[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07121358B2 - Method for producing fluidized catalysts based on alumina - Google Patents

Method for producing fluidized catalysts based on alumina

Info

Publication number
JPH07121358B2
JPH07121358B2 JP62304982A JP30498287A JPH07121358B2 JP H07121358 B2 JPH07121358 B2 JP H07121358B2 JP 62304982 A JP62304982 A JP 62304982A JP 30498287 A JP30498287 A JP 30498287A JP H07121358 B2 JPH07121358 B2 JP H07121358B2
Authority
JP
Japan
Prior art keywords
alumina
slurry
catalyst
added
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62304982A
Other languages
Japanese (ja)
Other versions
JPH01148342A (en
Inventor
研 白神
親彦 中島
小山  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62304982A priority Critical patent/JPH07121358B2/en
Publication of JPH01148342A publication Critical patent/JPH01148342A/en
Publication of JPH07121358B2 publication Critical patent/JPH07121358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明はアルミナ担体に金属成分を担持してなる流動触
媒の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a method for producing a fluidized catalyst in which a metal component is supported on an alumina carrier.

流動床反応は気固の接触効率が大きいため反応率が高
く、又発熱あるいは吸熱を併う反応においては熱の除去
あるいは供給が容易である等の利点を有しており、多く
の反応に用いられている。
The fluidized bed reaction has a high reaction rate due to high gas-solid contact efficiency, and has advantages such as easy removal or supply of heat in reactions involving exothermic or endothermic reactions. Has been.

<発明が解決しようとする問題点> 流動床反応における触媒粒子は粒子相互および装置の器
壁との衝突により微粉化されると、触媒層の圧損増大、
粒度分布のかたよりによる流動性の悪化、触媒の飛散等
を招くので特に耐摩耗性に優れていることが要求されて
いる。
<Problems to be Solved by the Invention> When the catalyst particles in the fluidized bed reaction are pulverized by collision between the particles and the vessel wall of the apparatus, the pressure loss of the catalyst layer increases,
Especially, it is required to have excellent wear resistance, since it causes deterioration of fluidity due to the particle size distribution and scattering of the catalyst.

耐摩耗性の正確な測定は困難であり、又使用条件により
要求される耐摩耗強度が異るため一概には言えないが、
後述の測定方法による摩耗損失が10%を超えない範囲が
好ましく、更に好ましいのは5%以下である。
Accurate measurement of wear resistance is difficult, and because the required wear resistance strength varies depending on the operating conditions, it cannot be said unequivocally.
It is preferable that the wear loss by the measuring method described below does not exceed 10%, and more preferably 5% or less.

触媒の機械的強度は細孔構造に少からず依存している
が、細孔構造は又触媒活性にも大きく影響を及ぼす。
The mechanical strength of the catalyst depends to a large extent on the pore structure, which also has a large effect on the catalyst activity.

細孔構造は細孔径と細孔容積で性格づけられ、その機能
は単純ではないが、一般に細孔容積が小さい方が強度は
良いが活性が低く、逆に細孔容積が大きいと活性は高い
が強度が劣る傾向があり、両者の要請は通常相矛盾する
ため、触媒製造に当っては両者を調和させる必要があ
る。
The pore structure is characterized by the pore diameter and pore volume, and its function is not simple, but generally, the smaller the pore volume, the better the strength but the lower activity, and conversely, the larger the pore volume, the higher the activity. However, there is a tendency for the strength to be inferior, and the requirements of the two are usually contradictory. Therefore, it is necessary to harmonize the two in catalyst production.

<問題点を解決する為の手段> 本発明者等は、かかる問題点を解決すべく鋭意検討した
結果、本発明に到達した。しかして、本発明の要旨は担
体成分であるアルミナと金属成分を含有するスラリーを
噴霧乾燥、焼成して流動触媒を製造する方法において、
噴霧乾燥に先立ち該スラリーにアルミナゾルを添加混合
し、次いで湿式粉砕機にてスラリー粒子の平均粒径が0.
6μm以下になるまで微粉砕することを特徴とする流動
触媒の製造方法に存し、耐摩耗性に優れ且つ適度な細孔
容積を有する流動触媒を提供するものである。
<Means for Solving Problems> The present inventors have arrived at the present invention as a result of extensive studies to solve the problems. Therefore, the gist of the present invention is to provide a method for producing a fluidized catalyst by spray-drying and firing a slurry containing alumina as a carrier component and a metal component,
Alumina sol was added to and mixed with the slurry prior to spray drying, and then the average particle size of the slurry particles was adjusted to 0.
The present invention provides a fluidized catalyst having a fine pore size of 6 μm or less, which is characterized in that it is finely pulverized, and has excellent wear resistance and an appropriate pore volume.

