JPH07126754A - Heating method of slab for grain oriented electrical steel sheet - Google Patents
Heating method of slab for grain oriented electrical steel sheetInfo
- Publication number
- JPH07126754A JPH07126754A JP27069093A JP27069093A JPH07126754A JP H07126754 A JPH07126754 A JP H07126754A JP 27069093 A JP27069093 A JP 27069093A JP 27069093 A JP27069093 A JP 27069093A JP H07126754 A JPH07126754 A JP H07126754A
- Authority
- JP
- Japan
- Prior art keywords
- slab
- oriented electrical
- electrical steel
- heating furnace
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、方向性電磁鋼板の製造
方法に関し、特に、その製造用スラブを熱間圧延する前
の加熱技術に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet, and more particularly to a heating technique before hot rolling the slab for production.
【0002】[0002]
【従来の技術】周知のように、方向性電磁鋼板の優れた
磁気特性は、板面に(100)面、圧延方向に<001
>軸の2次再結晶粒を、最終焼鈍により選択的に発達さ
せることによって得られる。そのためには、鋼中にイン
ヒビタと呼ばれる微細な析出物、例えばMnS,MnS
e,AlN等を析出させることが肝要であり、このイン
ヒビタの分散形態のコントロールは、これら析出物を一
旦固溶させた後、熱間圧延を施すことによって行われ
る。2. Description of the Related Art As is well known, the excellent magnetic properties of grain-oriented electrical steel sheets include (100) plane on the sheet surface and <001
It is obtained by selectively developing the secondary recrystallized grains of the> axis by the final annealing. For that purpose, fine precipitates called inhibitor in the steel, such as MnS and MnS.
It is important to precipitate e, AlN and the like, and the dispersion morphology of the inhibitor is controlled by once solid-solving these precipitates and then hot rolling.
【0003】ところで、このような目的で行われる熱間
圧延前のスラブ加熱は、インヒビタ成分の再固溶のた
め、例えばガスバーナ加熱タイプの炉(以下「ガス
炉」)による1350℃以下の温度での1次加熱後に、
誘導加熱タイプの炉(以下「I炉」という。これは、ス
ラブを厚み方向を底部とし、所謂I形状で炉内に静置、
加熱するための呼び名で、炉内ではスラブ幅方向が高さ
に相当する。)で行われていた。その2次加熱温度は、
スラブに粗大析出したインヒビターを再固溶可能とする
1400℃〜1480℃であり、この2次加熱後、スラ
ブは熱間圧延を施されていた。By the way, the slab heating before hot rolling which is carried out for such a purpose is, for example, at a temperature of 1350 ° C. or lower by a gas burner heating type furnace (hereinafter “gas furnace”) due to re-solution of the inhibitor component. After the first heating of
Induction heating type furnace (hereinafter referred to as "I furnace". This is a slab having a bottom in the thickness direction, and is placed in the furnace in a so-called I shape.
It is a name for heating, and the slab width direction corresponds to the height in the furnace. ) Was done in. The secondary heating temperature is
The temperature is from 1400 ° C to 1480 ° C, which makes it possible to re-dissolve the coarsely precipitated inhibitor in the slab. After this secondary heating, the slab was hot-rolled.
【0004】上記工程のI炉段階において、図2に示す
ように、スラブ1長手方向の両端部近傍(それぞれL
E,TE端部という)が、炉の構造上放射熱が大きいた
め、それ以外の中央部側に対して5℃〜30℃低めとな
る傾向があった。したがって、従来はスラブ両端部近傍
にインヒビタの再固溶不足が生じて、最終製品の方向性
電磁鋼板は磁性不良となりやすかった。この問題を解決
するための方法として、特開平5−59437号公報
は,I炉3内の両端部でスラブとの間に生じる空間4
に、誘導発熱板及び断熱材を配置し、補助加熱する技術
を開示している。また、特開昭59−193216号公
報は、ガスバーナ加熱の1次加熱時に、スラブの長手方
向に対して、図3に示すような所謂テーパ加熱技術を教
えた。これは、熱間圧延前のスラブ加熱において、圧延
方向後端部の温度が前端部よりも200℃の範囲内で高
くなるように加熱する技術である。In the I-furnace stage of the above process, as shown in FIG.
Since the radiant heat is large due to the structure of the furnace, the E and TE ends) tend to be lower by 5 ° C to 30 ° C than the other central side. Therefore, conventionally, insufficient re-solution of the inhibitor occurred near both ends of the slab, and the grain-oriented electrical steel sheet of the final product was apt to have a magnetic defect. As a method for solving this problem, Japanese Patent Laid-Open No. 5-59437 discloses a space 4 formed between the slabs at both ends in the I furnace 3.
Discloses a technique of arranging an induction heating plate and a heat insulating material and performing auxiliary heating. Further, JP-A-59-193216 teaches a so-called taper heating technique as shown in FIG. 3 in the longitudinal direction of the slab during the primary heating of the gas burner heating. This is a technique of heating the slab before hot rolling so that the temperature at the rear end in the rolling direction becomes higher than that at the front end within a range of 200 ° C.
【0005】しかしながら、これらの公知方法を実施す
ると、2次加熱に際し必要以上に温度が高い部分が生じ
ることになった。すなわち、スラブの2次加熱完了時に
は、図4に示すような表面温度分布となり、図4中
「A」で示す範囲の温度が必要以上に上りすぎ、最悪の
ケースとしてはA部が局部溶解を起すトラブルが発生し
たり、溶解するまでにはいたらなくてもA部でスラブ組
織が粗大化して、逆に高温による最終製品の磁性劣化が
起こるという問題があった。However, when these known methods are carried out, a portion having a temperature higher than necessary is generated in the secondary heating. That is, when the secondary heating of the slab is completed, the surface temperature distribution becomes as shown in FIG. 4, the temperature in the range indicated by “A” in FIG. 4 rises more than necessary, and in the worst case, the A part locally melts. There is a problem that the slab structure is coarsened in the portion A even if it does not occur until it melts, causing conversely the magnetic deterioration of the final product due to high temperature.
【0006】[0006]
【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、方向性電磁鋼板の熱間圧延に際して、インヒビ
タの固溶不足が起きないよう、ガスバーナ加熱炉でのス
ラブの加熱方法を提供することを目的としている。In view of the above circumstances, the present invention provides a method for heating a slab in a gas burner heating furnace so as to prevent insufficient solid solution of an inhibitor during hot rolling of grain-oriented electrical steel sheet. Is intended.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するた
め、発明者は鋭意検討を行い、1次加熱でスラブ長手方
向の温度分布を調整することに着眼した。本発明は、そ
の着眼を具体化するために多くの実験、研究を行った上
でなされたものである。 すなわち、本発明は、Siを
2%以上含む方向性電磁鋼板製造用スラブを、ガスバー
ナ加熱炉で1350℃以下の温度で1次加熱後、さらに
電磁誘導加熱炉で1400℃〜1480℃の温度で加熱
してから熱間圧延する方向性電磁鋼板の製造において、
上記ガスバーナ加熱炉内で、スラブの両端より1m以内
の範囲を、それ以外の中央部分の温度より10℃以上高
く加熱し、該中央部分の温度をスラブ全長平均値の±1
0℃以内に抑制することを特徴とする方向性電磁鋼板用
スラブの加熱方法である。この場合、上記スラブの加熱
や温度抑制に用いる温度制御手段は、公知のものを使用
すれば良い。In order to achieve the above-mentioned object, the inventor has made earnest studies and has focused on adjusting the temperature distribution in the longitudinal direction of the slab by primary heating. The present invention has been made after many experiments and researches have been carried out in order to materialize the viewpoint. That is, according to the present invention, a slab for producing a grain-oriented electrical steel sheet containing Si in an amount of 2% or more is first heated in a gas burner heating furnace at a temperature of 1350 ° C. or lower, and further in an electromagnetic induction heating furnace at a temperature of 1400 ° C. to 1480 ° C. In the production of grain-oriented electrical steel sheet that is heated and then hot rolled,
In the gas burner heating furnace, a range within 1 m from both ends of the slab is heated to 10 ° C. or more higher than the temperature of the other central portion, and the temperature of the central portion is ± 1 of the average value of the slab length.
It is a method for heating a slab for grain-oriented electrical steel sheets, which is characterized by suppressing the temperature within 0 ° C. In this case, known temperature control means may be used as the temperature control means for heating the slab and suppressing the temperature.
【0008】[0008]
【作用】本発明では、ガスバーナ加熱炉でスラブの両端
より1m以内の範囲を、それ以外の中央部分の平均温度
よりほぼ10℃以上高目に過加熱し、さらに該中央部分
の温度をスラブ全長平均値の±10℃以内に抑えるよう
にしたので、電磁誘導加熱炉の出側でスラブの長手方向
温度分布は均一になり、インヒビタの再固溶も十分に均
一化される。その結果、最終製品の方向性電磁板の磁性
劣化が防止できるようになった。以下、図1、図5〜6
に基づき、本発明の内容に関して補足説明する。According to the present invention, in the gas burner heating furnace, the range within 1 m from both ends of the slab is overheated by about 10 ° C. or more higher than the average temperature of the other central portion, and the temperature of the central portion is further overheated. Since the temperature is controlled to be within ± 10 ° C of the average value, the temperature distribution in the longitudinal direction of the slab becomes uniform on the outlet side of the electromagnetic induction heating furnace, and the re-dissolution of the inhibitor is sufficiently uniform. As a result, it has become possible to prevent the magnetic deterioration of the directional electromagnetic plate of the final product. Hereinafter, FIG. 1 and FIGS.
Based on this, a supplementary explanation will be given regarding the contents of the present invention.
【0009】図1に、本発明を適用して、ガスバーナ加
熱炉出口で測定したスラブの温度分布を示す。LE,T
E両端1m以内のスラブ温度はそれ以外の部分の長手方
向の平均温度より10℃以上高目になっている。その理
由は、その後に実施するI炉での2次加熱時に、その領
域での温度低下がなく、スラブの全長にわたってインヒ
ビタがほぼ完全に再固溶され、端部の磁性劣化を、鉄損
値で≦0.005w/kg(これ以上鉄損が劣化すると
約半数以上のものが1グレートダウンする限界値)に抑
制可能となるからである。その様子を図5に示す。な
お、図5の縦軸は、スラブ長手方向の中央部分の鉄損値
に対するLE端部の鉄損値上昇分を、横軸はスラブ端部
の過加熱程度を表わしている。すなわち、図5のグラフ
は、スラブ端部の過加熱度が10℃以上あると鉄損上昇
が少ないことをあきらかにしている。FIG. 1 shows the temperature distribution of the slab measured at the outlet of the gas burner heating furnace by applying the present invention. LE, T
E The slab temperature within 1 m of both ends is higher than the average temperature in the longitudinal direction of other parts by 10 ° C or more. The reason is that during the secondary heating in the subsequent I furnace, there is no temperature drop in that region, the inhibitor is almost completely re-dissolved over the entire length of the slab, and the magnetic deterioration at the end is reduced by the iron loss value. ≦ 0.005 w / kg (when the iron loss further deteriorates, about half or more of them can be reduced by one grade). This is shown in FIG. In addition, the vertical axis of FIG. 5 represents the amount of increase in the iron loss value of the LE end portion with respect to the iron loss value of the central portion in the slab longitudinal direction, and the horizontal axis represents the degree of overheating of the slab end portion. That is, the graph of FIG. 5 clearly shows that the iron loss increase is small when the overheating degree of the slab end portion is 10 ° C. or more.
【0010】次に、両端部より各1mの範囲外に相当す
る中央部分の加熱温度を全長平均値の±10℃以内とす
るのは、図6に示すように、目標加熱温度から+10℃
以上外れた過加熱部では、熱間圧延工程の粗圧延時に、
結晶粒界割れに起因した表面欠陥の発生率が増加し、逆
に−10℃低温で加熱すると、スラブ段階で粗大析出し
たインヒビター析出物の再固溶が不十分になり、その部
分の磁性が劣化するからである。なお、図6の測定結果
は、実線のグラフが目標加熱温度と鉄損の関係を、点線
のグラフが目標加熱温度と重度表面欠陥発生率の関係を
示す。Next, as shown in FIG. 6, the heating temperature of the central portion corresponding to the outside of each 1 m from both ends is within ± 10 ° C. of the average value of the total length, + 10 ° C. from the target heating temperature.
In the overheated part deviated above, during rough rolling in the hot rolling process,
The occurrence rate of surface defects due to grain boundary cracking increases, and conversely, when heated at a low temperature of −10 ° C., re-dissolution of the coarsely precipitated inhibitor precipitate in the slab stage becomes insufficient, and the magnetic property of that part is reduced. Because it deteriorates. In the measurement results of FIG. 6, the solid line graph shows the relationship between the target heating temperature and the iron loss, and the dotted line graph shows the relationship between the target heating temperature and the serious surface defect occurrence rate.
【0011】[0011]
【実施例】C:0.05%、Si:3.5%、Mn:
0.081%、Se:0.025%、Sb:0.03
%、N:25ppm含有した方向性電磁鋼板製造用スラ
ブを、ガスバーナ加熱炉において、図7に示すような長
手方向の温度分布になるように、1次加熱した。加熱
は、スラブの両端部は加熱炉の灼熱帯において抽出10
分前よりサイドバーナーにて両端部を集中加熱し、図7
に示すような温度分布となるようにした。このスラブ
を、所謂中央部分の平均温度が1220℃となる時点で
1次加熱を完了し、2次加熱用のI炉に装入して144
0℃まで加熱した。その後、直ちにスラブを抜き出し、
熱間圧延を実施した後、ピック→ノルマ処理→1回目冷
間圧延→中間焼鈍→2回目冷間圧延→表面洗浄→焼鈍→
分離塗布→最終焼鈍→フラットニング(表面コーティン
グ)という通常の電磁鋼板製造工程を経て、板厚が0.
23mmの方向性電磁鋼板を製造した。図8に、その製
品の長手方向の鉄損値変化を示すが、製品として好適な
絶対値で、且つ均一な分布が得られた。EXAMPLES C: 0.05%, Si: 3.5%, Mn:
0.081%, Se: 0.025%, Sb: 0.03
%, N: 25 ppm of the grain-oriented electrical steel sheet manufacturing slab was primarily heated in a gas burner heating furnace so as to have a temperature distribution in the longitudinal direction as shown in FIG. 7. For heating, both ends of the slab are extracted in the cauldron of the heating furnace 10
From both sides, heat the both ends intensively with a side burner,
The temperature distribution is set as shown in. Primary heating of this slab is completed when the average temperature of the so-called central portion reaches 1220 ° C., and the slab is charged into an I furnace for secondary heating to 144
Heated to 0 ° C. After that, immediately pull out the slab,
After carrying out hot rolling, pick → normalization → first cold rolling → intermediate annealing → second cold rolling → surface cleaning → annealing →
After the normal electromagnetic steel sheet manufacturing process of separate coating → final annealing → flattening (surface coating), the plate thickness becomes 0.
A 23 mm grain-oriented electrical steel sheet was manufactured. FIG. 8 shows changes in the iron loss value of the product in the longitudinal direction, and an absolute value suitable for the product and a uniform distribution were obtained.
【0012】なお、図8での結果は、局部溶解を抑える
ため、スラブ両端部の集中加熱は平均値より10℃以上
50℃未満だけ高めの温度で行われたものである。The results in FIG. 8 show that, in order to suppress local melting, concentrated heating of both ends of the slab was performed at a temperature higher than the average value by 10 ° C. or more and less than 50 ° C.
【0013】[0013]
【発明の効果】以上述べたように、本発明では、方向性
電磁鋼板の製造において製品歩留に影響するスラブの磁
性劣化を防止するため、熱間圧延前のスラブ加熱に工夫
を凝らした。その結果、長手方向で磁性劣化のない製品
が得られ、歩留向上に大きな期待が持てるようになっ
た。As described above, in the present invention, in order to prevent the magnetic deterioration of the slab that affects the product yield in the production of grain-oriented electrical steel sheet, the slab heating before hot rolling is devised. As a result, a product without magnetic deterioration in the longitudinal direction can be obtained, and there is great expectation for improving the yield.
【図1】本発明を適用した1次加熱完了時でのスラブ長
手方向の温度分布図である。FIG. 1 is a temperature distribution diagram in the longitudinal direction of a slab at the time of completion of primary heating to which the present invention has been applied.
【図2】従来法によるI炉での2次加熱完了時のスラブ
長手方向の表面温度分布図である。FIG. 2 is a surface temperature distribution diagram in the longitudinal direction of the slab when the secondary heating is completed in the I furnace by the conventional method.
【図3】テーパ加熱法により1次加熱したスラブを、I
炉で2次加熱完了した際のスラブ長手方向温度分布図で
ある。FIG. 3 shows the slab that was first heated by the taper heating method,
It is a slab longitudinal direction temperature distribution figure at the time of completing secondary heating in a furnace.
【図4】I炉で加熱完了時した際のスラブ長手方向の温
度分布図である。FIG. 4 is a temperature distribution diagram in the longitudinal direction of the slab when heating is completed in the I furnace.
【図5】スラブ端部の過加熱レベルとスラブ中央部分鉄
損値に対する端部鉄損値の上昇分との関係を表わす図で
ある。FIG. 5 is a diagram showing the relationship between the overheating level of the slab end and the increase in the end iron loss value with respect to the slab central part iron loss value.
【図6】スラブ中央部分(端部各々1m部を除く部分)
の加熱レベル偏差と品質レベルの関係を表わす図であ
る。[Fig. 6] Central part of the slab (excluding the 1m part at each end)
It is a figure showing the relationship between the heating level deviation and the quality level of.
【図7】本発明の適用による1次加熱完了時におけるス
ラブ長手方向の温度分布図である。FIG. 7 is a temperature distribution diagram in the longitudinal direction of the slab upon completion of primary heating according to the application of the present invention.
【図8】本発明の適用で製造した方向性電磁鋼帯の長手
方向での鉄損変化図である。FIG. 8 is an iron loss change diagram in the longitudinal direction of the grain-oriented electrical steel strip manufactured by applying the present invention.
1 スラブ(方向性電磁鋼板製造用) 2 誘導コイル 3 電磁誘導炉(I炉) 4 スラブ両端部とI炉の炉端壁との間の空間 1 Slab (for production of grain-oriented electrical steel sheet) 2 Induction coil 3 Electromagnetic induction furnace (I furnace) 4 Space between both ends of slab and furnace end wall of I furnace
Claims (1)
用スラブを、ガスバーナ加熱炉で1350℃以下の温度
で1次加熱後、さらに電磁誘導加熱炉で1400℃〜1
480℃の温度で加熱してから熱間圧延する方向性電磁
鋼板の製造において、 上記ガスバーナ加熱炉内で、スラブの両端より1m以内
の範囲を、それ以外の中央部分の温度より10℃以上高
く加熱し、該中央部分の温度をスラブ全長平均値の±1
0℃以内に抑制することを特徴とする方向性電磁鋼板用
スラブの加熱方法。1. A slab for producing a grain-oriented electrical steel sheet containing Si in an amount of 2% or more is first heated in a gas burner heating furnace at a temperature of 1350 ° C. or lower, and then in an electromagnetic induction heating furnace at 1400 ° C. to 1 ° C.
In the production of a grain-oriented electrical steel sheet which is heated at a temperature of 480 ° C. and then hot-rolled, in the gas burner heating furnace, the range within 1 m from both ends of the slab is higher than the temperature of the other central portion by 10 ° C. or more. After heating, the temperature of the central part is ± 1 of the average value of the total length of the slab.
A method for heating a slab for grain-oriented electrical steel sheet, which is controlled within 0 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27069093A JP3716432B2 (en) | 1993-10-28 | 1993-10-28 | Heating method of slab for grain-oriented electrical steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27069093A JP3716432B2 (en) | 1993-10-28 | 1993-10-28 | Heating method of slab for grain-oriented electrical steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07126754A true JPH07126754A (en) | 1995-05-16 |
JP3716432B2 JP3716432B2 (en) | 2005-11-16 |
Family
ID=17489601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27069093A Expired - Fee Related JP3716432B2 (en) | 1993-10-28 | 1993-10-28 | Heating method of slab for grain-oriented electrical steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3716432B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017538859A (en) * | 2014-10-15 | 2017-12-28 | エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip produced by the method |
-
1993
- 1993-10-28 JP JP27069093A patent/JP3716432B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017538859A (en) * | 2014-10-15 | 2017-12-28 | エス・エム・エス・グループ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Method for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip produced by the method |
US11239012B2 (en) | 2014-10-15 | 2022-02-01 | Sms Group Gmbh | Process for producing grain-oriented electrical steel strip |
Also Published As
Publication number | Publication date |
---|---|
JP3716432B2 (en) | 2005-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR920006581B1 (en) | Method of making non-oriented silicon steel sheets having excellent magnetic properties | |
US4806176A (en) | Process for producing a grain-oriented electromagnetic steel sheet having a high magnetic flux density | |
JP4932544B2 (en) | Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction | |
KR100293140B1 (en) | Unidirectional Electronic Steel Sheet and Manufacturing Method Thereof | |
KR100831756B1 (en) | Process for the control of inhibitors distribution in the production of grain oriented electrical steel strips | |
JP3716432B2 (en) | Heating method of slab for grain-oriented electrical steel sheet | |
KR930006209B1 (en) | Process for producing nonoriented electric steel sheet | |
JPH08269571A (en) | Production of grain-oriented silicon steel strip | |
JP2536974B2 (en) | Hot rolling method for non-oriented electrical steel sheet with extremely excellent magnetic properties | |
JP2009012033A (en) | Method for manufacturing hot-rolled steel strip for grain oriented silicon steel sheet, and method for manufacturing grain oriented silicon steel sheet | |
KR100419641B1 (en) | Method for preventing cracks in edge part of grain oriented electrical hot rolled steel sheet | |
KR100276330B1 (en) | The manufacturing method for high magnetic density oriented electric steel sheet with magnetic properties | |
JP2536976B2 (en) | Manufacturing method of non-oriented electrical steel sheet having excellent surface properties and magnetic properties | |
JP3561323B2 (en) | Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet | |
JP2883224B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH0699750B2 (en) | Method for producing grain-oriented silicon steel sheet having good electromagnetic characteristics | |
JPH075977B2 (en) | Heating method of continuous cast slab for unidirectional electrical steel sheet in hot rolling | |
JP4211540B2 (en) | Continuous hot rolling mills for grain oriented electrical steel sheets | |
JP3369408B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH04365818A (en) | Production of grain-oriented silicon steel sheet having uniform excellent magnetic characteristic in transverse direction | |
JPH0798976B2 (en) | Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss | |
JP3369371B2 (en) | Manufacturing method of high magnetic flux density unidirectional electrical steel sheet | |
JPH09170020A (en) | Production of high magnetic flux density grain-oriented silicon steel sheet | |
JP2003277830A (en) | Method for manufacturing grain-oriented magnetic steel sheet having magnetic property uniform in sheet-width direction | |
JPH0617133A (en) | Production of grain-oriented silicon steel sheet having uniform magnetism even in the case of heavy weight coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Effective date: 20041221 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050216 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050510 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050809 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050822 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080909 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090909 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20090909 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100909 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20110909 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20120909 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120909 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130909 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |