JPH07135158A - Scanning aligner and device manufacturing method using the same - Google Patents
Scanning aligner and device manufacturing method using the sameInfo
- Publication number
- JPH07135158A JPH07135158A JP5279575A JP27957593A JPH07135158A JP H07135158 A JPH07135158 A JP H07135158A JP 5279575 A JP5279575 A JP 5279575A JP 27957593 A JP27957593 A JP 27957593A JP H07135158 A JPH07135158 A JP H07135158A
- Authority
- JP
- Japan
- Prior art keywords
- scanning
- exposure
- wafer
- substrate
- exposure apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は走査型露光装置及び該走
査型露光装置を用いるデバイス製造方法に関し、特にI
C、LSI等の半導体チップ、液晶素子、磁気ヘッド及
びCCD(撮像素子)等のデバイスを製造するための走
査型露光装置及び該走査型露光装置を用いる各種デバイ
スの製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type exposure apparatus and a device manufacturing method using the scanning type exposure apparatus.
The present invention relates to a scanning type exposure apparatus for manufacturing devices such as semiconductor chips such as C and LSI, liquid crystal elements, magnetic heads, CCDs (imaging elements), and a method for manufacturing various devices using the scanning type exposure apparatus.
【0002】[0002]
【従来の技術】図6は従来の半導体デバイス製造用の走
査型露光装置を示しており、この装置は、スリット状露
光光71によりレチクル10上を照明し、投影レンズ系
15によりレチクル10の回路パターン70をウエハ1
4上に縮小投影し、レチクル10及びウエハ14を、各
々露光光71と投影レンズ系15に対し、投影レンス系
15の縮小倍率と同じ速度比で図示されている様に各々
逆方向に走査することにより、レチクル10全面のパタ
ーンをウエハ14上の領域72に転写する。2. Description of the Related Art FIG. 6 shows a conventional scanning type exposure apparatus for manufacturing semiconductor devices. This apparatus illuminates a reticle 10 with slit-shaped exposure light 71, and a projection lens system 15 causes a circuit of the reticle 10 to illuminate. Pattern 70 on wafer 1
4, and the reticle 10 and the wafer 14 are scanned in the opposite directions with respect to the exposure light 71 and the projection lens system 15 at the same speed ratio as the reduction magnification of the projection lens system 15 as shown in the drawing. As a result, the pattern on the entire surface of the reticle 10 is transferred to the area 72 on the wafer 14.
【0003】[0003]
【発明が解決しようとする課題】この露光装置は、主に
露光の均一性を確保するためにレチクル10とウエハ1
4の各々が一定速度に到達してから露光を開始する。This exposure apparatus mainly uses a reticle 10 and a wafer 1 to ensure the uniformity of exposure.
Exposure of each of the Nos. 4 starts after reaching a constant speed.
【0004】この様子をレチクル10側を例にし、図7
を用いて以下に説明する。This situation is shown in FIG. 7 using the reticle 10 side as an example.
Will be described below.
【0005】図7から解る様に、パターン70上を完全
にスリット状露光光71が走査するためには、パターン
70の幅Lにスリット状の露光光71の幅l1を加えた
距離だけ走査すればよい。As can be seen from FIG. 7, in order to completely scan the pattern 70 with the slit-shaped exposure light 71, the pattern 70 is scanned by a distance obtained by adding the width L1 of the slit-shaped exposure light 71 to the width L of the pattern 70. Good.
【0006】しかし、この露光装置では、走査速度が一
定になってから露光を開始するようになっていたため、
加速及び減速のための余計なストロークl2,l3を必
要とし、従って露光に余計な時間を費やしていた。However, in this exposure apparatus, the exposure is started after the scanning speed becomes constant.
It requires extra strokes 12 and 13 for acceleration and deceleration, and therefore spends extra time on the exposure.
【0007】[0007]
【課題を解決するための手段】本発明の目的は露光時間
が短い走査型露光装置と該走査型露光装置を用いるデバ
イス製造方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a scanning type exposure apparatus having a short exposure time and a device manufacturing method using the scanning type exposure apparatus.
【0008】本発明の走査型露光装置の第1の形態は、
露光光で原板と基板を走査することにより前記原板のパ
ターンを介して前記基板を露光する装置において、前記
走査の加速時及び/または減速時に前記原板のパターン
を介して前記基板を露光する手段を有することを特徴と
する。The first form of the scanning type exposure apparatus of the present invention is
In an apparatus for exposing the substrate through a pattern of the original plate by scanning the original plate and the substrate with exposure light, a means for exposing the substrate through the pattern of the original plate during acceleration and / or deceleration of the scanning. It is characterized by having.