本発明を更に詳細に説明すると、担体成分であるアルミ
ナはγ−アルミナが好ましいが、市販のものでも擬ベー
マイトゲルを600〜1000℃で焼成して得たものでもよ
い。このγ−アルミナを水と混合して5〜60wt%、好ま
しくは10〜40wt%の水性スラリーとした後、金属成分で
あるコバルト、マンガン、ルテニウム等の原料化合物と
混合する。
To explain the present invention in more detail, the carrier component alumina is preferably γ-alumina, but may be a commercially available product or a product obtained by firing pseudo-boehmite gel at 600 to 1000 ° C. This γ-alumina is mixed with water to form an aqueous slurry of 5 to 60 wt%, preferably 10 to 40 wt%, and then mixed with a raw material compound such as cobalt, manganese, or ruthenium which is a metal component.

金属成分の原料化合物は可溶性のものなら何でもよい
が、経済性および取扱いの容易さより硝酸塩が好ましく
一般には水溶液として用いられる。金属成分の担持量は
触媒の使用目的により決定される。
The raw material compound of the metal component may be any soluble compound, but a nitrate is preferable in terms of economy and easiness of handling, and is generally used as an aqueous solution. The amount of the metal component supported depends on the purpose of use of the catalyst.

次に、上記の金属成分を含有するアルミナスラリーにア
ルカリ含有溶液を添加し金属成分を難溶性の水酸化物と
して担体上に析出させる等の手段により担持させる。ま
た、スラリー中に硝酸根が存在する場合、好ましくはア
ルカリ含有溶液により洗浄し、過又は傾瀉により硝酸
根及びアルカリ金属を除去する。
Next, an alkali-containing solution is added to the above-mentioned alumina slurry containing the metal component to deposit the metal component as a sparingly soluble hydroxide on the carrier, and the like. When nitrate is present in the slurry, it is preferably washed with an alkali-containing solution, and nitrate or alkali metal is removed by filtration or decantation.

得られた過ケーキを水と混合し再度5〜60wt%、好ま
しくは10〜30wt%のスラリーとする。
The obtained overcake is mixed with water to form a slurry of 5 to 60 wt%, preferably 10 to 30 wt% again.

次いで、アルミナゾルをAI2O3として担体成分であるγ
−アルミナに対し1〜7wt%、好ましくは2〜5wt%添加
した後、湿式でスラリー粒子の平均粒径が0.6μm以
下、好ましくは0.5μm以下になるまで微粉砕する。
Then, the alumina sol was used as AI 2 O 3 and the carrier component γ
After adding 1 to 7 wt%, preferably 2 to 5 wt% to alumina, it is finely pulverized by a wet method until the average particle diameter of slurry particles becomes 0.6 μm or less, preferably 0.5 μm or less.

ここで用いられるアルミナゾルは特に限定されるもので
はなく、一般に市販されているもので良い。
The alumina sol used here is not particularly limited and may be a commercially available product.

アルミナゾルを全く添加しなかった場合、スラリー平均
粒径0.4μm程度まで微粉砕しなければ耐摩耗性の優れ
た触媒を得ることができず、スラリー平均粒径をそれよ
りわずかに大きくしただけで耐摩耗強度が極端に悪化す
る。従って製造条件のフレを考えると0.3μm以下にす
る必要があるが、工業的に実施する場合、微粉砕に関し
多大のエネルギーおよび経費を必要とし得策ではない。
If no alumina sol is added, a catalyst with excellent wear resistance cannot be obtained unless it is pulverized to a slurry average particle size of about 0.4 μm. Abrasion strength deteriorates extremely. Therefore, it is necessary to make it 0.3 μm or less in consideration of the fluctuation of the manufacturing conditions, but when it is carried out industrially, a great deal of energy and cost are required for fine pulverization, which is not a good idea.

又、スラリー粒径を小さくするのに伴い細孔容積が直線
的に減少し触媒活性の低下をもたらす。
Further, as the slurry particle size is reduced, the pore volume decreases linearly, leading to a decrease in catalyst activity.

これに対しアルミナゾルを適量添加された系において
は、スラリー平均粒径0.6μm以下で優れた耐摩耗性を
示し、スラリー粒径を大きくしていった時の耐摩耗強度
の悪化度合も緩やかである。更に細孔容積についてもス
ラリー粒径を小さくしていっても特に減少せず0.3〜0.6
μmの間でほぼ一定の値が得られる。
On the other hand, in a system to which an appropriate amount of alumina sol was added, excellent wear resistance was exhibited at a slurry average particle size of 0.6 μm or less, and the degree of deterioration of wear resistance strength when the slurry particle size was increased was also moderate. . Furthermore, the pore volume did not decrease even if the slurry particle size was reduced to 0.3 to 0.6.
An almost constant value is obtained in the range of μm.

アルミナゾル添加量が適量を超えて多くなると細孔容積
の増大と共に耐摩耗強度が悪化する。
If the amount of alumina sol added exceeds the appropriate amount, the wear resistance is deteriorated as the pore volume increases.

次に微粉砕したスラリーを噴霧乾燥し、次いで適当な温
度で空気雰囲気下焼成して触媒を得る。
Next, the finely pulverized slurry is spray-dried and then calcined at an appropriate temperature in an air atmosphere to obtain a catalyst.

乾燥あるいは焼成工程も触媒物性に影響を及ぼさない訳
ではないが、耐摩耗強度および細孔容積に対しては支配
的なのは触媒中間体の調製プロセスであり、適量のアル
ミナゾルを添加し且つ平均粒径0.6μm以下まで微粉砕
することが重要である。
Although the drying or calcination step does not affect the physical properties of the catalyst, it is the preparation process of the catalyst intermediate that is dominant for the wear resistance strength and the pore volume. It is important to finely pulverize to 0.6 μm or less.

以下実施例により本発明を更に詳細に説明するが、本発
明はその要旨をこえない限り以下の発明に限定されるも
のではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following inventions unless the gist thereof is exceeded.

尚、ここで示した耐摩耗強度は流動接触分解触媒の試験
法として知られる“Test Method for Synthetic Cracki
ng Catalysts"アメリカンサイアナミッド社6/31 4m−1/
57記載の方法に準じて行なった、下記の式より求めた摩
耗損失の値である。
The wear resistance strength shown here is known as "Test Method for Synthetic Cracki", which is known as a test method for fluid catalytic cracking catalysts.
ng Catalysts "American Cyanamid 6/31 4m−1 /
It is the value of the wear loss obtained by the following formula, which was performed according to the method described in 57.

但し A:0〜5時間に飛散もしくは摩耗損失した触媒の重量 B:5〜20時間に摩耗損失した触媒重量 C:試験に供した触媒重量 実施例−1〜4 擬ベーマイトゲルを焼成して得た微粒状γ−アルミナ1
2.0kgを水28.0kg中に添加し、ついで硝酸ルテニウム水
溶液302g(Ru=18.1g)、硝酸マンガン水溶液9.88kg(M
n=1.51kg)、硝酸コバルト水溶液17.90kg(Co=3.62k
g)を撹拌下順次添加した。
However, A: the weight of the catalyst that was scattered or lost due to wear for 0 to 5 hours B: the weight of the catalyst that lost due to wear for 5 to 20 hours C: the weight of the catalyst used in the test Examples-1 to 4 Obtained by calcining pseudo-boehmite gel Fine-grained γ-alumina 1
2.0 kg was added to 28.0 kg of water, and then 302 g of ruthenium nitrate aqueous solution (Ru = 18.1 g) and 9.88 kg of manganese nitrate aqueous solution (M
n = 1.51 kg), cobalt nitrate aqueous solution 17.90 kg (Co = 3.62 k
g) were added sequentially with stirring.

次に10wt%NaOH水溶液をスラリーのpHが10.2になるまで
添加してルテニウム、マンガン、コバルトの水酸化物沈
澱をγ−アルミナ上に析出させた。次にこのスラリーを
過、沈澱物の洗浄を行った後再び水を添加して総重量
97kgのスラリーとした。次にこのスラリーを4等分し、
アルミナゾル(日産化学アルミナゾル−200)を希釈し
てAl2O3濃度3wt%にしたものを、それぞれ1.0kg、2.5k
g、4.0kg及び5.0kg添加した。このアルミナゾルを添加
したスラリーを湿式粉砕機で平均粒径0.45μmまで微粉
砕し、ついで回転円盤式スプレードライヤーにて噴霧乾
燥し、得られた乾燥品を空気雰囲気下500℃で30分焼成
して触媒を調製した。
Then, a 10 wt% NaOH aqueous solution was added until the pH of the slurry reached 10.2 to precipitate hydroxide precipitates of ruthenium, manganese and cobalt on γ-alumina. Next, the slurry is filtered, the precipitate is washed, and then water is added again to make the total weight.
It was 97 kg of slurry. Next, divide this slurry into four equal parts,
Alumina sol (Nissan Chemical Alumina sol-200) diluted to Al 2 O 3 concentration of 3 wt% was 1.0 kg and 2.5 k, respectively.
g, 4.0 kg and 5.0 kg were added. The slurry added with this alumina sol was finely pulverized with a wet pulverizer to an average particle size of 0.45 μm, then spray-dried with a rotary disk type spray dryer, and the obtained dried product was calcined at 500 ° C. for 30 minutes in an air atmosphere. A catalyst was prepared.

比較例−1 擬ベーマイトゲルを焼成して得た微粒状γ−アルミナ3.
0kgを水7.0kg中に添加し、ついで硝酸ルテニウム溶液74
g(Ru=4.4g)、硝酸マンガン水溶液2.41kg(Mn=0.37k
g)、硝酸コバルト水溶液4.36kg(Co=0.88kg)を撹拌
下添加した。
Comparative Example-1 Fine-grained γ-alumina obtained by firing pseudo-boehmite gel 3.
Add 0 kg into 7.0 kg of water, then add ruthenium nitrate solution 74
g (Ru = 4.4g), manganese nitrate aqueous solution 2.41kg (Mn = 0.37k
g) and 4.36 kg of cobalt nitrate aqueous solution (Co = 0.88 kg) were added with stirring.

次に10wt%NaOH水溶液をスラリーのpHが10.2になるまで
添加し、各金属の水酸化物沈澱をγ−アルミナ上に析出
させ、過洗浄後再び水を添加し26.1kgのスラリーとし
た。
Next, a 10 wt% NaOH aqueous solution was added until the pH of the slurry reached 10.2, a hydroxide precipitate of each metal was deposited on γ-alumina, and after overwashing, water was added again to prepare a 26.1 kg slurry.

次にこのスラリーを湿式粉砕機で平均粒径0.45μmまで
微粉砕した後実施例−1〜4と同様に噴霧乾燥ついで焼
成して触媒を調製した。
Next, this slurry was finely pulverized with a wet pulverizer to an average particle size of 0.45 μm, and then spray-dried and calcined in the same manner as in Examples 1-4 to prepare a catalyst.

比較例−2 比較例−1で用いたと同じγ−アルミナ3.0kg水7.0kgの
混合スラリーに硝酸ルテニウム溶液81g(Ru=4.9g)、
硝酸マンガン水溶液2.65kg(Mn=0.41kg)、硝酸コバル
ト水溶液4.80kg(Co=0.97kg)を添加後、10wt%NaOH水
溶液でスラリーのpHを10.2として各金属水酸化物を析出
させ、ついで過洗浄後再度水を加え総量を18.8kgとし
た。
Comparative Example-2 81 g (Ru = 4.9 g) of a ruthenium nitrate solution was added to a mixed slurry of the same γ-alumina 3.0 kg and water 7.0 kg used in Comparative Example-1.
After adding 2.65 kg (Mn = 0.41 kg) of manganese nitrate aqueous solution and 4.80 kg (Co = 0.97 kg) of cobalt nitrate aqueous solution, each metal hydroxide was precipitated by adjusting the pH of the slurry to 10.2 with 10 wt% NaOH aqueous solution, and then overwashed. After that, water was added again to make the total amount 18.8 kg.

次にこのスラリーにAl2O3濃度3wt%のアルミナゾル10kg
を添加後湿式粉砕機で平均粒径0.45μmまで微粉砕し
た。ついで実施例−1〜4と同様に噴霧乾燥、焼成して
触媒を得た。実施例−1〜4及び比較例−1,2で得られ
た触媒の物性を表−1に示す。
Next, 10 kg of alumina sol with Al 2 O 3 concentration of 3 wt% was added to this slurry.
After the addition, was pulverized with a wet pulverizer to an average particle size of 0.45 μm. Then, spray drying and calcination were carried out in the same manner as in Examples-1 to 4 to obtain a catalyst. The physical properties of the catalysts obtained in Examples-1 to 4 and Comparative Examples-1 and 2 are shown in Table 1.

実施例−5〜8 実施例−2と同様に調製したルテニウム、マンガン、コ
バルトの水酸化物沈澱とγ−アルミナ及びγ−アルミナ
に対しAl2O3として2.5wt%のアルミナゾルの混合スラリ
ーを湿式粉砕機で微粉砕して平均粒径をそれぞれ1.0μ
m、0.6μm、0.4μm、0.3μmにした後噴霧乾燥次い
で焼成して触媒を得た。
Examples-5 to 8 Wet a mixed slurry of ruthenium, manganese and cobalt hydroxide precipitates prepared in the same manner as in Example-2 and γ-alumina and 2.5 wt% alumina sol as Al 2 O 3 with respect to γ-alumina. Finely pulverized with a pulverizer to obtain an average particle size of 1.0μ
m, 0.6 μm, 0.4 μm, 0.3 μm, and then spray-dried and then calcined to obtain a catalyst.

比較例−3〜5 比較例−1と同様に調製したルテニウム、マンガン、コ
バルトの水酸化物沈澱とγ−アルミナの混合スラリーを
湿式粉砕機で微粉砕して平均粒径をそれぞれ0.55μm、
0.35μm、0.28μmにした後、噴霧乾燥、焼成して触媒
を得た。
Comparative Examples 3 to 5 A mixed slurry of ruthenium, manganese, and cobalt hydroxide precipitates and γ-alumina prepared in the same manner as in Comparative Example 1 was finely pulverized by a wet pulverizer to have an average particle diameter of 0.55 μm,
After being adjusted to 0.35 μm and 0.28 μm, spray drying and firing were performed to obtain a catalyst.

実施例−2、実施例−5〜8及び比較例−1、比較例−
3〜5で得られた触媒の物性を(表−2)に示す。
Example-2, Examples-5 to 8 and Comparative Example-1, Comparative Example-
The physical properties of the catalysts obtained in 3 to 5 are shown in (Table-2).

<発明の効果> 本発明により十分な活性を有し、しかも耐摩耗性に著し
く秀れたアルミナ担体流動触媒を得ることができる。
<Effects of the Invention> According to the present invention, it is possible to obtain an alumina carrier fluidized catalyst having sufficient activity and remarkably excellent in wear resistance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】担体成分であるアルミナと金属成分を含有
するスラリーを噴霧乾燥,焼成して流動触媒を製造する
方法において、噴霧乾燥に先立ち該スラリーにアルミナ
ゾルを添加混合し、次いで湿式粉砕機にてスラリー粒子
の平均粒径が0.6μm以下になるまで微粉砕することを
特徴とする流動触媒の製造方法。
1. A method for producing a fluidized catalyst by spray-drying and firing a slurry containing alumina as a carrier component and a metal component, wherein an alumina sol is added to and mixed with the slurry prior to spray-drying, and then a wet grinder is used. A method for producing a fluidized catalyst, which comprises finely pulverizing slurry particles until the average particle diameter of the slurry particles becomes 0.6 μm or less.
【請求項2】アルミナゾル添加量がAl2O3として担体成
分であるアルミナに対し1〜7wt%である特許請求の範
囲第1項記載の方法。
2. The method according to claim 1, wherein the added amount of alumina sol is 1 to 7 wt% with respect to alumina as a carrier component as Al 2 O 3 .
【請求項3】担体成分であるアルミナがγ−アルミナで
あり、金属成分中の金属元素が鉄族金属及びマンガンあ
るいは鉄族金属、マンガンおよび白金族金属である特許
請求の範囲第1項記載の方法。
3. The method according to claim 1, wherein the carrier component alumina is γ-alumina, and the metal element in the metal component is iron group metal and manganese or iron group metal, manganese and platinum group metal. Method.
JP62304982A 1987-12-02 1987-12-02 Method for producing fluidized catalysts based on alumina Expired - Fee Related JPH07121358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62304982A JPH07121358B2 (en) 1987-12-02 1987-12-02 Method for producing fluidized catalysts based on alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62304982A JPH07121358B2 (en) 1987-12-02 1987-12-02 Method for producing fluidized catalysts based on alumina

Publications (2)

Publication Number Publication Date
JPH01148342A JPH01148342A (en) 1989-06-09
JPH07121358B2 true JPH07121358B2 (en) 1995-12-25

Family

ID=17939649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62304982A Expired - Fee Related JPH07121358B2 (en) 1987-12-02 1987-12-02 Method for producing fluidized catalysts based on alumina

Country Status (1)

Country Link
JP (1) JPH07121358B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395676B2 (en) 1994-02-22 2002-05-28 The Standard Oil Company Process for the preparation of fluid bed vinyl acetate catalyst
US5466652A (en) * 1994-02-22 1995-11-14 The Standard Oil Co. Process for the preparation of vinyl acetate catalyst
US6358882B1 (en) 1998-12-08 2002-03-19 The Standard Oil Company Fluid bed vinyl acetate catalyst
JP2007203223A (en) * 2006-02-02 2007-08-16 National Institute For Materials Science Visible light-responsive titanium oxide-activated carbon composite photocatalyst and manufacturing method
JP4888470B2 (en) 2007-11-08 2012-02-29 日産自動車株式会社 Method for producing noble metal-supported powder and exhaust gas purifying catalyst

Also Published As

Publication number Publication date
JPH01148342A (en) 1989-06-09

Similar Documents

Publication Publication Date Title
CN100999328B (en) Pseudo thin allophane and its preparation method
JP2908959B2 (en) New catalyst composition
JP2012516377A5 (en) Catalyst supported on silica clad alumina support
GB2151498A (en) A catalyst composition suitable for synthesis of methanol
JP2007515269A (en) Homogeneous reforming-Alumina Fischer-Tropsch catalyst support
JPH0635342B2 (en) Alkaline earth metal spinel / kaolin clay and method of making and using the same
KR102083701B1 (en) Catalyst for hydrocarbon catalytic cracking
US5288675A (en) SOx control compositions
TWI558454B (en) Thermochemical structuring of matrix components for fcc catalysts
CN109312238B (en) FCC catalysts with alumina derived from crystalline boehmite
IL22628A (en) Producing hydrogen from gaseous hydrocarbons
JPH10500898A (en) FCC catalyst containing coated zeolite particles
JP5269892B2 (en) Process for the preparation of cobalt-zinc oxide Fischer-Tropsch catalyst
KR20160021116A (en) Method of producing fcc catalysts with reduced attrition rates
JPH07121358B2 (en) Method for producing fluidized catalysts based on alumina
JPH075298B2 (en) Manufacturing method of micro spherical alumina
CA1211425A (en) Catalysts and catalyst supports
CN114425399B (en) Catalytic cracking catalyst and preparation method and application thereof
CN107537498B (en) Fischer-Tropsch catalyst and preparation method thereof
CN110614099B (en) Iron-based Fischer-Tropsch synthesis catalyst, preparation method thereof and Fischer-Tropsch synthesis method
JP2510630B2 (en) Alumina-based fluidized catalyst manufacturing method
CA2564729C (en) Process for the preparation of an additive-containing anionic clay
US6100215A (en) Process for producing particulate iron-antimony containing oxide composition having high compressive strength
CN114643062B (en) Catalyst for preparing low-carbon olefin from synthesis gas and preparation method and application thereof
CN109433222A (en) A kind of catalyst for methanation in presence of sulfur and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees