based sintered material and method for producing the same | |
WO1988000505A1 (en) | Alloy steel powder for powder metallurgy | |
JP2001158934A (en) | Method for producing wear resistant ferrous sintered alloy | |
JPH0751721B2 (en) | Low alloy iron powder for sintering | |
EP1323840B1 (en) | Iron base mixed powder for high strength sintered parts | |
JPH0959740A (en) | Powder mixture for powder metallurgy and its sintered compact | |
JP3303030B2 (en) | Connecting rod excellent in fatigue strength and toughness and method for manufacturing the same | |
JP4715358B2 (en) | Alloy steel powder for powder metallurgy | |
JP2579171B2 (en) | Manufacturing method of sintered material | |
JPH0689363B2 (en) | High strength alloy steel powder for powder metallurgy | |
JPH059501A (en) | Iron powder for sintering and production thereof | |
JP3392228B2 (en) | Alloy steel powder for powder metallurgy | |
JP2003147405A (en) | Alloy steel powder for iron sintering heat treatment material | |
JPH0745682B2 (en) | Alloy steel powder for powder metallurgy | |
JPH075921B2 (en) | Method for producing composite alloy steel powder with excellent compressibility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030701 |