[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07120376A - Fine-particle measuring apparatus - Google Patents

Fine-particle measuring apparatus

Info

Publication number
JPH07120376A
JPH07120376A JP5268910A JP26891093A JPH07120376A JP H07120376 A JPH07120376 A JP H07120376A JP 5268910 A JP5268910 A JP 5268910A JP 26891093 A JP26891093 A JP 26891093A JP H07120376 A JPH07120376 A JP H07120376A
Authority
JP
Japan
Prior art keywords
measuring
light
sample
measurement
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5268910A
Other languages
Japanese (ja)
Inventor
Kazuo Oguchi
一夫 小口
Atsushi Kagaya
淳 加賀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5268910A priority Critical patent/JPH07120376A/en
Publication of JPH07120376A publication Critical patent/JPH07120376A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To obtain the fine-particle measuring apparatus wherein the particle size and the number of particles of fine particles in which wave lengths of absorbed light are different and which are contained in an opaque solution like measuring sample are different. CONSTITUTION:A plurality of measuring units 8 which generate beams of wavelength-fixed measuring light are installed in a sample flow passage 5 for a foreign-body fine-particle measuring apparatus 10. Wavelengths of the beams of measuring light radiated form the units 8 are set so as to be different from each other. In addition, an absorption photometer 7 which detects the wavelength of light absorbed by a measuring sample 1 is installed in the sample flow passage 5. A detected wavelength by the photometer 7 and measured results by the measuring units 8 are sent to a system part 6. The control part 6 compares wavelengths of plural beams of measuring light from the measuring units 8 with the detected wavelength, it selects the measuring units 8 which generate the beams of light suitable for the sample 1, and it computes the particle size and the number of particles of foreign bodies in the sample 1 by using only the measured results by the selected units.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体中の微粒子の測定
技術さらには試料中の異物微粒子の粒径、粒子数を測定
する測定装置に適用して特に有効な技術に関し、例えば
半導体製造時に用いられるレジスト等の液状試料の異物
混入量の測定に利用して有用な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring fine particles in a fluid, and more particularly to a technique which is particularly effective when applied to a measuring device for measuring the particle size and the number of foreign particles in a sample. The present invention relates to a technique useful for measuring the amount of foreign matter mixed in a liquid sample such as a resist used.

【0002】[0002]

【従来の技術】純水、薬品、半導体装置の製造に用いら
れるホトレジスト等の溶液中に存在するミクロン(μ
m)オーダーの異物微粒子の粒径、粒子数、粒径別粒子
数分布等を計測するに当り、その測定試料に測定光を照
射し、このとき発生する散乱光を検出して、上記各種デ
ータを得るようにした液中微粒子測定装置が公知であ
る。この液中微粒子測定装置にあっては、測定試料を一
定速度で通過させる試料流路を設け、この試料流路内
に、光学的に透明で耐薬品性を有するフロースルーセル
を設けておき、このセルに対して、波長数百ナノメータ
(例えば632.8nm)の波長の測定光(レーザ光)
を照射し、このとき微粒子より反射した散乱光を、受光
素子で電気信号として測定し、この測定結果に基いてそ
の粒径、粒子数等を算出するようにしていた。このとき
用いられる測定光は、同一波長の散乱光が得られるよう
にその波長が1つの値に固定されて、当該微粒子の測定
精度を高めていた。
2. Description of the Related Art Micron (μ) existing in pure water, chemicals, solutions such as photoresists used for manufacturing semiconductor devices
m) When measuring the particle size, the number of particles, the particle number distribution by particle size, etc. of foreign matter particles of the order, the measurement sample is irradiated with measurement light, and the scattered light generated at this time is detected to obtain the various data described above. There is known a device for measuring fine particles in liquid, which is designed to obtain In this submerged particle measuring apparatus, a sample flow path for allowing a measurement sample to pass at a constant speed is provided, and an optically transparent flow-through cell having chemical resistance is provided in the sample flow path. For this cell, measuring light (laser light) with a wavelength of several hundred nanometers (eg 632.8 nm)
The scattered light reflected from the fine particles at this time was measured as an electric signal by the light receiving element, and the particle size, the number of particles, etc. were calculated based on the measurement result. The measurement light used at this time has a fixed wavelength of one value so that scattered light of the same wavelength can be obtained, thereby improving the measurement accuracy of the fine particles.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上述し
た技術には、次のような問題のあることが本発明者らに
よってあきらかとされた。すなわち、測定対象たる溶液
(測定試料)によっては、当該溶液固有の光吸収波長帯
域がある。従って、上記微粒子測定装置において固定さ
れた波長が、この波長帯域に含まれる場合、照射された
測定光が、当該溶液に吸収され、或は、当該散乱光が吸
収されて、その微粒子測定が精度良く行えないこととな
る。本発明は、かかる事情に鑑みてなされたもので、測
定試料が不透明溶液で、その光吸収波長帯域により特定
波長の光が吸収されるような場合であっても、その試料
中の微粒子の粒径、粒子数を、常に精度良く測定するこ
とができる微粒子測定装置を提供することをその主たる
目的とする。この発明の前記ならびにそのほかの目的と
新規な特徴については、本明細書の記述および添附図面
から明らかになるであろう。
However, the present inventors have clarified that the above-mentioned technique has the following problems. That is, depending on the solution to be measured (measurement sample), there is a light absorption wavelength band unique to the solution. Therefore, when the wavelength fixed in the fine particle measuring device is included in this wavelength band, the irradiated measurement light is absorbed by the solution or the scattered light is absorbed, and the fine particle measurement is performed with high accuracy. You will not be able to do well. The present invention has been made in view of such circumstances, and even if the measurement sample is an opaque solution and light of a specific wavelength is absorbed by the light absorption wavelength band, the particles of fine particles in the sample are A main object of the present invention is to provide a fine particle measuring device capable of always measuring the diameter and the number of particles with high accuracy. The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0004】[0004]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を説明すれば、下記のと
おりである。即ち、本発明の微粒子測定装置は、測定試
料が供給される試料流路に、波長が固定された測定光を
発生させる照射手段が複数個設けられ、各々の照射手段
から発生する測定光の波長が互いに異なるように設定さ
れている。
The typical ones of the inventions disclosed in the present application will be outlined below. That is, the fine particle measuring apparatus of the present invention, the sample flow path to which the measurement sample is supplied, is provided with a plurality of irradiation means for generating the measurement light having a fixed wavelength, and the wavelength of the measurement light generated from each irradiation means. Are set to be different from each other.

【0005】[0005]

【作用】上記した手段によれば、測定試料に、互いに異
なる波長の測定光が照射できるようになっているので、
測定試料の光吸収帯域に属さない測定光を選択し、この
測定光による散乱光のみを測定して、当該試料中の微粒
子の粒径、粒子数の算出が行える。従って、1つの測定
装置で、光吸収帯域の異なる複数の測定試料に対する、
微粒子の測定が可能となる。
According to the above-mentioned means, the measurement sample can be irradiated with the measurement lights having different wavelengths.
The measurement light that does not belong to the light absorption band of the measurement sample is selected, and only the scattered light by this measurement light is measured to calculate the particle size and the number of particles of the fine particles in the sample. Therefore, with one measurement device, for multiple measurement samples with different light absorption bands,
It becomes possible to measure fine particles.

【0006】[0006]

【実施例】【Example】

(第1実施例)以下、本発明の第1実施例を添付図面を
参照して説明する。図1は、本実施例の測定波長可変型
液中異物微粒子測定装置10の構成を示すブロック図で
ある。この図に示すように、溶液中の異物微粒子の測定
が行われる液体測定試料1は、測定試料漕2に貯留され
る。この試料漕2には、加圧気体導入管3を介して、加
圧装置4から加圧された気体(例えばN2ガス)が導入
され、当該加圧気体の作用によって、測定試料1が、試
料流路5中を移動するようになっている。尚、上記加圧
装置4の動作は、後述のシステム制御部6からの信号に
て制御され、この結果、測定試料1が所定の流速で、当
該流路5中を移動するようになっている。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a block diagram showing a configuration of a measurement wavelength variable type foreign matter in-liquid particle measuring apparatus 10 of this embodiment. As shown in this figure, a liquid measurement sample 1 in which foreign particles in a solution are measured is stored in a measurement sample tank 2. A gas (for example, N 2 gas) pressurized from the pressurizing device 4 is introduced into the sample tank 2 through the pressurized gas introducing pipe 3, and the measurement sample 1 is operated by the action of the pressurized gas. It moves in the sample flow path 5. The operation of the pressurizing device 4 is controlled by a signal from a system control unit 6 described later, and as a result, the measurement sample 1 moves in the flow path 5 at a predetermined flow velocity. .

【0007】上記流路5の途中には、紫外/可視吸光光
度計7が配設されている。この光度計7は、流路中を流
れている測定試料1が吸収する光の波長を検出するもの
であり、当該吸収光の波長を表す信号は、システム制御
部6に送られる。
An ultraviolet / visible absorptiometer 7 is arranged in the flow path 5. The photometer 7 detects the wavelength of the light absorbed by the measurement sample 1 flowing in the flow channel, and the signal indicating the wavelength of the absorbed light is sent to the system controller 6.

【0008】上記流路5には、更に、複数の測定ユニッ
ト8,8,8,…、及び、流量測定/調整部9が設けら
れており、これら測定ユニット8,8…、流量測定/調
整部9によって異物微粒子測定部10Aが構成される。
このうち複数の測定ユニット8,8,…は、流路5途中
に形成された、光学的に透明で耐薬品性を有する測定セ
ル(フロースルーセル)と、このセルに一定波長の測定
光(レーザ光)を照射する測定光照射部と、異物微粒子
に照射された後の散乱光を検出する散乱光検出部とによ
って構成される。しかして、上記測定セルに流入された
測定試料1に対しては、上記測定光照射部より測定光の
照射が行われ、その散乱光が散乱光検出部によって検出
され、その検出結果を表す信号が、システム制御部6に
送られる。この場合、各測定ユニット8,8…では、散
乱光の散乱状態を上記検出部の受光素子が、電気的にパ
ルス信号として検出する。そしてこのパルス信号の電圧
値(振幅)や、発生度数に基いて、上記システム制御部
6が当該試料1中に含まれる異物微粒子の粒径、粒子
数、更には流径毎の粒子数分布状態等を算出する。
The flow path 5 is further provided with a plurality of measuring units 8, 8, 8, ... And a flow rate measuring / adjusting section 9. These measuring units 8, 8 ... The part 9 constitutes a foreign particle measuring unit 10A.
Among these, a plurality of measurement units 8, 8, ... Includes an optically transparent measurement cell (flow-through cell) formed in the middle of the flow path 5 and a measurement light of a constant wavelength (flow-through cell). It is composed of a measurement light irradiation unit for irradiating a laser beam) and a scattered light detection unit for detecting scattered light after being irradiated on the foreign particle. Then, the measurement sample 1 that has flowed into the measurement cell is irradiated with the measurement light from the measurement light irradiation unit, the scattered light is detected by the scattered light detection unit, and a signal indicating the detection result. Are sent to the system control unit 6. In this case, in each of the measuring units 8, 8, ..., The light receiving element of the detecting section electrically detects the scattered state of the scattered light as a pulse signal. Then, based on the voltage value (amplitude) of this pulse signal and the frequency of occurrence, the system control unit 6 causes the particle size, the number of particles of the foreign particles contained in the sample 1, and the distribution of the number of particles for each stream size. Etc. are calculated.

【0009】ところで、本実施例の異物微粒子測定装置
10では、波長が固定された測定光を生成する測定ユニ
ット8,8…が複数個設けられ、各々のユニット8,
8,…毎に生成される、各々の測定光は、その波長が互
いに異なるように予め一定値に固定されている。そし
て、これら波長が互いに異なる測定光にて得られた、散
乱光データが、上記システム制御部6に送られる。シス
テム制御部6は、上記吸光光度計7によって検出された
当該測定試料1が吸収する波長帯域を認識し、この帯域
から外れた波長域を判断し、各測定ユニット8,8…が
発生する測定光の波長とこの波長域とを比較して、何れ
の測定ユニットが、当該試料1中の異物微粒子の測定に
最適であるかを判断する。そして、最適と判断した1
つ、又は2つ以上の測定ユニット8からのパルス信号の
みを、有効な散乱光データとし、これを用いて当該測定
試料1の異物微粒子の算出を行なう。この場合、その処
理方法によっては、当該測定光が、上記波長帯域に属さ
ない全ての測定ユニット8,8,…からの信号を用い
て、異物微粒子の算出を行なうようにしてもよい。
By the way, the foreign particle measuring apparatus 10 of the present embodiment is provided with a plurality of measuring units 8, 8 ... Which generate measuring light having a fixed wavelength.
Each of the measuring lights generated for every 8 ... Is fixed to a constant value in advance so that the wavelengths thereof are different from each other. Then, the scattered light data obtained by the measurement lights having different wavelengths are sent to the system controller 6. The system control unit 6 recognizes the wavelength band absorbed by the measurement sample 1 detected by the absorptiometer 7, determines the wavelength band outside this band, and measures the measurement units 8, 8 ... The wavelength of light is compared with this wavelength range to determine which measuring unit is most suitable for measuring the foreign particle in the sample 1. And the one that was judged to be optimal
Only one or two or more pulse signals from the measurement units 8 are used as valid scattered light data, and the foreign particle of the measurement sample 1 is calculated using this data. In this case, depending on the processing method, the measurement light may use the signals from all the measurement units 8, 8, ... That do not belong to the wavelength band to calculate the foreign particle.

【0010】尚、上記流量測定/調整部9は、測定試料
1の流路内移動速度を測定し、この移動速度を一定に調
整する等の働きを有する。尚、試料1の流速の調整は、
この調整部9内に設けられた真空状態発生手段の作用に
よる吸引圧送にて行われる。この結果、装置10全体と
しては、上記した加圧装置4と、該調整部9の作用によ
って、測定試料1の流速制御が行われる。しかして、調
整された移動速度は、システム制御部6に送られて、異
物微粒子の粒径、微粒子数の測定に用いられるようにな
っている。尚、試料1の移動速度流速は、システム制御
部からの信号を受けた流量測定/調整部9により、適宜
調節され、試料の移動速度を種々変化させて、その都度
得られた散乱光データを用いて、更に詳細な、試料1内
の異物微粒子の混入状態が分析できるようになってい
る。
The flow rate measuring / adjusting section 9 has a function of measuring the moving speed of the measurement sample 1 in the channel and adjusting the moving speed to a constant value. In addition, adjustment of the flow velocity of the sample 1
This is performed by suction pressure feeding by the action of the vacuum state generating means provided in the adjusting section 9. As a result, as a whole of the apparatus 10, the flow rate control of the measurement sample 1 is performed by the action of the pressurizing apparatus 4 and the adjusting unit 9 described above. Then, the adjusted moving speed is sent to the system control unit 6 and is used for measuring the particle size of foreign matter particles and the number of particles. The moving speed / velocity of the sample 1 is appropriately adjusted by the flow rate measuring / adjusting unit 9 which receives a signal from the system control unit, and the moving speed of the sample is variously changed. By using this, it is possible to analyze the mixing state of the foreign particle in the sample 1 in more detail.

【0011】以上詳述したように、第1実施例の異物微
粒子測定装置10によれば、測定試料1の種類に応じ
て、当該試料が吸収する光の波長以外の波長の測定光に
よる微粒子の測定が行われるので、如何なる試料(特に
半透明又は不透明溶液)に対しても、その異物微粒子の
正確な測定を行なうことができるようになる。
As described above in detail, according to the foreign particle measuring apparatus 10 of the first embodiment, depending on the type of the measurement sample 1, the particles of the measuring light having a wavelength other than the wavelength of the light absorbed by the sample are used. Since the measurement is performed, it becomes possible to perform accurate measurement of the foreign particle in any sample (particularly a semitransparent or opaque solution).

【0012】(第2実施例)次に、本発明の第2実施例
について説明する。図2は、第2実施例の測定波長可変
型液中異物微粒子測定装置20の構成を示すブロック図
である。この第2実施例では、第1実施例で、流路5に
設けられた、複数の測定ユニット8,8,8,…、に代
えて、種々の波長の測定光(レーザ光)を発光させるこ
とができる波長可変レーザ測定ユニット18が設けられ
ている点のみが上記第1実施例と異なる。尚、この測定
ユニット18では、後述のシステム制御部16からの信
号に基いて当該試料1に最適の測定光波長が設定される
と、その後、当該波長が変動しない構成となっている。
この測定ユニット18と流量測定/調整部19とによっ
て異物微粒子測定部20Aが構成される。
(Second Embodiment) Next, a second embodiment of the present invention will be described. FIG. 2 is a block diagram showing the configuration of the measurement wavelength variable foreign matter in-liquid particle measuring device 20 of the second embodiment. In the second embodiment, in place of the plurality of measurement units 8, 8, 8, ... Provided in the flow path 5 in the first embodiment, measurement light (laser light) of various wavelengths is emitted. The only difference from the first embodiment is that a tunable laser measuring unit 18 that can be used is provided. The measurement unit 18 has a configuration in which, when the optimum measurement light wavelength is set for the sample 1 based on a signal from the system control unit 16 described later, the wavelength does not change thereafter.
The measurement unit 18 and the flow rate measurement / adjustment unit 19 constitute a foreign particle measurement unit 20A.

【0013】具体的には、測定ユニット18は、流路5
途中に形成された測定セルと、このセルに種々の波長の
測定光(レーザ光)を照射する波長可変レーザ照射部
と、上記測定光の照射時に得られる散乱光を検出する散
乱光検出部とによって構成される。試料漕2から試料流
路15を介して上記測定セルに流入した測定試料1に対
して、上記照射部から所定波長の測定光が照射される
と、このとき発生した散乱光が上記検出部にてパルス信
号として検出され、このとき得られた散乱光データ(パ
ルス信号)が、システム制御部16に送られて、当該試
料1中の異物微粒子の粒径、微粒子数等が算出される。
Specifically, the measuring unit 18 includes the flow path 5
A measurement cell formed on the way, a wavelength tunable laser irradiation section for irradiating the cell with measurement light of various wavelengths (laser light), and a scattered light detection section for detecting scattered light obtained at the time of irradiation of the measurement light. Composed by. When the measurement sample 1 flowing from the sample tank 2 into the measurement cell through the sample flow path 15 is irradiated with the measurement light of the predetermined wavelength from the irradiation unit, the scattered light generated at this time is transmitted to the detection unit. Is detected as a pulse signal, and the scattered light data (pulse signal) obtained at this time is sent to the system control unit 16 to calculate the particle size of foreign matter particles in the sample 1, the number of particles, and the like.

【0014】上記測定ユニット18から照射される測定
光の波長は、システム制御部16からの指令信号によっ
て選択される。即ち、システム制御部16は、試料流路
15に設置された吸光光度計7からの信号に基いて、当
該試料1が吸収する光の波長を測定し、この測定結果
を、システム制御部16に送る。この測定結果を受けた
システム制御部16は、当該試料1の微粒子測定に最適
の波長(吸収されない1つの波長)を決定し、その波長
を表わす信号を、上記波長可変レーザ測定ユニット18
に送る。そして、この信号に基いて、当該ユニット18
から、当該試料に、当該微粒子測定に最適の波長の測定
光が照射される。
The wavelength of the measuring light emitted from the measuring unit 18 is selected by a command signal from the system controller 16. That is, the system control unit 16 measures the wavelength of the light absorbed by the sample 1 based on the signal from the absorptiometer 7 installed in the sample flow path 15, and the measurement result is sent to the system control unit 16. send. Upon receiving the measurement result, the system control unit 16 determines the optimum wavelength (one wavelength that is not absorbed) for measuring the fine particles of the sample 1, and outputs a signal representing the wavelength to the wavelength tunable laser measurement unit 18 described above.
Send to. Then, based on this signal, the unit 18
Therefore, the sample is irradiated with the measurement light having the optimum wavelength for the particle measurement.

【0015】尚、この実施例でも、上記第1実施例と同
様に、1つの測定試料1に対して、上記波長帯域に属さ
ない複数の波長の測定光を照射し、このとき得られた散
乱光にかかるデータに基いて、異物微粒子の粒径、微粒
子数等の算出を行なうようにしてもよい。尚、この第2
実施例の他の構成は、上記した第1実施例の構成と同じ
であり、対応する部材には、同一の符号を付してその説
明を省略する。
Also in this embodiment, similarly to the first embodiment, one measurement sample 1 is irradiated with measurement light of a plurality of wavelengths not belonging to the above wavelength band, and the scattering obtained at this time is obtained. The particle size of foreign particles, the number of particles, and the like may be calculated based on the data concerning the light. In addition, this second
The other structure of the embodiment is the same as the structure of the first embodiment described above, and the corresponding members are designated by the same reference numerals and the description thereof is omitted.

【0016】(第3実施例)次に、本発明の第3実施例
について説明する。この第3実施例は、第1実施例にお
ける微粒子測定機構(微粒子測定部10A)を、レーザ
ー光散乱方式の絶対分子量測定装置に転用したもので、
その構成を図3のブロック図で示す。このレーザー光散
乱方式絶対分子量測定装置30では、GPC(ゲル浸透
クロマトグラフ)溶離液流路32と測定試料流路33を
通って、各々、溶離液と測定試料がGPC装置34に入
るようになっている。しかして、この第3実施例では、
分子量測定部(微粒子測定部)30Aの作用によって、
溶離液中に含まれる物質の分子量が測定される。
(Third Embodiment) Next, a third embodiment of the present invention will be described. In the third embodiment, the fine particle measuring mechanism (fine particle measuring unit 10A) in the first embodiment is diverted to a laser light scattering type absolute molecular weight measuring device.
The configuration is shown in the block diagram of FIG. In this laser light scattering type absolute molecular weight measuring apparatus 30, the eluent and the measurement sample enter the GPC apparatus 34 through the GPC (gel permeation chromatograph) eluent channel 32 and the measurement sample channel 33, respectively. ing. Then, in this third embodiment,
By the action of the molecular weight measuring unit (fine particle measuring unit) 30A,
The molecular weight of the substance contained in the eluent is measured.

【0017】即ち、GPC装置34内で測定試料中に含
まれる、分子量が互いに異なる各成分の分離が行われ、
相対分子量を反映したGPCクロマトグラフが得られ
る。そして、GPC装置34から流路35に送られた溶
出液31に対して、当該流路35に配設された測定ユニ
ット38,38…による液中成分の測定(液中の物質の
分子量測定)が行われる。
That is, the GPC device 34 separates each component contained in the measurement sample and having different molecular weights from each other,
A GPC chromatograph reflecting the relative molecular weight can be obtained. Then, with respect to the eluate 31 sent from the GPC device 34 to the flow path 35, measurement of components in the liquid by the measurement units 38, 38 ... Arranged in the flow path 35 (molecular weight measurement of a substance in the liquid) Is done.

【0018】この測定ユニット38,38…は、第1実
施例の測定ユニット8,8…と略同一の構成となってお
り、各々のユニット38,38…は、互いに異なる波長
の測定光(レーザ光)を当該溶出液31に照射して、こ
の溶出液31に含まれる物質の分子量に応じた散乱光デ
ータが得られるようになっている。この場合にも、流路
35に配設された吸光光度計37によって、当該溶出液
31が吸収する光の波長が、システム制御部36に送ら
れ、これを受けた制御部36が、吸収される光の波長帯
域を認識し、この帯域に含まれない波長域を認識し、該
波長域に含まれる測定光を発する、1又は2以上の所望
の測定ユニット38を選択し、該測定ユニットにて得ら
れた散乱光データのみを用いて、算出処理を行う。この
とき流路35中を流れる溶出液31は、微粒子測定部3
0Aを構成する流速測定/調整部39の働きによって一
定流速となり、この速度データに基づいて、システム制
御部36は、溶出液31中に含まれる物質の分子量を算
出する。
The measuring units 38, 38 ... Have substantially the same structure as the measuring units 8, 8 ... In the first embodiment, and each of the units 38, 38. (E.g., light) is applied to the eluate 31 to obtain scattered light data corresponding to the molecular weight of the substance contained in the eluate 31. Also in this case, the wavelength of the light absorbed by the eluent 31 is sent to the system control unit 36 by the absorptiometer 37 arranged in the flow path 35, and the control unit 36 receiving the wavelength absorbs the light. The wavelength band of the light to be recognized is recognized, the wavelength range not included in this band is recognized, and one or two or more desired measurement units 38 that emit the measurement light included in the wavelength range are selected. The calculation process is performed using only the scattered light data obtained. At this time, the eluate 31 flowing in the flow path 35 is
A constant flow velocity is achieved by the action of the flow velocity measurement / adjustment unit 39 that constitutes 0A, and the system control unit 36 calculates the molecular weight of the substance contained in the eluate 31 based on this velocity data.

【0019】又、図4は、第2実施例における微粒子測
定機構(微粒子測定部20A)を、レーザー光散乱方式
の絶対分子量測定装置に適用した変形例を示すブロック
図である。尚、この変形例では、図3に示す複数の測定
ユニット38,38…に代えて、種々の波長の測定光を
発生させる波長可変レーザ測定ユニット48が用いられ
ている。この測定ユニット48は、流量測定/調整部4
9と協同して、分子量測定部(微粒子測定部)40Aを
構成する。
FIG. 4 is a block diagram showing a modified example in which the fine particle measuring mechanism (fine particle measuring unit 20A) in the second embodiment is applied to a laser light scattering type absolute molecular weight measuring apparatus. In this modification, a wavelength tunable laser measurement unit 48 that generates measurement light of various wavelengths is used instead of the plurality of measurement units 38, 38 shown in FIG. The measurement unit 48 includes a flow rate measurement / adjustment unit 4
In cooperation with 9, a molecular weight measuring unit (fine particle measuring unit) 40A is configured.

【0020】この測定ユニット48からの測定光の波長
は、システム制御部46からの信号に基いて決定され
る。即ち、システム制御部46は、吸光光度計37から
の、溶出液31が吸収する光の波長帯域を表わす信号を
受け、この帯域に属さない1つの波長の測定光(レーザ
光)を、上記測定ユニット48に発生させて、当該溶出
液31中の物質の分子量を算出する。この変形例におい
ても、上記第3実施例と同様に、1種類の溶出液31に
対して、上記波長帯域に属さない2以上の波長の測定光
を選択して、これを順次照射し、このとき得られた散乱
光にかかる複数のデータに基いて、溶出液中に含まれる
物質の分子量の算出を行なうようにしてもよい。尚、こ
の変形例の他の構成は、上記した第3実施例の構成と同
じであり、対応する部材には、同一の符号を付してその
説明を省略する。
The wavelength of the measuring light from the measuring unit 48 is determined based on the signal from the system controller 46. That is, the system control unit 46 receives a signal indicating the wavelength band of the light absorbed by the eluent 31 from the absorptiometer 37, and measures the measurement light (laser light) of one wavelength that does not belong to this band by the above measurement. It is generated in the unit 48 and the molecular weight of the substance in the eluate 31 is calculated. Also in this modification, similarly to the third embodiment, one kind of eluent 31 is selected with measurement light of two or more wavelengths that do not belong to the above wavelength band, and the measurement light is sequentially irradiated. The molecular weight of the substance contained in the eluate may be calculated based on a plurality of data concerning the scattered light obtained at this time. The other structure of this modification is the same as the structure of the third embodiment described above, and the corresponding members are designated by the same reference numerals and the description thereof is omitted.

【0021】以上説明したように、上記した実施例の微
粒子測定部を用いた、異物微粒子測定装置(絶対分子量
測定装置)によれば、システム制御部が、測定対象とな
る溶液(溶出液)が吸収する光の波長の帯域を認識し、
この帯域に含まれない測定光を照射する測定ユニットか
らの散乱光データのみを用いて、粒子の粒径(分子
量)、粒子数を測定するので、1つの測定装置で、光吸
収帯域が異なる複数種類の溶液における微粒子の粒径
(分子量)、粒子数を、常に精度良く算出することがで
きる。
As described above, according to the foreign particle measuring apparatus (absolute molecular weight measuring apparatus) using the particle measuring section of the above-mentioned embodiment, the system control section determines the solution (eluent) to be measured. Recognize the wavelength band of the light to be absorbed,
Since the particle size (molecular weight) and the number of particles are measured using only the scattered light data from the measurement unit that emits the measurement light not included in this band, one measurement device can measure a plurality of light absorption bands having different light absorption bands. The particle size (molecular weight) of fine particles and the number of particles in various kinds of solutions can always be calculated accurately.

【0022】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。例えば、上
記第1、第3実施例では、複数の測定ユニットからの散
乱光データを、システム制御部が適宜選択して、微粒子
測定を行っているが、システム制御部からの信号に基い
て、測定に適さない測定ユニットの動作を停止させても
よい。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, in the first and third embodiments, the scattered light data from the plurality of measurement units is appropriately selected by the system control unit to perform particle measurement, but based on the signal from the system control unit, The operation of the measurement unit that is not suitable for measurement may be stopped.

【0023】以上の説明では主として本発明者によって
なされた発明をその背景となった利用分野である異物微
粒子測定装置及び絶対分子量測定装置に適用した場合に
ついて説明したが、この発明はそれに限定されるもので
なく、流体中に含まれる物質の大きさ、含有量等を測定
する技術一般に利用することができる。
In the above description, the invention mainly made by the present inventor has been applied to the foreign particle measuring apparatus and the absolute molecular weight measuring apparatus which are the fields of application in the background, but the invention is not limited thereto. However, it can be generally used for measuring the size, content, etc. of substances contained in a fluid.

【0024】[0024]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば下記
のとおりである。すなわち、半透明又は不透明溶液に含
まれた微粒子の測定を、1つの測定装置によって行うこ
とができ、スループットが向上する。
The effects obtained by the representative one of the inventions disclosed in the present application will be briefly described as follows. That is, the measurement of the fine particles contained in the semitransparent or opaque solution can be performed by one measuring device, and the throughput is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の測定波長可変型液中異物微粒子測
定装置10の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a measurement wavelength variable type foreign matter in-liquid particle measuring device 10 of a first embodiment.

【図2】第2実施例の測定波長可変型液中異物微粒子測
定装置20の構成を示すブロック図である。
FIG. 2 is a block diagram showing a configuration of a measuring wavelength variable foreign matter in-liquid particle measuring device 20 of a second embodiment.

【図3】第1実施例における微粒子測定機構をレーザー
光散乱方式の絶対分子量測定装置に転用した例を示すブ
ロック図である。
FIG. 3 is a block diagram showing an example in which the fine particle measuring mechanism in the first embodiment is diverted to a laser light scattering type absolute molecular weight measuring apparatus.

【図4】第2実施例における微粒子測定機構をレーザー
光散乱方式の絶対分子量測定装置に転用した例を示すブ
ロック図である。
FIG. 4 is a block diagram showing an example in which the fine particle measuring mechanism in the second embodiment is diverted to a laser light scattering type absolute molecular weight measuring apparatus.

【符号の説明】[Explanation of symbols]

1 液体測定試料 5 試料流路 6 システム制御部 7 紫外/可視吸光光度計 8 測定ユニット 10 測定波長可変型液中異物微粒子測定装置 10A 異物微粒子測定部(微粒子測定機構) 18 波長可変レーザ測定ユニット 1 Liquid Measurement Sample 5 Sample Flow Path 6 System Control Section 7 Ultraviolet / Visible Absorptiometer 8 Measurement Unit 10 Measurement Wavelength Variable Foreign Particle Particle Measuring Device 10A Foreign Particle Particle Measuring Section (Particle Measuring Mechanism) 18 Wavelength Variable Laser Measuring Unit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料流路を通過する試料に測定光を照射
し、照射時に発生する散乱光を検出して、この検出結果
に基づいて当該試料中の微粒子の粒径、若くは、粒子数
を測定する微粒子測定装置において、試料流路に、波長
が固定された測定光を発生させる照射手段が複数個設け
られると共に、各々の照射手段から発生する測定光の波
長が互いに異なるように設定されていることを特徴とす
る微粒子測定装置。
1. A sample passing through a sample flow path is irradiated with measuring light, scattered light generated during irradiation is detected, and the particle size of the fine particles in the sample, that is, the number of particles is determined based on the detection result. In the fine particle measuring device for measuring, the sample flow path is provided with a plurality of irradiation means for generating measurement light having a fixed wavelength, and the wavelengths of the measurement light generated from the respective irradiation means are set to be different from each other. A particle measuring device characterized in that
【請求項2】 試料流路を通過する試料に測定光を照射
し、照射時に発生する散乱光を検出して、この検出結果
に基づいて当該試料中の微粒子の粒径、若くは、粒子数
を測定する微粒子測定装置において、試料流路に、波長
可変の測定光を発生させる照射手段が設けられているこ
とを特徴とする微粒子測定装置。
2. The sample light passing through the sample flow path is irradiated with measuring light, scattered light generated at the time of irradiation is detected, and the particle size of the fine particles in the sample, that is, the number of particles is determined based on the detection result. In the fine particle measuring device for measuring, the sample flow path is provided with an irradiating means for generating variable wavelength measuring light.
【請求項3】 上記試料流路に設置され、当該試料が吸
収する光の波長を検出する波長測定手段と、該波長測定
手段にて測定された波長に基いて、上記照射手段から照
射される測定光を選択し、斯く選択した測定光に係る散
乱光の測定結果に基いて、粒径、粒子量を算出する制御
手段とを具えてなることを特徴とする請求項1又は2に
記載の微粒子測定装置。
3. A wavelength measuring unit installed in the sample flow path for detecting the wavelength of light absorbed by the sample, and the irradiation unit irradiates the wavelength based on the wavelength measured by the wavelength measuring unit. The control means for selecting a measurement light and calculating the particle size and the particle amount based on the measurement result of the scattered light related to the selected measurement light is included. Particle measuring device.
JP5268910A 1993-10-27 1993-10-27 Fine-particle measuring apparatus Pending JPH07120376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5268910A JPH07120376A (en) 1993-10-27 1993-10-27 Fine-particle measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5268910A JPH07120376A (en) 1993-10-27 1993-10-27 Fine-particle measuring apparatus

Publications (1)

Publication Number Publication Date
JPH07120376A true JPH07120376A (en) 1995-05-12

Family

ID=17464972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5268910A Pending JPH07120376A (en) 1993-10-27 1993-10-27 Fine-particle measuring apparatus

Country Status (1)

Country Link
JP (1) JPH07120376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243623A (en) * 2001-02-19 2002-08-28 Horiba Ltd Particle diameter distribution measuring instrument
JP2019501365A (en) * 2015-10-01 2019-01-17 ナノテンパー・テクノロジーズ・ゲーエムベーハー System and method for optically measuring particle stability and aggregation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243623A (en) * 2001-02-19 2002-08-28 Horiba Ltd Particle diameter distribution measuring instrument
JP2019501365A (en) * 2015-10-01 2019-01-17 ナノテンパー・テクノロジーズ・ゲーエムベーハー System and method for optically measuring particle stability and aggregation

Similar Documents

Publication Publication Date Title
JP3306079B2 (en) Optical analyzer and calibration method thereof
CN101216409B (en) Multi-source chromatography laser measurement method and device for flue gas, particle concentration and temperature distribution
Wei et al. Determination of phosphorus in natural waters by long-capillary-cell absorption spectrometry
US20080285032A1 (en) Light scattering detector
US20110242535A1 (en) Cell Construction For Light Scatter Detectors Having Self-Focusing Properties
ATE80947T1 (en) MEANS FOR CALIBRATION OF FLOW CYTOMETRY EQUIPMENT AND OTHER ANALYTICAL DEVICES.
DE69113509T2 (en) Gas detector.
EP0180140B1 (en) Method for analyzing impurities in liquid and apparatus therefor
JPH0237536B2 (en)
JP2022067652A (en) Flow nanoparticle measurement device and method of determining nanoparticle using the same
EP1695051A1 (en) Apparatus and method for improved analysis of liquids by continuous wave-cavity ring down spectroscopy
JPH08178870A (en) Spectroscopic method and device for measuring minute absorbing amount or reflecting amount of material sample
JPH07120376A (en) Fine-particle measuring apparatus
US20050130214A1 (en) Molecular binding event detection using separation channels
JPH09281034A (en) Optical concentration measuring apparatus
WO1995006873A1 (en) A method and apparatus for determining the concentration of a component present in a fluid stream in dispersed form
JPH046465A (en) Method for treating specimen and method and apparatus for measuring specimen
EP4162255A1 (en) Method and apparatus for determining optical density of a solution
JPH0783819A (en) Particle measuring apparatus
CN109477792A (en) For measuring in solution the method for the absorptivity of substance and for this measuring device
JPH06148057A (en) Method and instrument for measuring fine particle
JPH1062240A (en) Apparatus and method for measuring scattering
JPH07140068A (en) Atomic absorption spectrophotometer
US4240753A (en) Method for the quantitative determination of turbidities, especially of immune reactions
JPH01165939A (en) Apparatus for measuring foreign matter contained in fluidizing liquid