【0009】本発明の走査型露光装置の第2の形態は、
露光光で原板と基板を走査することにより前記原板のパ
ターンを介して前記基板を露光する装置において、前記
走査の加速時/または減速時に前記原板のパターンを介
して前記基板を露光する露光手段を有し、前記露光手段
が、前記加速時及び/または減速時の前記基板に対する
露光量がほぼ一定になるよう前記走査の速度に応じて前
記露光光の強度を変える強度変調手段を有することを特
徴とする。A second form of the scanning type exposure apparatus of the present invention is
In an apparatus that exposes the substrate through a pattern of the original plate by scanning the original plate and the substrate with exposure light, an exposure unit that exposes the substrate through the pattern of the original plate during acceleration / deceleration of the scanning. The exposure means has an intensity modulation means for changing the intensity of the exposure light according to the scanning speed so that the exposure amount to the substrate at the time of the acceleration and / or the deceleration becomes substantially constant. And
【0010】本発明の走査型露光装置の第2の形態にお
いて、前記強度変調手段は、開口径が可変な絞り手段や
前記露光光に対する傾き角が可変な干渉フィルターを備
える。In a second form of the scanning type exposure apparatus of the present invention, the intensity modulating means includes a diaphragm means having a variable aperture diameter and an interference filter having a variable tilt angle with respect to the exposure light.
【0011】本発明のデバイス製造方法は前記の走査型
露光装置を用いて原板のデバイスパターンを基板に転写
する段階を含む。The device manufacturing method of the present invention includes the step of transferring the device pattern of the original plate onto the substrate by using the above-mentioned scanning type exposure apparatus.
【0012】[0012]
【実施例】図1は本発明の一実施例であるデバイス製造
用走査型露光装置の概略図を示しており、図1におい
て、1は露光光を発生する水銀灯ランプ、2は水銀灯ラ
ンプ1からの光を集光する楕円ミラー、3はコンデンサ
レンズ、4はコンデンサレンズ3により集光された光を
長方形に整形する光学系、5は回転方向に透過率が連続
的に変化しているNDフィルター回転板、6はNDフィ
ルター回転板5を回転させるモータ、7は光路を90°
曲げる為の平面ミラー、8はレチクル面の照度を検出す
るホトセンサー、9はコンデンサレンズ、10はレチク
ル、11はレチクル10を保持しているレチクルステー
ジ、12はレチクルステージ11を図示してある方向に
スキャン駆動をさせるリニアモータ、13はレチクルス
テージ11に固定されているバーミラー、14はミラー
13にレーザ光を当ててレチクルステージ11の速度を
検出するレーザ干渉計、15はレチクル10上のデバイ
スパターンをウエハ16上に縮小投影するための投影レ
ンズ系、16はウエハ、17はウエハ16を保持してい
るウエハチャック、18はウエハチャック17を保持し
ているウエハステージ、19はウエハステージ18を図
示してある方向にスキャン駆動をさせるリニアモータ、
20はウエハステージ18に固定されているバーミラ
ー、21はミラー20にレーザ光を当ててウエハステー
ジ18の速度を検出するレーザ干渉計、30はレチクル
ステージ11と、ウエハステージ18の制御を行なうた
めのCPU、31はCPU30により実行されるプログ
ラムコードを記憶しているROM、32はCPU30が
データの書き込み、読み出しに使用しているRAM,3
3はCPU30から野レチクルステージ11のスキャン
速度指令値を保持するためのメモリー34はメモリー3
3からのデジタルデータをアナログデータに変換するA
Dコンバータ、35はADコンバータ34からのアナロ
グ値をリニアモータ12を駆動するために増幅するドラ
イバー、36はCPU30からのウエハステージ18の
スキャン速度指令値を保持するためのメモリー、37は
メモリー36からのデジタルデータをアナログデータに
変換するADコンバータ、38はADコンバータ37か
らのアナログ値をリニアモータ19を駆動するために増
幅するドライバー、39はレチクルステージ11側のレ
ーザ干渉計14から出力されるスキャン速度に比例した
パルス列を積分カウントして位置情報にする為のカウン
タ、40はウエハステージ18側のレーザ干渉計21か
ら出力されるスキャン速度に比例したパルス列を積分カ
ウントして位置情報にする為のカウンタ、41はレチク
ル面照度を検出するホトセンサー8からの光電流信号を
電圧信号に変換する為の電流電圧変換器、42は電流電
圧変換器41の電圧出力信号をデジタルデータに変換す
るADコンバータ、44はCPU30からのNDフィル
ター回転板5の位置(角度)指令値を保持するためのメ
モリー、45はメモリー44からのデジタルデータであ
る位置指令値をアナログデータに変換するDAコンバー
タ、46はDAコンバータ45からのアナログデータで
ある位置指令値を受け取り、その位置にNDフィルター
回転板を駆動するドライバ、47はCPU30からの水
銀灯ランプへの投入電力指令値を保持するためのメモリ
ー、48はメモリー47からのデジタルデータである水
銀灯ランプへの投入電力指令値をアナログデータに変換
するDAコンバータ、49はDAコンバータ48からの
アナログデータである投入電力指令値を受け取り、水銀
灯ランプ1をドライブする点灯装置電源である。1 is a schematic view of a scanning exposure apparatus for manufacturing a device according to an embodiment of the present invention. In FIG. 1, 1 is a mercury lamp lamp for generating exposure light, and 2 is a mercury lamp lamp 1. Ellipsoidal mirror for condensing the light of 3 is a condenser lens, 4 is an optical system for shaping the light condensed by the condenser lens 3 into a rectangle, and 5 is an ND filter whose transmittance continuously changes in the rotational direction. A rotating plate, 6 is a motor for rotating the ND filter rotating plate 5, and 7 is an optical path of 90 °.
A flat mirror for bending, 8 is a photo sensor for detecting the illuminance on the reticle surface, 9 is a condenser lens, 10 is a reticle, 11 is a reticle stage holding the reticle 10, and 12 is a direction in which the reticle stage 11 is shown. A linear motor for driving the scan on the reticle stage 11, a bar mirror fixed on the reticle stage 11, a laser interferometer for detecting the speed of the reticle stage 11 by shining a laser beam on the mirror 13, and a device pattern on the reticle 10. A projection lens system for reducing and projecting the image on the wafer 16, 16 is a wafer, 17 is a wafer chuck holding the wafer 16, 18 is a wafer stage holding the wafer chuck 17, and 19 is a wafer stage 18. A linear motor that drives the scan in the indicated direction,
Reference numeral 20 is a bar mirror fixed to the wafer stage 18, 21 is a laser interferometer for irradiating the mirror 20 with laser light to detect the speed of the wafer stage 18, and 30 is for controlling the reticle stage 11 and the wafer stage 18. A CPU, 31 is a ROM storing program codes executed by the CPU 30, and 32 is a RAM, 3 used by the CPU 30 for writing and reading data.
3 is a memory 34 for holding the scan speed command value of the field reticle stage 11 from the CPU 30.
A to convert digital data from 3 to analog data
D converter, 35 is a driver for amplifying the analog value from the AD converter 34 to drive the linear motor 12, 36 is a memory for holding the scan speed command value of the wafer stage 18 from the CPU 30, and 37 is a memory 36. AD converter for converting the digital data of the above into analog data, 38 is a driver for amplifying the analog value from the AD converter 37 to drive the linear motor 19, 39 is a scan output from the laser interferometer 14 on the reticle stage 11 side. A counter for integrating and counting the pulse train proportional to the velocity to obtain position information, and 40 for integrating and counting the pulse train proportional to the scan velocity output from the laser interferometer 21 on the wafer stage 18 side to obtain the position information. Counter 41 detects the reticle surface illuminance A current-voltage converter for converting the photocurrent signal from the photosensor 8 into a voltage signal, 42 is an AD converter for converting the voltage output signal of the current-voltage converter 41 into digital data, and 44 is an ND filter rotating plate from the CPU 30. A memory for holding the position (angle) command value 5; 45, a DA converter for converting the position command value, which is digital data from the memory 44, into analog data; and 46, a position command, which is analog data from the DA converter 45. A driver for receiving the value and driving the ND filter rotating plate at that position, 47 is a memory for holding the input power command value from the CPU 30 to the mercury lamp lamp, and 48 is a digital data from the memory 47 for the mercury lamp lamp. DA converter for converting the input power command value into analog data, 49 is a DA converter It receives input power command value which is an analog data from the converter 48, a lighting device power supply for driving a mercury lamp 1.
【0013】本実施例の露光装置は、レチクルステージ
11とウエハステージ18の位置が各々、レーザ干渉計
14、21からの各々速度に比例したパルス信号を位置
カウンタ39、40で積算カウントすることによりリア
ルタイムに計測可能なようになっている。走査露光時に
は、CPU30はROM31に予め書き込まれているプ
ログラムにより、レチクル10とウエハ16が予め決め
られた位置関係を保ちつつ投影レンズ系15の倍率と同
一の速度比で互いに逆方向に駆動される。In the exposure apparatus of the present embodiment, the position counters 39 and 40 cumulatively count the pulse signals from the laser interferometers 14 and 21 in which the positions of the reticle stage 11 and wafer stage 18 are proportional to the respective speeds. It can measure in real time. During scanning exposure, the CPU 30 is driven in the opposite directions at the same speed ratio as the magnification of the projection lens system 15 while maintaining the predetermined positional relationship between the reticle 10 and the wafer 16 by the program written in the ROM 31 in advance. .
【0014】又、本露光装置では、走査露光中のレチク
ル面の照度をセンサ8により検出可能になっており、レ
チクル10とウエハ16のスキャンスピードが一定速度
の領域においては、常にレチクル面の照度が一定になる
様に、CPU30がROM31に予め書き込まれている
プログラムにより、水銀灯1に対する投入電力を、点灯
装置電源49への投入電力指令値を制御することにより
制御する様にしている。Further, in the present exposure apparatus, the illuminance on the reticle surface during scanning exposure can be detected by the sensor 8, and the illuminance on the reticle surface is always maintained in a region where the scan speed of the reticle 10 and the wafer 16 is constant. The CPU 30 controls the input power to the mercury lamp 1 by controlling the input power command value to the lighting device power supply 49 by a program written in advance in the ROM 31 so that the value becomes constant.
【0015】露光装置で特徴的なことは、回転方向に透
過率が連続的に変化しているようなNDフィルター回転
板5を照明系内に持っていることであり、このNDフィ
ルター回転板5は、レチクルステージ11、ウエハステ
ージ18のスキャン速度指令値を保持するためのメモリ
ー33、36に書き込まれるスキャン速度指令値に比例
したレチクル面の照度を達成する為、CPU30からレ
チクルステージ11、ウエハステージ18の位置に依存
したスキャン速度指令値がメモリー33、36に書き込
まれるのに同期して、CPU30からNDフィルター回
転板5の位置指令値がメモリー44に書き込まれ、制御
される。この位置指令値はDAコンバータ45によりア
ナログデータに変換されて、NDフィルター回転板5を
駆動するドライバ46に入力され、ドライバ46は、N
Dフィルター回転板5を、回転可能に支持しているモー
タ6により指令位置に駆動し、走査における加速時及び
/又は減速時にもウエハ16に対する露光量がほぼ一定
になるようにしている。A characteristic of the exposure apparatus is that it has an ND filter rotary plate 5 whose transmittance changes continuously in the rotation direction in the illumination system. To achieve the illuminance of the reticle surface proportional to the scan speed command values written in the memories 33 and 36 for holding the scan speed command values of the reticle stage 11 and the wafer stage 18. The position command value of the ND filter rotating plate 5 is written in the memory 44 from the CPU 30 and controlled in synchronization with the writing of the scan speed command value depending on the position of 18 into the memories 33 and 36. The position command value is converted into analog data by the DA converter 45 and input to the driver 46 that drives the ND filter rotating plate 5, and the driver 46 outputs N
The D filter rotating plate 5 is driven to a command position by a motor 6 which is rotatably supported, so that the exposure amount on the wafer 16 becomes substantially constant even during acceleration and / or deceleration during scanning.
【0016】露光装置では、まず走査露光の前に、ND
フィルター回転5を回転させて、透過率ほぼ100%の
完全透光状態にし、センサ8でレチクル面の照度を検出
し、照度が所定の値になるように水銀灯ランプ1に対す
る投入電力を制御する。In the exposure apparatus, first, before scanning exposure, ND
The filter rotation 5 is rotated so that the light transmittance is almost 100%, the sensor 8 detects the illuminance on the reticle surface, and the electric power supplied to the mercury lamp 1 is controlled so that the illuminance becomes a predetermined value.
【0017】次に、レチクル10上のアライメントマー
クと、ウエハ16上の複数のチップ上にあるアライメン
トマークの相対位置を走査露光時と同様の走査動作を実
行しながら、不図示のアライメントマーク検出系にて検
出する。この動作により、レチクル10のパターンとウ
エハ16上の各チップとの位置関係がわかり、レチクル
ステージ11、ウエハステージ18の走査露光時の相対
位置をどの様に制御すべきかが決まる。Next, the relative position of the alignment mark on the reticle 10 and the alignment marks on a plurality of chips on the wafer 16 is subjected to the same scanning operation as in the scanning exposure, and an alignment mark detection system (not shown) is used. Detected at. By this operation, the positional relationship between the pattern of the reticle 10 and each chip on the wafer 16 is known, and how to control the relative positions of the reticle stage 11 and the wafer stage 18 during scanning exposure is determined.
【0018】上記動作の後、レチクルステージ11、ウ
エハステージ18は上記動作により決めた相対位置関係
を保ちつつ、スキャン走査露光動作に入る。この際、従
来露光装置では、図7に示す様な加速ストローク12が
必要であったものが、本発明のスキャンタイプの半導体
露光装置では、レチクル11のパターン70の直前から
走査露光を開始する。露光を開始する直前は、NDフィ
ルター回転板5が完全遮光の状態になっており、露光が
パターン70に領域にかかると、その時のレチクル11
側のスキャンスピードに比例したレチクル面照度が達成
される様に、NDフィルター回転板5を制御する。走査
露光の間、特に、加速時間、減速時間の間、レチクル面
照度を常時センサー8により検出しており、この検出さ
れたレチクル面照度が目標とするレチクル面照度と一致
しない場合には、NDフィルター回転板5のさらなる補
正駆動を行なう。このレチクル面照度の制御は減速時に
も加速時と同様に行なわれ、1チップの走査露光が完了
する。さらに、この様な動作がウエハ16上の全てのチ
ップについて行なわれ、1枚のウエハの処理が完了する
ことになる。After the above operation, the reticle stage 11 and the wafer stage 18 enter the scan scanning exposure operation while maintaining the relative positional relationship determined by the above operation. At this time, in the conventional exposure apparatus, the acceleration stroke 12 as shown in FIG. 7 is required, but in the scan type semiconductor exposure apparatus of the present invention, the scanning exposure is started immediately before the pattern 70 of the reticle 11. Immediately before starting the exposure, the ND filter rotation plate 5 is in a state of complete light shielding, and when the exposure covers the area of the pattern 70, the reticle 11 at that time is exposed.
The ND filter rotating plate 5 is controlled so that the reticle surface illuminance proportional to the side scanning speed is achieved. The reticle surface illuminance is constantly detected by the sensor 8 during the scanning exposure, particularly during the acceleration time and the deceleration time, and if the detected reticle surface illuminance does not match the target reticle surface illuminance, ND Further correction driving of the filter rotary plate 5 is performed. This reticle surface illuminance control is performed during deceleration as well as during acceleration, and scanning exposure for one chip is completed. Further, such an operation is performed for all the chips on the wafer 16, and the processing of one wafer is completed.
【0019】本実施例では、レチクル面の照度を制御す
る為に、露光光の強度を変調する手段としてNDフィル
ター回転多5を用いていたが、これ以外に図2に示すよ
うな光軸に対する角度を変化させることにより透過率が
連続的に可変な干渉フィルター70や図3に示すような
光軸に対して開口部の大きさが連続的に可変な絞り、
又、上記レチクル面照度を制御する機構が露光量制御の
ためのシャター機能を併用する様な構成も実施可能であ
る。In this embodiment, in order to control the illuminance on the reticle surface, the ND filter rotary multimeter 5 is used as a means for modulating the intensity of the exposure light. An interference filter 70 whose transmittance is continuously variable by changing the angle and a diaphragm whose aperture size is continuously variable with respect to the optical axis as shown in FIG.
Further, it is also possible to implement a structure in which the mechanism for controlling the reticle surface illuminance also uses a shutter function for controlling the exposure amount.
【0020】又投影レンズ系15の代わりに、投影ミラ
ー系の様な投影光学系を用いてもよい。Instead of the projection lens system 15, a projection optical system such as a projection mirror system may be used.
【0021】次に上記説明した走査型露光装置を利用し
たデバイスの製造方法の実施例を説明する。図4は半導
体デバイス(ICやLSI等の半導体チップ、あるいは
液晶パネルやCCD等)の製造フローを示す。ステップ
1(回路設計)では半導体デバイスの回路設計を行な
う。ステップ2(マスク製作)では設計した回路パター
ンを形成したマスクを製作する。一方、ステップ3(ウ
エハ製造)ではシリコン等の材料を用いてウエハを製造
する。ステップ4(ウエハプロセス)は前工程と呼ば
れ、上記用意したマスクとウエハとを用いて、リソグラ
フィ技術によってウエハ上に実際の回路を形成する。次
のステップ5(組み立て)は後工程と呼ばれ、ステップ
4によって作製されたウエハを用いて半導体チップ化す
る工程であり、アッセンブリ工程(ダイシング、ボンデ
ィング)、パッケージング工程(チップ封入)等の工程
を含む。ステップ6(検査)ではステップ5で作製され
た半導体デバイスの動作確認テスト、耐久性テスト等の
検査を行なう。こうした工程を経て半導体デバイスが完
成し、これが出荷(ステップ7)される。Next, an embodiment of a device manufacturing method using the above-described scanning type exposure apparatus will be described. FIG. 4 shows a manufacturing flow of a semiconductor device (semiconductor chip such as IC or LSI, liquid crystal panel, CCD or the like). In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask manufacturing), a mask having the designed circuit pattern is manufactured. On the other hand, in step 3 (wafer manufacturing), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by lithography using the mask and the wafer prepared above. The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip by using the wafer manufactured in step 4, such as an assembly process (dicing, bonding), a packaging process (chip encapsulation), and the like. including. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).
【0022】図5は上記ウエハプロセスの詳細なフロー
を示す。ステップ11(酸化)ではウエハの表面を酸化
させる。ステップ12(CVD)ではウエハの表面に絶
縁膜を形成する。ステップ13(電極形成)ではウエハ
上に電極を蒸着によって形成する。ステップ14(イオ
ン打込み)ではウエハにイオンを打ち込む。ステップ1
5(レジスト処理)ではウエハに感光剤を塗布する。ス
テップ16(露光)では上記説明した露光装置によって
マスクの回路パターンをウエハに焼付露光する。ステッ
プ17(現像)では露光したウエハを現像する。ステッ
プ18(エッチング)では現像したレジスト像以外の部
分を削り取る。ステップ19(レジスト剥離)ではエッ
チングが済んで不要となったレジストを取り除く。これ
らステップを繰り返し行なうことによりウエハ上に多重
に回路パターンが形成される。FIG. 5 shows a detailed flow of the wafer process. In step 11 (oxidation), the surface of the wafer is oxidized. In step 12 (CVD), an insulating film is formed on the surface of the wafer. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. Step 1
In 5 (resist processing), a photosensitive agent is applied to the wafer. In step 16 (exposure), the circuit pattern of the mask is printed and exposed on the wafer by the exposure apparatus described above. In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist image are removed. In step 19 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.
【0023】本実施例の製造方法を用いれば、高いスル
ープットで高集積度の半導体デバイスを製造することが
できる。By using the manufacturing method of this embodiment, a highly integrated semiconductor device can be manufactured with high throughput.
【0024】[0024]
【発明の効果】本発明の露光装置は、以下のような大き
な効果がある。The exposure apparatus of the present invention has the following great effects.
【0025】1.スキャン動作の加速時間及び/又は減
速時間を露光に有効に使用することが可能になり、スル
ープットの向上を達成可能である。1. The acceleration time and / or the deceleration time of the scanning operation can be effectively used for exposure, and the throughput can be improved.
【0026】2.スキャン動作時の助走区間及び/又は
オーバーラン区間を減らしたり失くしたりすることがで
き、露光装置の小型化が達成可能である。2. The run-up section and / or the overrun section during the scanning operation can be reduced or lost, and the exposure apparatus can be miniaturized.
【図1】本発明の一実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.
【図2】強度変調手段の他の例を示す模式図である。FIG. 2 is a schematic diagram showing another example of intensity modulating means.
【図3】強度変調手段の他の例を示す模式図である。FIG. 3 is a schematic view showing another example of the intensity modulating means.
【図4】半導体デバイスの製造フローを示す図である。FIG. 4 is a diagram showing a manufacturing flow of a semiconductor device.
【図5】図4のウエハプロセスを示す図である。FIG. 5 is a diagram showing the wafer process of FIG. 4;
【図6】従来の走査型露光装置を示す図である。FIG. 6 is a diagram showing a conventional scanning type exposure apparatus.
【図7】図6の露光装置の走査露光の様子を示す説明図
である。FIG. 7 is an explanatory diagram showing a state of scanning exposure of the exposure apparatus of FIG.
1 水銀灯ランプ 2 楕円ミラー 3 コンデンサレンズ 4 光学エレメント 5 NDフィルター回転板 6 モータ 7 平面ミラー 8 ホトセンサー 9 コンデンサレンズ 10 レチクル 11 レチクルステージ 12 リニアモータ 13 バーミラー 14 レーザ干渉計 15 投影レンズ系 16 ウエハ 17 ウエハチャック 18 ウエハステージ 19 リニアモータ 20 バーミラー 21 レーザ干渉計 1 Mercury Lamp 2 Elliptical Mirror 3 Condenser Lens 4 Optical Element 5 ND Filter Rotating Plate 6 Motor 7 Planar Mirror 8 Photosensor 9 Condenser Lens 10 Reticle 11 Reticle Stage 12 Linear Motor 13 Bar Mirror 14 Laser Interferometer 15 Projection Lens System 16 Wafer 17 Wafer Chuck 18 Wafer stage 19 Linear motor 20 Bar mirror 21 Laser interferometer
Claims (5)
り前記原板のパターンを介して前記基板を露光する装置
において、前記走査の加速時及び/または減速時に前記
原板のパターンを介して前記基板を露光する手段を有す
ることを特徴とする走査型露光装置。1. An apparatus for exposing the substrate through a pattern of the original plate by scanning the original plate and the substrate with exposure light, wherein the substrate is exposed through the pattern of the original plate during acceleration and / or deceleration of the scanning. A scanning type exposure apparatus having a means for exposing.
り前記原板のパターンを介して前記基板を露光する装置
において、前記走査の加速時/または減速時に前記原板
のパターンを介して前記基板を露光する露光手段を有
し、前記露光手段が、前記加速時及び/または減速時の
前記基板に対する露光量がほぼ一定になるよう前記走査
の速度に応じて前記露光光の強度を変える強度変調手段
を有することを特徴とする走査型露光装置。2. An apparatus for exposing the substrate through a pattern of the original plate by scanning the original plate and the substrate with exposure light, wherein the substrate is exposed through the pattern of the original plate during acceleration / deceleration of the scanning. Intensity modulating means having an exposing means for exposing, wherein the exposing means changes the intensity of the exposing light according to the scanning speed so that the exposure amount to the substrate at the time of acceleration and / or deceleration becomes substantially constant. A scanning type exposure apparatus comprising:
り手段を備えることを特徴とする請求項2の走査型露光
装置。3. The scanning exposure apparatus according to claim 2, wherein the intensity modulating unit includes a diaphragm unit having a variable aperture diameter.
る傾き角が可変な干渉フィルターを備えることを特徴と
する請求項2の走査型露光装置。4. The scanning exposure apparatus according to claim 2, wherein the intensity modulating means includes an interference filter having a variable tilt angle with respect to the exposure light.
型露光装置を用いて原板のデバイスパターンを基板に転
写する段階を含むデバイス製造方法。5. A device manufacturing method including a step of transferring a device pattern of an original plate onto a substrate by using the scanning exposure apparatus according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27957593A JP3376045B2 (en) | 1993-11-09 | 1993-11-09 | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27957593A JP3376045B2 (en) | 1993-11-09 | 1993-11-09 | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07135158A true JPH07135158A (en) | 1995-05-23 |
JP3376045B2 JP3376045B2 (en) | 2003-02-10 |
Family
ID=17612897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27957593A Expired - Fee Related JP3376045B2 (en) | 1993-11-09 | 1993-11-09 | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3376045B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5995203A (en) * | 1995-10-19 | 1999-11-30 | Nikon Corporation | Scanning exposure apparatus in which light exposure is a function of the speed of the mask or substrate stage |
CN102346377A (en) * | 2010-08-03 | 2012-02-08 | 株式会社日立高新技术 | Exposure device and exposure method, and manufacturing device and manufacturing method for display panel substrate |
US8400611B2 (en) | 2008-11-18 | 2013-03-19 | Canon Kabushiki Kaisha | Scanning exposure apparatus and device manufacturing method |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
-
1993
- 1993-11-09 JP JP27957593A patent/JP3376045B2/en not_active Expired - Fee Related
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6191844B1 (en) | 1995-10-19 | 2001-02-20 | Nikon Corporation | Scanning exposure apparatus in which light exposure is a function of the speed of the mask or substrate stage |
US5995203A (en) * | 1995-10-19 | 1999-11-30 | Nikon Corporation | Scanning exposure apparatus in which light exposure is a function of the speed of the mask or substrate stage |
US9885959B2 (en) | 2003-04-09 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator |
US9678437B2 (en) | 2003-04-09 | 2017-06-13 | Nikon Corporation | Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction |
US9760014B2 (en) | 2003-10-28 | 2017-09-12 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US9423698B2 (en) | 2003-10-28 | 2016-08-23 | Nikon Corporation | Illumination optical apparatus and projection exposure apparatus |
US10281632B2 (en) | 2003-11-20 | 2019-05-07 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction |
US9885872B2 (en) | 2003-11-20 | 2018-02-06 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light |
US20130271945A1 (en) | 2004-02-06 | 2013-10-17 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10007194B2 (en) | 2004-02-06 | 2018-06-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10234770B2 (en) | 2004-02-06 | 2019-03-19 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US10241417B2 (en) | 2004-02-06 | 2019-03-26 | Nikon Corporation | Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method |
US9891539B2 (en) | 2005-05-12 | 2018-02-13 | Nikon Corporation | Projection optical system, exposure apparatus, and exposure method |
US10101666B2 (en) | 2007-10-12 | 2018-10-16 | Nikon Corporation | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9857599B2 (en) | 2007-10-24 | 2018-01-02 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9341954B2 (en) | 2007-10-24 | 2016-05-17 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9678332B2 (en) | 2007-11-06 | 2017-06-13 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
US8400611B2 (en) | 2008-11-18 | 2013-03-19 | Canon Kabushiki Kaisha | Scanning exposure apparatus and device manufacturing method |
CN102346377A (en) * | 2010-08-03 | 2012-02-08 | 株式会社日立高新技术 | Exposure device and exposure method, and manufacturing device and manufacturing method for display panel substrate |
Also Published As
Publication number | Publication date |
---|---|
JP3376045B2 (en) | 2003-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4153371A (en) | Method and apparatus for reduction-projection type mask alignment | |
US5933219A (en) | Projection exposure apparatus and device manufacturing method capable of controlling polarization direction | |
EP0793073B1 (en) | Surface position detecting method and scanning exposure method using the same | |
GB2034059A (en) | Manufacture of integrated circuits | |
KR19990045608A (en) | Wafer Peripheral Exposure Equipment | |
JP3376045B2 (en) | Scanning exposure apparatus and device manufacturing method using the scanning exposure apparatus | |
JPH09199406A (en) | Position detecting device and manufacture of semiconductor element using thereof | |
JPH08293453A (en) | Scanning aligner and exposure method using its device | |
US6069683A (en) | Scanning exposure method and apparatus | |
JP3097620B2 (en) | Scanning reduction projection exposure equipment | |
EP0964308A2 (en) | Exposure method and apparatus and device manufacturing method using the same | |
JP3335126B2 (en) | Surface position detecting apparatus and scanning projection exposure apparatus using the same | |
US6337734B1 (en) | Exposure control method, exposure apparatus and device manufacturing method | |
JP3218984B2 (en) | Wafer periphery exposure method and apparatus for removing unnecessary resist on semiconductor wafer | |
JP2006019722A (en) | Method of exposing semiconductor substrate, and aligner using same | |
JPH08298239A (en) | Scanning exposure method and projection aligner | |
EP0737898B1 (en) | Projection exposure apparatus and microdevice manufacturing method using the same | |
JP2000164498A (en) | Scanning projection aligner | |
JP2005175383A (en) | Aligner, method of alignment and device manufacturing method | |
JPH0612754B2 (en) | Projection exposure device | |
JP2800731B2 (en) | Scanning exposure method and circuit element manufacturing method by scanning exposure | |
JPH0587010B2 (en) | ||
JPH08339959A (en) | Alignment method | |
JPH10284411A (en) | Projection aligner | |
JPH06347215A (en) | Position detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071129 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081129 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091129 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101129 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101129 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111129 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121129 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |