[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07128608A - Luminous flux scanner - Google Patents

Luminous flux scanner

Info

Publication number
JPH07128608A
JPH07128608A JP27338993A JP27338993A JPH07128608A JP H07128608 A JPH07128608 A JP H07128608A JP 27338993 A JP27338993 A JP 27338993A JP 27338993 A JP27338993 A JP 27338993A JP H07128608 A JPH07128608 A JP H07128608A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
permanent magnet
rotation angle
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27338993A
Other languages
Japanese (ja)
Inventor
Shuzo Hattori
秀三 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON LASER DENSHI KK
HATTORI SHUZO
Original Assignee
NIPPON LASER DENSHI KK
HATTORI SHUZO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON LASER DENSHI KK, HATTORI SHUZO filed Critical NIPPON LASER DENSHI KK
Priority to JP27338993A priority Critical patent/JPH07128608A/en
Publication of JPH07128608A publication Critical patent/JPH07128608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To provide the luminous flux scanner which has a high resolving power and responsiveness and consumes less electric power. CONSTITUTION:A reflection surface is formed on a plane part 13 of a rare earth bonded magnet 10 magnetized toward an arrow 11 and righting couple to reset this magnet 10 to a neutral position is applied to the magnet by righting leaf springs 25, 25a. If the coils in coil grooves 23, 23a are energized by a driving current source 30, the magnet 10 is rotated at the angle meeting this current and the direction of the luminous flux reflecting on the plane part 13 is scanned. The magnetic force is powerful and the reflection surface is integrally formed on the magnet 10 and, therefore, the resolving power and responsiveness are high and the electric power consumption is low.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光線の反射または屈折
(回折)方向を入力信号に応じて制御する光束走査装置
(スキャナー)に関し、特に電磁気力を利用して反射鏡
の方向を入力信号に応じて制御する電磁式の光束走査装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light beam scanning device (scanner) for controlling the direction of reflection or refraction (diffraction) of a light beam in accordance with an input signal, and more particularly to the direction of a reflecting mirror using an electromagnetic force. The present invention relates to an electromagnetic light beam scanning device that controls according to the above.

【0002】[0002]

【従来の技術】従来、電磁式の光束走査装置としては、
可動コイル形電流計のように、固定永久磁石の各磁極ギ
ャップ間に形成される磁路中に、磁束に対して垂直な軸
の周り回転可能に支持された可動コイルを配し、この可
動コイルにばね等により復元偶力を与えるとともに反射
鏡を固定して、可動コイルを通電することにより反射鏡
を駆動してその角度を変更するものがある。あるいは、
可動磁石形電流計のように、可動コイルの代わりに回転
可能な可動永久磁石を配し、可動永久磁石を挟む磁路中
に、回転軸に平行な固定した電流路を設けて、電流路に
通電することにより、可動永久磁石に固定された反射鏡
を駆動するものがある。
2. Description of the Related Art Conventionally, as an electromagnetic beam scanning device,
Like a moving coil type ammeter, a moving coil supported rotatably around an axis perpendicular to the magnetic flux is arranged in the magnetic path formed between the magnetic pole gaps of the fixed permanent magnet. There is a device in which a restoring couple is applied by a spring or the like, the reflecting mirror is fixed, and the angle is changed by driving the moving coil to drive the reflecting mirror. Alternatively,
Like a movable magnet type ammeter, a rotatable movable permanent magnet is arranged instead of the movable coil, and a fixed current path parallel to the rotation axis is provided in the magnetic path that sandwiches the movable permanent magnet. There is one that drives a reflecting mirror fixed to a movable permanent magnet by energizing.

【0003】一方、反射鏡の回転角を目的の角度に制御
するためには、回転角センサに検出された値と角度指令
値との差信号を電流路の駆動電流にフィードバックする
ことによって、精密な光束走査が行われる。ここで、回
転角センサとしては、重量が比較的軽い電器容量型セン
サが用いられる。
On the other hand, in order to control the rotation angle of the reflecting mirror to a target angle, the difference signal between the value detected by the rotation angle sensor and the angle command value is fed back to the drive current of the current path, which is a precise control. Beam scanning is performed. Here, as the rotation angle sensor, an electric capacitance type sensor having a relatively light weight is used.

【0004】[0004]

【発明が解決しようとする課題】このような光束走査装
置に対して要求される能力は、高い解像力および高い応
答度であって、目標の角度に対する反射鏡の揺れなどが
極力小さなことが必要であるが、これらの能力を向上さ
せるためには、強力な磁気回路を形成し、また、これに
相応する電磁気力を発生させるためには、電流値の増大
を図る必要がある。しかし、磁路中に配されるコイルの
電流を大きくするためにはコイル断面積を大きくして抵
抗を小さくする必要があるが、例えば、上記の可動コイ
ル形の光束走査装置においては、コイル断面積を大きく
することはコイル質量の増大を招くため、可動コイルの
慣性能率が増加してしまう。その結果、限られた消費電
力の下では、コイルの慣性能率の低減とオーム損失の低
減とが相反することになり、高い解像力および高い応答
度を図ることができない。
The capabilities required for such a light beam scanning device are high resolution and high responsiveness, and it is necessary that the shake of the reflecting mirror with respect to the target angle be as small as possible. However, in order to improve these capabilities, it is necessary to form a strong magnetic circuit and to increase the current value in order to generate an electromagnetic force corresponding thereto. However, in order to increase the current of the coil arranged in the magnetic path, it is necessary to increase the coil cross-sectional area and reduce the resistance. Increasing the area leads to an increase in the mass of the coil, which increases the inertial performance rate of the moving coil. As a result, under the limited power consumption, the reduction of the inertial performance rate of the coil and the reduction of the ohmic loss are in conflict with each other, and it is impossible to achieve high resolution and high responsiveness.

【0005】一方、反射鏡の回転角を回転角センサによ
り制御するものでは、電器容量型の回転角センサは、慣
性能率の小さな軽量のものでは十分な精度が得られず、
ある程度の精度を得るためには、慣性能率が大きくなる
ものを使用する必要があり、上記の高い解像力および高
い応答度と相反することになるという問題がある。
On the other hand, in the one in which the rotation angle of the reflecting mirror is controlled by the rotation angle sensor, the electric capacity type rotation angle sensor cannot obtain sufficient accuracy with a light weight one having a small inertial performance ratio.
In order to obtain a certain degree of accuracy, it is necessary to use a material having a large inertial performance rate, which is a conflict with the above-mentioned high resolution and high responsiveness.

【0006】この発明の第1の目的は、消費電力の大き
な増加を招くこと無く高い解像力および高い応答度が得
られる光束走査装置を提供することであり、第2の目的
は、光束走査装置において、慣性能率が高くなることな
く回転角を精度よく検出することができる回転角センサ
を提供することである。
A first object of the present invention is to provide a light beam scanning device which can obtain a high resolution and a high responsivity without causing a large increase in power consumption, and a second object thereof is a light beam scanning device. It is an object of the present invention to provide a rotation angle sensor capable of accurately detecting a rotation angle without increasing the inertial performance rate.

【0007】[0007]

【課題を解決するための手段】本発明は、請求項1で
は、磁路形成部材の内側に第1軸の回りに回転するよう
に支持され前記第1軸に直交する第2軸方向に着磁され
た永久磁石を有し、前記第1軸および前記第2軸を含む
平面に平行な平行面を前記永久磁石の表面に設けて、前
記平行面に光束の反射面を形成するとともに、前記永久
磁石を前記第1軸の回りの一方向に復帰させる復元偶力
を与える復元偶力手段と、前記永久磁石に対して前記復
元偶力に抗する電磁力を発生させるための電流通電手段
とを具備することを技術的手段とする。請求項2では、
前記永久磁石の表面に前記平行面と平行な第2の平行面
を設け、この第2の平行面に第2の反射面を形成し、こ
の第2の反射面の反射光により前記永久磁石の回転角を
検出する回転角検出手段を具備することを技術的手段と
する。請求項1および2における光束の各反射面は、平
行面を含む永久磁石の表面の全体に、精密モールドある
いは樹脂被膜を形成した後に鏡面研磨した薄膜に、さら
に、アルミニウム被膜を施すことによって形成すること
ができる。
According to a first aspect of the present invention, the magnetic path forming member is supported so as to rotate about a first axis and is attached in a second axial direction orthogonal to the first axis. A magnetized permanent magnet is provided, and a parallel surface parallel to a plane including the first axis and the second axis is provided on a surface of the permanent magnet to form a reflection surface of a light flux on the parallel surface, and Restoration couple means for giving a restoration couple for returning the permanent magnet in one direction around the first axis, and current passing means for generating an electromagnetic force against the restoration couple with respect to the permanent magnet. The technical means to have. In claim 2,
A second parallel surface parallel to the parallel surface is provided on the surface of the permanent magnet, a second reflecting surface is formed on the second parallel surface, and the reflected light of the second reflecting surface causes the permanent magnet to move. It is a technical means to have a rotation angle detecting means for detecting the rotation angle. Each reflecting surface of the light flux in claims 1 and 2 is formed by applying a precision mold or a resin coating on the entire surface of the permanent magnet including parallel surfaces and then mirror-finishing the thin film, and further applying an aluminum coating. be able to.

【0008】請求項3では、前記回転角検出手段が、前
記第2軸方向に分散した受光回折格子と、原回折格子の
像を前記第2の反射面で反射させて前記受光回折格子上
に結像させてモアレ縞を生じる光学系と、前記モアレ縞
を検出する光検出器とを具備することを技術的手段とす
る。原回折格子としては、第1の原回折格子と、この第
1の原回折格子と同一ピッチで位相が90度ずれた第2
の原回折格子を回転方向に垂直に並べて設けておき、各
原回折格子の結像位置にそれぞれ2つの光検出器を設け
て、各光検出器のモアレ縞数を求めて回転角とする。請
求項4では、前記永久磁石が、例えば、NdFeBボン
ド磁石等の稀土類ボンド磁石であることを技術的手段と
する。
According to a third aspect of the present invention, the rotation angle detecting means reflects the image of the light receiving diffraction grating dispersed in the second axis direction and the image of the original diffraction grating on the second reflecting surface to form the image on the light receiving diffraction grating. The technical means is provided with an optical system for forming an image to generate moire fringes and a photodetector for detecting the moire fringes. The original diffraction grating includes a first original diffraction grating and a second original diffraction grating whose phase is shifted by 90 degrees at the same pitch as the first original diffraction grating.
The original diffraction gratings of 1 are arranged side by side in the direction perpendicular to the rotation direction, two photodetectors are provided at the imaging positions of the respective original diffraction gratings, and the number of moire fringes of each photodetector is calculated and used as the rotation angle. In a fourth aspect, the technical means is that the permanent magnet is, for example, a rare earth bond magnet such as an NdFeB bond magnet.

【0009】[0009]

【作用】本発明では、請求項1では、永久磁石の表面自
体に光束の反射面が形成されており、電流通電手段によ
り通電が行われていない場合には、永久磁石は、復元偶
力手段によって、第1軸回りの一方向に復帰した位置に
あり、電流が通電されると、その電流に応じた回転角だ
け一方向からずれた角度に回転する。請求項2では、反
射面と第2の反射面とが平行であるため、永久磁石が回
転したときの回転角は、回転角検出手段によって第2の
反射面に反射する光の反射方向から検出するできる。
According to the present invention, in claim 1, the light flux reflecting surface is formed on the surface of the permanent magnet itself, and when the current is not supplied by the current supplying means, the permanent magnet is the restoring couple means. Thus, when it is in a position where it returns to one direction around the first axis and a current is applied, it rotates by an angle deviated from the one direction by a rotation angle corresponding to the current. In the second aspect, since the reflecting surface and the second reflecting surface are parallel to each other, the rotation angle when the permanent magnet rotates is detected by the rotation angle detecting means from the reflection direction of the light reflected on the second reflecting surface. Can do

【0010】請求項3では、永久磁石が回転したときに
第2の反射面での反射光は第2軸方向にずれ、回折格子
はそのずれの方向に分散しているため、第2の反射面で
の反射光が回折格子上に結像されたときに生じるモアレ
縞を光検出器によって検出することによって、永久磁石
の回転角を検出できる。請求項4では、稀土類ボンド磁
石であるNdFeBボンド磁石を用いることにより、間
隙磁束密度を大きくすることができ、また、精密成形が
容易となる。
In the third aspect, when the permanent magnet rotates, the reflected light on the second reflecting surface is displaced in the second axis direction, and the diffraction grating is dispersed in the direction of the displacement. The rotation angle of the permanent magnet can be detected by detecting the moire fringes generated when the light reflected on the surface is imaged on the diffraction grating by the photodetector. According to the fourth aspect, by using the NdFeB bond magnet which is a rare earth bond magnet, the gap magnetic flux density can be increased and the precision molding becomes easy.

【0011】[0011]

【発明の効果】本発明では、請求項1では、永久磁石に
は第1軸に直交する第2軸方向に磁化されているため、
その磁束は磁路形成部材の磁路を通り、磁路形成部材内
に閉じ込められる。また、永久磁石は、復元偶力手段に
よって復元偶力が与えられる。従って、永久磁石は、通
電された場合において、その電流値に応じた回転角に回
転して安定し、振動しない。従って、消費電力の大きな
増加を招くこと無く高い解像力および高い応答度が得ら
れる。請求項2では、永久磁石自体の表面に形成された
第2の反射面による反射光によって永久磁石の回転角を
検出するため、回転角の検出のための部材によって慣性
能率が高くなることがない。
According to the present invention, in claim 1, since the permanent magnet is magnetized in the direction of the second axis orthogonal to the first axis,
The magnetic flux passes through the magnetic path of the magnetic path forming member and is confined in the magnetic path forming member. The permanent couple is given a restoring couple by the restoring couple means. Therefore, when energized, the permanent magnet rotates at a rotation angle corresponding to the current value, is stable, and does not vibrate. Therefore, high resolution and high responsiveness can be obtained without causing a large increase in power consumption. In the second aspect, since the rotation angle of the permanent magnet is detected by the light reflected by the second reflection surface formed on the surface of the permanent magnet itself, the inertia ratio does not increase due to the member for detecting the rotation angle. .

【0012】請求項3では、回折格子によるモアレ縞を
光検出器によって検出することによって回転角を検出で
きるため、回転角を精度よく検出することができる。請
求項4では、慣性能率を高くすることなく、間隙磁束密
度を大きくすることができるため、強力な磁気回路を形
成できる。従って、解像力および応答度を高くすること
が容易である。
In the third aspect, since the rotation angle can be detected by detecting the moire fringes due to the diffraction grating with the photodetector, the rotation angle can be detected with high accuracy. According to the fourth aspect, since the gap magnetic flux density can be increased without increasing the inertia factor, a strong magnetic circuit can be formed. Therefore, it is easy to increase the resolution and responsiveness.

【0013】[0013]

【実施例】次に本発明を図に示す実施例に基づいて説明
する。図1に示す光束走査装置1において、10は円柱
の軸に平行な2つの平面で切断された形状を呈する慣性
楕円体としての稀土類ボンド磁石であって、第1軸とな
る円柱の軸上の上下には回転軸20が備えられている。
稀土類ボンド磁石10は、その磁化方向が矢印11に示
すとおり、円柱における一方の外周である側面12から
反対側の外周である側面12aに向かうように第1軸に
直交する第2軸を含む方向に磁化されており、稀土類ボ
ンド磁石10の表裏に形成された平面部13、13a
は、上記の第1軸および第2軸を含む平面に平行な平面
として形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on the embodiments shown in the drawings. In the light beam scanning device 1 shown in FIG. 1, 10 is a rare earth bonded magnet as an inertial ellipsoid having a shape cut by two planes parallel to the axis of the cylinder, and on the axis of the cylinder which is the first axis. Rotating shafts 20 are provided above and below.
The rare earth bonded magnet 10 includes a second axis orthogonal to the first axis so that its magnetization direction goes from the side surface 12 that is one outer circumference of the cylinder to the side surface 12a that is the opposite outer circumference, as indicated by an arrow 11. Plane portions 13 and 13a that are magnetized in the direction and are formed on the front and back of the rare earth bonded magnet 10.
Is formed as a plane parallel to the plane including the first axis and the second axis.

【0014】稀土類ボンド磁石10の表面には、その防
湿を兼ねた肉薄の樹脂被覆が施されている。この樹脂被
覆は、稀土類ボンド磁石10の平面部13、13aを光
学鏡面とするためのものであり、例えば、精密モールド
型を用いたり、あるいは、樹脂被覆後に平面部13、1
3aのみを鏡面研磨することによって、光学鏡面を得
る。光学鏡面が設けられた平面部13、13aには、さ
らに、アルミニウム皮膜および保護皮膜を設けて、光束
を反射させるための反射面を稀土類ボンド磁石10と一
体に形成する。なお、この実施例では、平面部13aに
ついては、必ずしも反射面として仕上げる必要はない。
The surface of the rare earth bonded magnet 10 is covered with a thin resin coating that also functions as a moisture barrier. This resin coating is for making the flat surface portions 13 and 13a of the rare earth bonded magnet 10 into an optical mirror surface, for example, using a precision mold, or after the resin coating, the flat surface portions 13 and 13a.
An optical mirror surface is obtained by mirror-polishing only 3a. An aluminum coating and a protective coating are further provided on the flat surface portions 13 and 13a provided with the optical mirror surface to integrally form a reflection surface for reflecting the light flux with the rare earth bonded magnet 10. In this embodiment, the flat surface portion 13a does not necessarily have to be finished as a reflecting surface.

【0015】稀土類ボンド磁石10の外側には、稀土類
ボンド磁石10による磁束に対する磁路を形成する枠体
21が設けられている。稀土類ボンド磁石10の側面1
2、12aのすぐ外側には、枠体21の近接部22、2
2aが設けられ、側面12、12aと近接部22、22
aとの間には、磁気間隙14、14aが形成されてい
る。また、各近接部22、22aの中央には、各近接部
22、22aをそれぞれ二分するようにコイル溝23、
23aが形成されており、各コイル溝23、23a内に
は、稀土類ボンド磁石10に対して作用する電磁気力を
発生するためのコイル31が配される(図2参照)。な
お枠体21は、上部枠体21aと下部枠体21bとから
なる。
A frame body 21 is provided outside the rare earth bonded magnet 10 to form a magnetic path for the magnetic flux generated by the rare earth bonded magnet 10. Side 1 of rare earth bonded magnet 10
The adjacent portions 22, 2 of the frame body 21 are provided on the outer sides of 2, 2a.
2a is provided, and the side surfaces 12, 12a and the proximity portions 22, 22 are provided.
Magnetic gaps 14 and 14a are formed between a and a. In addition, at the center of each of the adjacent portions 22 and 22a, a coil groove 23, which divides each of the adjacent portions 22 and 22a into two, is formed.
23a is formed, and a coil 31 for generating an electromagnetic force acting on the rare earth bonded magnet 10 is arranged in each coil groove 23, 23a (see FIG. 2). The frame body 21 includes an upper frame body 21a and a lower frame body 21b.

【0016】稀土類ボンド磁石10に備えられた回転軸
20の上下先端は、円錐面に研磨され、また、上部枠体
21a、下部枠体21bの回転軸20の各先端に対応す
る部分には、それぞれ上部ピボット受け24、下部ピボ
ット受け24aが固定され、回転軸20は、各ピボット
受け24、24a間で小さな摩擦で安定に支えられてい
る。上部枠体21aとの回転軸20との間には、稀土類
ボンド磁石10を中性位置に安定させるための復元板ば
ね25、25aが設けられている。以上の支持機構によ
って、稀土類ボンド磁石10は、枠体21内において、
中性位置の周りに回転振動可能に支持されることにな
る。
The upper and lower ends of the rotary shaft 20 provided in the rare earth bonded magnet 10 are polished to have a conical surface, and the upper frame 21a and the lower frame 21b are provided at the portions corresponding to the respective ends of the rotary shaft 20. The upper pivot receiver 24 and the lower pivot receiver 24a are fixed, respectively, and the rotary shaft 20 is stably supported by the small friction between the respective pivot receivers 24, 24a. Restoration leaf springs 25, 25a for stabilizing the rare earth bonded magnet 10 in a neutral position are provided between the upper frame 21a and the rotary shaft 20. By the above support mechanism, the rare earth bonded magnet 10 is
It will be rotatably supported around a neutral position.

【0017】30は、各コイル溝23、23a内に配さ
れるコイル31に対して、互いに逆方向の電流を通電す
るための駆動電流源である。これら各コイル溝23、2
3a内のコイル31が通電されると、その電磁力によっ
て、稀土類ボンド磁石10にはトルクが与えられ、この
トルクが復元板ばね25、25aの与える復元力と釣り
合う角度に稀土類ボンド磁石10を回転させる。
Reference numeral 30 is a drive current source for supplying currents in mutually opposite directions to the coils 31 arranged in the coil grooves 23, 23a. These coil grooves 23, 2
When the coil 31 in the coil 3a is energized, a torque is applied to the rare earth bonded magnet 10 by its electromagnetic force, and this torque is balanced with the restoring force given by the restoring leaf springs 25 and 25a. To rotate.

【0018】以上の構成において、第1軸および第2軸
と直交する方向を第3軸としたとき、第1軸および第3
軸を含む平面を稀土類ボンド磁石10の平面部13に対
する入射光路90を設けた入射平面とすると、平面部1
3に照射された光束は、稀土類ボンド磁石10が中性位
置にある場合には、入射平面と同一の平面内に反射する
反射光91となるが、駆動電流源30によりコイル31
が通電される場合には、稀土類ボンド磁石10がその電
流値に応じて回転するため、その回転角度に応じた角度
θを入射平面に対してなす偏向反射光92となり、各コ
イル31の電流方向が反転した場合には、偏向方向が逆
になる偏向反射光93となる。以上のとおり、駆動電流
源30に応じた反射光が得られるため、駆動電流源30
の電流値を変化させることによって、光束の反射方向を
任意走査することができる。
In the above structure, when the direction orthogonal to the first axis and the second axis is the third axis, the first axis and the third axis
Assuming that the plane including the axis is the incident plane in which the incident light path 90 is provided on the plane portion 13 of the rare earth bonded magnet 10, the plane portion 1
When the rare earth bonded magnet 10 is in the neutral position, the luminous flux irradiating the laser beam 3 becomes reflected light 91 which is reflected in the same plane as the incident plane.
, The rare-earth bonded magnet 10 rotates in accordance with the current value, so that the polarized reflected light 92 forms an angle θ corresponding to the rotation angle with respect to the incident plane, and the current of each coil 31. When the direction is reversed, the deflected reflected light 93 has the reversed deflection direction. As described above, since the reflected light corresponding to the driving current source 30 is obtained, the driving current source 30
By changing the current value of, the reflection direction of the luminous flux can be arbitrarily scanned.

【0019】図2に、本発明の第2実施例の要部を示
す。図2において、光束走査装置1は、中性位置で入射
光路90を入射する光線を中性反射光路91に反射し、
また、回転角検出部50を備え、稀土類ボンド磁石10
の平面部13aは、反射面として形成されており、稀土
類ボンド磁石10の回転角のセンシングに用いられる。
51は、稀土類ボンド磁石10に近接して第3軸方向に
平行に置かれたレンズであり。レンズ51の第3軸方向
の焦点面には、cos成分原回折格子61およびsin
成分原回折格子62が置かれていて、その背後には、光
源52が配置されている。また、レンズ51の第3軸方
向の焦点面には、受光回折格子60が設けられており、
その背後には、受光回折格子60を通過する光を検出す
るために、cos成分光検出器71とsin成分光検出
器72とが2段に配置して設けられている。cos成分
原回折格子61、sin成分原回折格子62は、図3に
示すとおり、互いに位相が90度ずれたピッチが等しい
格子であり、受光回折格子60は、これらと等しいピッ
チの格子であり、これらcos成分原回折格子61およ
びsin成分原回折格子62の2段分の高さを有し、そ
の幅が、稀土類ボンド磁石10の回転角の方向に大きく
広がっている。なお、80は回転角制御装置であり、各
成分光検出器71、72の受光信号と回転角指令信号と
から駆動電流源30に対して回転角誤差信号を発する。
FIG. 2 shows the essential parts of the second embodiment of the present invention. In FIG. 2, the light beam scanning device 1 reflects a light beam incident on the incident light path 90 at the neutral position to the neutral reflection light path 91,
In addition, the rare earth bonded magnet 10 is provided with the rotation angle detection unit 50.
The flat surface portion 13a is formed as a reflecting surface and is used for sensing the rotation angle of the rare earth bonded magnet 10.
Reference numeral 51 denotes a lens which is placed close to the rare earth bonded magnet 10 and parallel to the third axis direction. On the focal plane of the lens 51 in the third axis direction, the cos component original diffraction grating 61 and sin
An original component diffraction grating 62 is placed, and a light source 52 is placed behind it. Further, a light receiving diffraction grating 60 is provided on the focal plane of the lens 51 in the third axis direction,
Behind it, a cos component photodetector 71 and a sin component photodetector 72 are provided in two stages in order to detect the light passing through the light receiving diffraction grating 60. As shown in FIG. 3, the cosine component original diffraction grating 61 and the sin component original diffraction grating 62 are gratings whose phases are mutually shifted by 90 degrees, and the light receiving diffraction grating 60 is a grating whose pitch is equal to these. The cosine component original diffraction grating 61 and the sine component original diffraction grating 62 have a height of two steps, and the width thereof largely spreads in the direction of the rotation angle of the rare earth bonded magnet 10. Reference numeral 80 denotes a rotation angle control device, which issues a rotation angle error signal to the drive current source 30 from the light receiving signals of the respective component light detectors 71 and 72 and the rotation angle command signal.

【0020】光源52から照射され各成分原回折格子6
1、62を通過した光線は、レンズ51を通り、稀土類
ボンド磁石10に平面部13の裏側に平行に形成された
第2の反射面としての平面部13aで反射して、再びレ
ンズ51を通って、レンズ51の焦点面に置かれた受光
回折格子60の上に結像される。すなわち、稀土類ボン
ド磁石の中性位置では、各成分原回折格子61、62に
おいて矢印の先端で示される像点Oから出た光線は、行
き光路94を経て平面部13aで反射されて、中性帰り
光路95を経て、受光回折格子60上の中性像点Iに結
像する。稀土類ボンド磁石10が回転角θの場合では、
像点Oを出た光線は、行き光路94を経て平面部13a
で反射されて、偏向帰り光路を経て受光回折格子60上
の偏向像点Jに結像する。
The original diffraction grating 6 for each component emitted from the light source 52
The light rays that have passed through 1 and 62 pass through the lens 51, are reflected by the flat surface portion 13a as the second reflecting surface formed in parallel with the rear surface of the flat earth portion 13 on the rare earth bonded magnet 10, and again pass through the lens 51. Then, an image is formed on the light receiving diffraction grating 60 placed on the focal plane of the lens 51. That is, at the neutral position of the rare earth bonded magnet, the light beam emitted from the image point O indicated by the tip of the arrow in each of the component original diffraction gratings 61 and 62 is reflected by the plane portion 13a via the outgoing optical path 94, and An image is formed on the neutral image point I on the light receiving diffraction grating 60 via the sex return optical path 95. When the rare earth bonded magnet 10 has a rotation angle θ,
The light ray exiting from the image point O passes through the outgoing optical path 94, and the plane portion 13a.
It is reflected by and is imaged on the deflected image point J on the light receiving diffraction grating 60 through the deflection return optical path.

【0021】従って、駆動電流源30に応じて稀土類ボ
ンド磁石10が駆動されて、光線が平面部13を反射し
て走査される間に、cos成分原回折格子61の像は受
光回折格子60の下半分を走査し、sin成分原回折格
子62の像は受光回折格子60の上半分を走査する。図
3において、受光回折格子60の一点鎖線で囲まれた部
分は、特定の回転角に対するcos成分原回折格子6
1、sin成分原回折格子62の像である。図3におい
て、点線で囲んだcos成分原回折格子61とsin成
分原回折格子62との境界部分と、その部分が投影され
た受光回折格子60の点線で囲まれた部分を拡大図示し
て示す。
Therefore, while the rare earth bonded magnet 10 is driven according to the driving current source 30 and the light beam is reflected by the flat surface portion 13 and scanned, the image of the cos component original diffraction grating 61 is received by the light reception diffraction grating 60. The lower half is scanned, and the image of the sin component original diffraction grating 62 is scanned in the upper half of the light receiving diffraction grating 60. In FIG. 3, the portion surrounded by the alternate long and short dash line of the light receiving diffraction grating 60 is the original cos component diffraction grating 6 for a specific rotation angle.
1 is an image of the sin component original diffraction grating 62. In FIG. 3, a boundary part between the cos component original diffraction grating 61 and the sin component original diffraction grating 62 surrounded by a dotted line, and a part surrounded by a dotted line of the light receiving diffraction grating 60 on which the part is projected are enlarged and shown. .

【0022】以上の構成において、各回折格子60、6
1、62の回折格子ピッチはいずれも等しく、それをp
とし、レンズ51の焦点距離をfとすれば、受光回折格
子60の下半分を通過する全光量の変化分は、p/2f
を周期とする回転角θの関数で、ほぼcos(4πθf
/p)に比例する。この光量変化分は、cos成分光検
出器71で検出され、回転角制御装置80のcos入力
端子に加えられる。また、受光回折格子60の上半分を
通過する全光量の変化分は、p/2fを周期とする回転
角θの関数で、ほぼsin(4πθp/f)に比例す
る。この光量変化分は、sin成分光検出器72で検出
され、回転角制御装置80のsin入力端子に加えられ
る。回転角制御装置80は、これらの入力から稀土類ボ
ンド磁石10の回転角を計算し、別途装置により与えら
れる回転角指令入力と比較して回転角誤差信号を求め、
駆動電流源30に指令入力として与える。このようにし
てフィードバック制御ループが閉じるとき、回転角は正
確に回転角指令入力に従って制御される。
In the above structure, each diffraction grating 60, 6
The diffraction grating pitches of 1 and 62 are the same, and
And the focal length of the lens 51 is f, the change in the total amount of light passing through the lower half of the light receiving diffraction grating 60 is p / 2f.
Is a function of the rotation angle θ, and is approximately cos (4πθf
/ P). This change in the amount of light is detected by the cos component photodetector 71 and added to the cos input terminal of the rotation angle control device 80. The amount of change in the total amount of light that passes through the upper half of the light receiving diffraction grating 60 is a function of the rotation angle θ having a period of p / 2f and is approximately proportional to sin (4πθp / f). This change in the amount of light is detected by the sin component photodetector 72 and added to the sin input terminal of the rotation angle control device 80. The rotation angle control device 80 calculates the rotation angle of the rare earth bonded magnet 10 from these inputs, compares it with a rotation angle command input given by a separate device, and obtains a rotation angle error signal,
It is given to the driving current source 30 as a command input. Thus, when the feedback control loop is closed, the rotation angle is accurately controlled according to the rotation angle command input.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略を示す斜視図である。FIG. 1 is a perspective view showing an outline of an embodiment of the present invention.

【図2】本発明の他の実施例の概略を示す構成図であ
る。
FIG. 2 is a configuration diagram showing an outline of another embodiment of the present invention.

【図3】図2の実施例の回折格子を示す部分拡大図であ
る。
FIG. 3 is a partially enlarged view showing the diffraction grating of the embodiment shown in FIG.

【符号の説明】[Explanation of symbols]

1 光束走査装置 10 稀土類ボンド磁石(永久磁石) 11 磁化方向(第2軸) 13 平面部(平行面) 13a 平面部(第2の平行面) 20 回転軸(第1軸) 21 枠体(磁路形成部材) 25 復元板ばね(復元偶力手段) 30 駆動電流源(電流通電手段) 50 回転角検出部(回転角検出手段) 52 レンズ(光学系) 60 受光回折格子 61 cos成分原回折格子(原回折格子) 62 sin成分原回折格子(原回折格子) 1 Luminous Flux Scanner 10 Rare Earth Bonded Magnet (Permanent Magnet) 11 Magnetization Direction (Second Axis) 13 Flat Surface (Parallel Surface) 13a Flat Surface (Second Parallel Surface) 20 Rotation Axis (First Axis) 21 Frame ( Magnetic path forming member) 25 Restoring leaf spring (restoring couple means) 30 Driving current source (current energizing means) 50 Rotation angle detection unit (rotation angle detection means) 52 Lens (optical system) 60 Light receiving diffraction grating 61 Cos component original diffraction Grating (original diffraction grating) 62 sin component Original diffraction grating (original diffraction grating)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 磁路形成部材の内側に第1軸の回りに回
転するように支持され前記第1軸に直交する第2軸方向
に着磁された永久磁石を有し、前記第1軸および前記第
2軸を含む平面に平行な平行面を前記永久磁石の表面に
設けて、前記平行面に光束の反射面を形成するととも
に、前記永久磁石を前記第1軸の回りの一方向に復帰さ
せる復元偶力を与える復元偶力手段と、前記永久磁石に
対して前記復元偶力に抗する電磁力を発生させるための
電流通電手段とを具備する光束走査装置。
1. A permanent magnet that is supported inside a magnetic path forming member so as to rotate about a first axis and is magnetized in a second axial direction that is orthogonal to the first axis. And a parallel surface parallel to a plane including the second axis is provided on the surface of the permanent magnet to form a reflection surface of a light flux on the parallel surface, and the permanent magnet is arranged in one direction around the first axis. A light flux scanning device comprising: a restoring couple means for giving a restoring couple for returning; and a current conducting means for generating an electromagnetic force against the restoring couple with respect to the permanent magnet.
【請求項2】 前記永久磁石の表面に前記平行面と平行
な第2の平行面を設け、この第2の平行面に第2の反射
面を形成し、この第2の反射面の反射光により前記永久
磁石の回転角を検出する回転角検出手段を具備すること
を特徴とする請求項1記載の光束走査装置。
2. A second parallel surface parallel to the parallel surface is provided on the surface of the permanent magnet, and a second reflecting surface is formed on the second parallel surface. Reflected light from the second reflecting surface. 2. The light beam scanning device according to claim 1, further comprising a rotation angle detecting means for detecting a rotation angle of the permanent magnet.
【請求項3】 前記回転角検出手段が、前記第2軸方向
に分散した受光回折格子と、原回折格子の像を前記第2
の反射面で反射させて前記受光回折格子上に結像させて
モアレ縞を生じる光学系と、前記モアレ縞を検出する光
検出器とを具備することを特徴とする請求項2記載の光
束走査装置。
3. The rotation angle detecting means forms an image of the light receiving diffraction grating dispersed in the second axis direction and an image of the original diffraction grating into the second diffraction grating.
3. A light beam scanning apparatus according to claim 2, further comprising: an optical system that produces a moire fringe by forming an image on the light-receiving diffraction grating by reflecting the light from the reflection surface of the optical system, and a photodetector that detects the moire fringe. apparatus.
【請求項4】 前記永久磁石が稀土類ボンド磁石であ
ることを特徴とする請求項1または2のいずれかに記載
の光束走査装置。
4. The light beam scanning device according to claim 1, wherein the permanent magnet is a rare earth bonded magnet.
JP27338993A 1993-11-01 1993-11-01 Luminous flux scanner Pending JPH07128608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27338993A JPH07128608A (en) 1993-11-01 1993-11-01 Luminous flux scanner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27338993A JPH07128608A (en) 1993-11-01 1993-11-01 Luminous flux scanner

Publications (1)

Publication Number Publication Date
JPH07128608A true JPH07128608A (en) 1995-05-19

Family

ID=17527220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27338993A Pending JPH07128608A (en) 1993-11-01 1993-11-01 Luminous flux scanner

Country Status (1)

Country Link
JP (1) JPH07128608A (en)

Similar Documents

Publication Publication Date Title
US4186991A (en) Angularly rotatable mirror apparatus
CN112014827B (en) Object detection device
FR3100400A1 (en) MAGNETIC ACTUATOR AND MECHATRONIC SYSTEM
US5590236A (en) Speed controller or an instrument having a speed controller including detection means for linearly detecting the amount of rotation less than one full rotation of a rotating member
JPH07128608A (en) Luminous flux scanner
JP2021132416A (en) Actuator, optical scanner and article detecting device
US5451775A (en) Apparatus for detecting galvonmeter mirror movement of optical disc tracking servo system
JPH0882757A (en) Biaxial luminous flux driving device
JPH07128609A (en) Luminous flux scanner
JP2785202B2 (en) Optical disk drive
JP2020194152A (en) Actuator, light scanning apparatus and object detecting apparatus
JPS6313168B2 (en)
WO2024128292A1 (en) Inclination detection device and inclination detection method
KR102658547B1 (en) Scanning device operated using electromagnetic force
JPS58191904A (en) Bidirectional gap detector
JPH0861917A (en) Position detecting device
JPH05150194A (en) Vibration prevention device
JP3478454B2 (en) Image recording device
JPH0495714A (en) Displacement detecting apparatus
JP2020194151A (en) Actuator, light scanning apparatus and object detecting apparatus
JP2000113475A (en) Object lens position detecting mechanism and device using it
JPH11120591A (en) Turning position detector of deflection mirror
JPH03134508A (en) Position detecting apparatus
JPH1116185A (en) Rotating position detector of deflection mirror
JPS5981609A (en) Automatic focusing mechanism