JPH0712531B2 - Method for preventing restraint breakout during continuous casting - Google Patents
Method for preventing restraint breakout during continuous castingInfo
- Publication number
- JPH0712531B2 JPH0712531B2 JP14545385A JP14545385A JPH0712531B2 JP H0712531 B2 JPH0712531 B2 JP H0712531B2 JP 14545385 A JP14545385 A JP 14545385A JP 14545385 A JP14545385 A JP 14545385A JP H0712531 B2 JPH0712531 B2 JP H0712531B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- gas
- mold
- viscosity
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Continuous Casting (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は連続鋳造時の拘束性ブレークアウト防止方法に
係り、特に鋳型内の溶鋼表面に投入するモールドパウダ
ーの粘度を限定することによりArガス吹込時の拘束性ブ
レークアウトを防止する方法に関し、鋼の連続鋳造分野
に広く利用される。The present invention relates to a restraint breakout preventing method during continuous casting, and in particular, by limiting the viscosity of the mold powder to be charged on the surface of molten steel in a mold, Ar gas A method for preventing restraint breakout during blowing is widely used in the field of continuous casting of steel.
近時、鋼の連続鋳造技術の進歩に伴ない、鋳造中のスラ
ブ鋳片の連続幅変更法や異鋼種のいわゆる連続鋳法等が
開発され生産性の著しい向上が達成されている。しかし
これらの技術の適用も鋳型鋼種の多様性と鋳造量の制約
から限度があるので、最近ではブレークアウト等の鋳造
事故の減少を図ることにより連続鋳造能力を向上させる
方向に開発努力が傾注されている。In recent years, with the progress of continuous casting technology for steel, a method for changing the continuous width of a slab slab during casting, a so-called continuous casting method for different steel types, and the like have been developed, and remarkable improvement in productivity has been achieved. However, the application of these technologies is limited due to the variety of mold steel types and the restrictions on the amount of casting, so recently development efforts have been focused on improving continuous casting capacity by reducing casting accidents such as breakouts. ing.
連鋳時の事故中特にブレークアウトが一旦発生すると鋳
造作業の停止を余儀なくされ、その復旧にも数時間を要
し生産性を著しく阻害するものである。ブレークアウト
とは連続鋳造の定常鋳造時に鋳型と接する溶鋼の凝固に
より形成される凝固殻の収縮により鋳型との間に形成さ
れた空隙中に流入して潤滑剤として作用するモールドパ
ウダーの潤滑不良等の原因により、一旦生成された凝固
殻が破断し鋳型内壁に固着し、ピンチロールによつて引
抜かれている正常な凝固殻と遊離することによつて内部
の未凝固溶鋼の漏出する現象であつて、一般にこの種の
ブレークアウトを拘束性ブレークアウトと称している。During an accident during continuous casting, especially if a breakout occurs once, it is forced to stop the casting work, and it takes several hours to restore it, which significantly impairs productivity. Breakout is a lubrication failure of the mold powder that acts as a lubricant by flowing into the void formed between the mold and the mold due to the contraction of the solidified shell formed by the solidification of molten steel that contacts the mold during continuous casting It is a phenomenon that the solidified shell once generated breaks and adheres to the inner wall of the mold, and the unsolidified molten steel inside leaks out by being released from the normal solidified shell pulled out by the pinch roll. In general, this type of breakout is called a binding breakout.
モールドパウダーは一般に、CaO、SiO2、Al2O3、Na2O、
K2O、C、F、Fe2O3等の化学組成を有し、CaO、SiO2を
それぞれ30〜40%含有する顆粒状体もしくは粉状体であ
り、これを鋳型内の溶鋼表面に投入することにより速や
かに溶鋼状態となり、溶鋼の酸化を防止すると共に形成
された凝固殻と鋳型内壁間を充填してフイルム状に存在
し、鋳片降下時の潤滑剤として作用するものである。し
かし、このモールドパウダーの流動性が不足すると、凝
固殻と鋳型壁面との摩擦によつて上記の如く破断を生じ
ブレークアウトを発生するに至るものである。Mold powders are generally CaO, SiO 2 , Al 2 O 3 , Na 2 O,
It has a chemical composition of K 2 O, C, F, Fe 2 O 3, etc., and is a granular or powdery substance containing 30 to 40% of CaO and SiO 2 , respectively. When charged, it rapidly becomes a molten steel state, prevents oxidation of the molten steel, fills the space between the formed solidified shell and the inner wall of the mold, and exists in the form of a film, and acts as a lubricant when the cast piece descends. However, when the fluidity of the mold powder is insufficient, the friction between the solidified shell and the wall surface of the mold causes breakage as described above, resulting in breakout.
ブレークアウトは直接的検知手段がないために、従来こ
れを防止するための手段としては、例えば特開昭57−52
556に開示されているようにモールドパウダーを投入前
に予熱し、これによつて鋳型内に散布されたパウダーが
速やかに溶融して十分な厚みのスラグフイルムを得る方
法、もしくは特開昭52−26318に開示されている如く、
鋳造速度によつてモールドパウダーの粘度を調整して連
鋳を行う方法等が提案されている。Since there is no direct detection means for breakout, a conventional means for preventing this is, for example, JP-A-57-52.
A method of preheating mold powder as disclosed in 556, thereby rapidly melting the powder dispersed in the mold to obtain a slag film having a sufficient thickness, or JP-A-52- As disclosed in 26318,
A method and the like have been proposed in which the viscosity of mold powder is adjusted according to the casting speed to perform continuous casting.
しかしながら拘束性ブレークアウトの発生原因を追求し
て行くと、上記鋳造法で採る手段では説明できない現象
が多く発生している。例えば鋳造速度が1m/min以下の低
速鋳造であつて、鋳型内に投入されたモールドパウダー
が速やかに溶融し、適正なスラグフイルムが形成される
条件下でもブレークアウトが発生することがあり、また
鋳造速度、使用パウダーが変化しないにも拘らず発生す
ることもある。However, when pursuing the cause of the constrained breakout, there are many phenomena that cannot be explained by the means adopted in the casting method. For example, in a low-speed casting with a casting speed of 1 m / min or less, the mold powder put into the mold is quickly melted, and a breakout may occur even under the condition that an appropriate slag film is formed. It may occur even though the casting speed and powder used do not change.
本発明者らが拘束性ブレークアウトの多発する原因とし
て着目した現象は次の如くである。The phenomenon that the present inventors have focused on as a cause of frequent occurrence of restraint breakout is as follows.
(イ)拘束性ブレークアウトは、転炉出鋼後の取鍋処理
において、真空脱ガスを行つた場合よりもArガス等でフ
ラツシング処理を行つた場合に多発する傾向がある。(A) In the ladle process after tapping the converter, restraint breakouts tend to occur more frequently when the flushing process is performed with Ar gas or the like than when the vacuum degassing is performed.
(ロ)タンデイツシユから鋳型までの浸漬ノズルの使用
に際し、Al2O3等によるノズル詰まりを防止するためにA
rガスの吹込みを行つた場合に多発する傾向がある。(B) To prevent nozzle clogging due to Al 2 O 3 etc. when using the immersion nozzle from the tundish to the mold A
r It tends to occur frequently when blowing gas.
上記(イ)の現象に関しては鋼中の水素が原因と考えら
れ、(ロ)の現象に関しては吹込みArに基づくガス起泡
によるものとし、モールドパウダーに及ぼすガス起泡の
影響について研究を重ねた結果本発明を関係するに至つ
たものである。Regarding the phenomenon of (a) above, hydrogen in the steel is considered to be the cause, and the phenomenon of (b) is due to gas foaming based on blown Ar, and the effects of gas foaming on the mold powder have been studied repeatedly. As a result, the present invention is related.
本発明の目的は、連続鋳造時に鋳型内の溶鋼表面に投入
するモールドパウダーを規制することにより、使用溶鋼
をArガスでフラツシング処理を施した場合でも、またダ
ンデイツシユからの浸漬ノズル詰りをぼううしするため
のArガス吹込みを行つた場合でも、拘束性ブレークアウ
トを発生せず常に安定した連続鋳造を可能とする連続鋳
造時の拘束性ブレークアウト防止方法を提供するにあ
る。The purpose of the present invention is to regulate the mold powder to be added to the surface of the molten steel in the mold during continuous casting, even when the molten steel used is subjected to the flushing treatment with Ar gas, and also to prevent immersion nozzle clogging from the Danishitsuyu. Therefore, it is an object of the present invention to provide a restraint breakout prevention method during continuous casting that does not generate restraint breakout even when Ar gas is blown, and always enables stable continuous casting.
本発明の要旨とするところは次の如くである。すなわ
ち、鋼の連続鋳造時に鋳型内の溶鋼表面に投入されるモ
ールドパウダーの粘度を調整する連続鋳造時の拘束性ブ
レークアウト防止方法において、前記モールドパウダー
の凝固温度より50℃低温における粘度比較において モールドパウダー中に該パウダーg当り1ccの アルゴンガスを吹込んだ場合の粘度 ………P1 アルゴンガスを吹込まない場合の粘度 ……P2 とするとき、 なる関係式を満足するモールドパウダーを使用すること
を特徴とする連続鋳造時の拘束性ブレークアウト防止方
法である。The gist of the present invention is as follows. That is, in the restraint breakout prevention method during continuous casting that adjusts the viscosity of the mold powder that is put into the molten steel surface in the mold during the continuous casting of steel, in the viscosity comparison at a temperature 50 ° C lower than the solidification temperature of the mold powder when the viscosity ...... P 2 when there is no blow or the viscosity ......... P 1 argon gas in the case that crowded blowing the argon gas in the powder g per 1cc in the powder, A method for preventing restraint breakout during continuous casting characterized by using a mold powder satisfying the following relational expression.
本発明者らが拘束性ブレークアウトの発生原因について
種々研究した結果、モールドパウダーの結晶化により潤
滑性が著しく劣化する影響が最も大であることを見出し
た。すなわち、鋳造中のモールドパウダーは酸化物系融
体であり、これが振動鋳型と凝固殻との間隙に流入し
て、その冷却過程においてガラス状を呈して形成された
凝固殻を有する鋳片を円滑に降下せしめる潤滑剤となる
のが正常な作用である。しかるにモールドパウダーの冷
却過程で結晶の析出が生じた場合には、この潤滑機能が
著しく低下しその結果摩擦により凝固殻が破断しブレー
クアウトの発生に至るものと考えられる。As a result of various studies conducted by the present inventors on the cause of the constrained breakout, they found that the crystallization of the mold powder had the greatest effect of significantly deteriorating the lubricity. That is, the mold powder during casting is an oxide-based melt, which flows into the gap between the vibrating mold and the solidified shell, and smoothes the slab having the solidified shell formed in the form of glass in the cooling process. The normal action is to become a lubricant that can be lowered to. However, when crystals are precipitated during the cooling process of the mold powder, it is considered that this lubricating function is remarkably deteriorated, and as a result, the solidified shell is broken by friction and breakout occurs.
而してモールドパウダーの冷却過程における結晶の析出
について調査したところ、鋼中のHが7ppm以上の場合も
しくはタンデイツシユからの浸漬ノズルへAl2O3の付着
を防止するために溶鋼中にArを吹込む場合に、Arガスが
モールドパウダーに捕捉されることに起因して結晶の析
出が促進されることが判明した。As a result of investigating the precipitation of crystals in the cooling process of the mold powder, when H in the steel was 7 ppm or more, or Ar was blown into the molten steel to prevent Al 2 O 3 from adhering to the immersion nozzle from the tan dish. It was found that the crystal deposition was promoted due to the Ar gas being trapped by the mold powder when it was incorporated.
上記に関し溶鋼中へのArガス吹込量と、相対的な結晶析
出度について、本発明者らが行つた実験結果について説
明する。すなわち、本発明者らは、黒鉛るつぼでモール
ドパウダーの試料150gを1300℃で30分間加熱溶解し、こ
れをボンベに流し込み、この溶融パウダー中にシリカチ
ユーブを介してArガスを10秒間流した後静置して凝固さ
せ、冷却後スラグを粉砕してX線回析で調査したところ
カスピダイン(3CaO・2SiO2・CaF2)のピークが観察さ
れた。かくの如くしてArガスの吹込量を変えて試験した
ところ、Arガスの吹込量(cc/g)と凝固パウダーに見ら
れる相対的結晶析出度との間には第2図に示す如き関係
が存在することが判明した。すなわち、Ar量の増加に従
つて捕捉されるArガス気泡6が増加し、結晶8の析出度
が大となる。With respect to the above, the experimental results conducted by the present inventors regarding the amount of Ar gas blown into the molten steel and the relative degree of crystal precipitation will be described. That is, the present inventors, 150g sample of mold powder in a graphite crucible was heated and melted at 1300 ° C for 30 minutes, poured into a cylinder, and Ar gas was passed through the silica tube into the molten powder for 10 seconds. When it was left to stand and solidified, and after cooling, the slag was crushed and examined by X-ray diffraction. As a result, a peak of caspidine (3CaO.2SiO 2 .CaF 2 ) was observed. When the test was performed by changing the blowing amount of Ar gas in this way, the relationship between the blowing amount of Ar gas (cc / g) and the relative degree of crystal precipitation observed in the solidified powder was as shown in Fig. 2. Was found to exist. That is, as the Ar amount increases, the number of Ar gas bubbles 6 captured increases, and the degree of precipitation of the crystals 8 increases.
更にArガス吹込時のモールドパウダーの測温実験を、13
00℃の溶融パウダーをるつぽに移し、Arガス流量を変化
させて10秒間Arガスを吹込み溶融パウダーの温度をそれ
ぞれの場合について測定した結果を、Arガスを全く吹込
まない場合についても同様に温度を測定し、第3図に同
時に示した。In addition, the temperature measurement experiment of the mold powder at the time of blowing Ar gas was performed.
Transfer the molten powder at 00 ℃ to a crucible, change the Ar gas flow rate, blow Ar gas for 10 seconds, and measure the temperature of the molten powder in each case, and also when Ar gas is not blown at all. Similarly, the temperature was measured and shown in FIG. 3 at the same time.
第3図より明らかな如くArガスを吹込まない試料Aは75
0℃の温度を示すのに対し、Arガスを吹込んだ試料B、
C、D、Eはいずれも850℃以上であつて約100℃溶融パ
ウダーの温度降下が妨げられ徐冷状態になつていること
がわかる。As is clear from FIG. 3, the sample A that does not blow Ar gas is 75
While showing a temperature of 0 ° C., sample B in which Ar gas was blown,
It can be seen that all of C, D, and E are 850 ° C. or higher, and the temperature drop of the molten powder at about 100 ° C. is hindered and the powder is gradually cooled.
これはArガスを吹込むことにより溶融パウダーにArガス
が気泡として捕捉され、捕捉されたArガス気泡によつて
熱拡散が妨げられ、その結果徐冷となつて結晶化が促進
されるものと考えられる。This is because when Ar gas is blown, Ar gas is trapped in the molten powder as bubbles, and the trapped Ar gas bubbles prevent thermal diffusion, resulting in slow cooling and accelerated crystallization. Conceivable.
かくの如く、溶融モールドパウダーの結晶化が促進され
ると流動性が低下し、潤滑剤としての作用が著しく阻害
され摩擦によつて拘束性ブレークアウトを発生するもの
と考えられる。As described above, it is considered that when the crystallization of the molten mold powder is promoted, the fluidity is reduced, the action as a lubricant is significantly impaired, and a frictional breakout occurs due to friction.
この事実は連続鋳造操業上に観察される次の現象によつ
て裏付けされる。This fact is supported by the following phenomena observed in continuous casting operations.
(イ)ブレークアウト直前に鋳片においては、オツシレ
ーシヨンマークの乱れが観察される。これはパウダーの
潤滑不良を示すものである。(A) Immediately before breakout, disturbance of the occlusion mark is observed on the slab. This indicates poor lubrication of the powder.
(ロ)ブレークアウト直前のパウダーフイルムは白濁し
ている。これは大小の気泡の密集によるものと考えられ
る。(B) The powder film just before the breakout was cloudy. This is considered to be due to the concentration of large and small bubbles.
(ハ)ブレークアウト直前にはモールドパウダーの消費
量が少い。これは流動性低下に起因するものと考えられ
る。(C) Just before the breakout, the consumption of mold powder is low. This is considered to be due to the decrease in liquidity.
上記本発明者らの実験結果から連続鋳造において、鋳型
と凝固殻間の間隙にフイルム状に介在する溶融パウダー
において結晶化が促進されることにより流動性が低下
し、摩擦によりブレークアウトの発生原因となることが
判明したが、ブレークアウトに至る詳細な機構は未だ不
明の点があるが次の如く考えられる。すなわち、モール
ドパウダー層内の固液界面形態が結晶凝固の場合、デン
ドライト状に複雑なものとなり液相内にも固相核の分散
を生じ、その結果液相内の粘度が上昇するものと考えら
れる。かくの如く、モールドパウダーの液相内にArガス
の気泡が捕捉されるために熱拡散が妨げられて徐冷さ
れ、その結果結晶が析出しパウダーの粘度が上昇し、潤
滑不良となって摩擦により拘束性ブレークアウトに至る
ものと考えられる。From the above experimental results of the present inventors, in continuous casting, the fluidity is lowered by promoting crystallization in the molten powder present in the film-like form in the gap between the mold and the solidified shell, and the cause of breakout due to friction However, the detailed mechanism leading to the breakout is still unknown, but it can be considered as follows. That is, when the solid-liquid interface morphology in the mold powder layer is crystal solidification, it becomes complicated as a dendrite, and dispersion of solid-phase nuclei occurs in the liquid phase, resulting in an increase in viscosity in the liquid phase. To be As described above, the bubbles of Ar gas are trapped in the liquid phase of the mold powder, which hinders thermal diffusion and is gradually cooled. As a result, crystals are precipitated and the powder viscosity increases, resulting in poor lubrication and friction. It is thought that this will lead to a restrictive breakout.
かくの如きモールドパウダーのArガスによる結晶化傾向
の定量的評価方法について、本発明者らが種々調査の結
果、次の方法が適していることが判明した。すなわち、
凝固途中のモールドパウダー1g当り10cc/minのArガスを
導入しつつパウダーの粘度を測定し、これをArガス吹込
みを全く行なわない場合の粘度と比較し、その変化率に
よつて評価する方法である。しかして後記する如く、そ
の測定温度がモールドパウダーの凝固温度よりも50℃低
温で行うことが最も適していることを見出した。As a result of various investigations conducted by the present inventors on the method for quantitatively evaluating the crystallization tendency of such mold powder by Ar gas, the following method was found to be suitable. That is,
A method of measuring the viscosity of powder while introducing 10 cc / min of Ar gas per 1 g of mold powder during solidification, comparing this with the viscosity when Ar gas is not blown at all, and evaluating by the rate of change Is. However, as will be described later, it has been found that it is most suitable that the measurement temperature is lower than the solidification temperature of the mold powder by 50 ° C.
しかして粘度の測定は粘度と相関関係にあるトルク値で
代用できることが判明した。本発明者らはモールドパウ
ダーのトルク値を第4図にて示す如き測定装置で行つ
た。すなわち発熱体10を有する耐火れんが12にて取囲ま
れた加熱炉14の中に内径40mm、外径44mm、深さ50mmのア
ルミナるつぼ16を載置し、一方加熱炉14の上部中央部の
開口18を通じモーター20によつて回転されるステンレス
攪拌棒22を挿入し、その先端に取付けたペロペラ24をる
つぼ16内にて回転し、熱伝対26にて測温しながら攪拌棒
22の炉外上部に設けられたトルク計28にて、るつぼ16内
で加熱されるモールドパウダー2のArガス吹込みを行う
場合と、吹込を行わない場合のトルク値を測定した。Therefore, it has been found that the viscosity value can be substituted by the torque value which is correlated with the viscosity. The inventors of the present invention measured the torque value of the mold powder with a measuring device as shown in FIG. That is, an alumina crucible 16 having an inner diameter of 40 mm, an outer diameter of 44 mm, and a depth of 50 mm is placed in a heating furnace 14 surrounded by a refractory brick 12 having a heating element 10, while an opening in the upper central portion of the heating furnace 14 is placed. Insert a stainless stirrer rod 22 that is rotated by a motor 20 through 18 and rotate a repeller 24 attached to the tip of the stainless steel rod in the crucible 16 while measuring the temperature with a thermocouple 26.
The torque value of the mold powder 2 heated in the crucible 16 was measured by a torque meter 28 provided at the upper part of the outside of the furnace 22 when Ar gas was blown into the mold powder 2 and when the blowing was not performed.
上記トルク値測定装置を使用し、CaO/SiO2=0.96、凝固
温度1130℃の供試モールドパウダーについて、Arガスを
吹込む場合のトルク値T1と、Arガスを全く吹込まない場
合のトルク値T2を測定した。該供試パウダーを使用する
場合、Arガスを吹込まない場合に比しArガスを吹込む場
合は、凝固温度の1130℃より次第に加熱温度を低下して
行くと、トルク値が次第に上昇し、凝固温度より50℃低
温の点では、Arガスを吹込まない場合のトルク値T2に対
するトルク値の変化率は にもなり、この近傍の温度でプロペラがから回りを始め
ている。かくの如く、Arガスを吹込む場合と吹込まない
場合のトルク値の変化率は、一般に試験パウダーの凝固
温度より30〜70℃低温範囲で明確に現れるので本発明で
は供試モールドパウダーの凝固温度より50℃低温側にお
けるトルク値を基準とすることに決定した。かくして該
供試パウダーについて、凝固温度1130℃より100℃低温
の1030℃までの温度域について、Arガスを吹込まない場
合と、Arガスをパウダーg当り1cc吹込む場合について
連続的にトルク値を測定した結果は第5図に示すとおり
である。Using the above torque value measuring device, for the test mold powder with CaO / SiO 2 = 0.96 and solidification temperature 1130 ° C, the torque value T 1 when Ar gas is blown and the torque when Ar gas is not blown at all The value T 2 was measured. When using the test powder, in the case of blowing Ar gas as compared with the case of not blowing Ar gas, the heating value is gradually lowered from the solidification temperature of 1130 ° C., the torque value gradually rises, At a temperature 50 ° C lower than the solidification temperature, the rate of change of the torque value with respect to the torque value T 2 when Ar gas is not blown is The propellers are starting to rotate from this temperature. As described above, the rate of change of the torque value when Ar gas is blown and when it is not blown generally appears clearly in the low temperature range of 30 to 70 ° C. from the solidification temperature of the test powder, and therefore the present invention solidifies the mold powder. It was decided to use the torque value at a temperature 50 ° C lower than the temperature as a reference. Thus, regarding the test powder, the torque value was continuously measured in the temperature range from the solidification temperature of 1130 ° C to the low temperature of 100 ° C up to 1030 ° C when Ar gas was not blown and when 1 cc of Ar gas was blown per g of powder. The measurement results are as shown in FIG.
上記トルク値はモールドパウダーの溶融状態における粘
度と相関関係があるので、上記トルク値のArガスを吹込
まない場合に対する変化率 は、粘度の変化率 に置き換えることができる。Since the above torque value has a correlation with the viscosity of the mold powder in the molten state, the rate of change of the above torque value with respect to the case where Ar gas is not blown Is the rate of change of viscosity Can be replaced with
次に本発明者らは第1表に示す組成と、第2表に示す如
き特性を有する4種の供試モールドパウダーA、B、
C、Dを使用し、それぞれ凝固温度より50℃低温におけ
る、Arガスをパウダーg当り1cc吹込んだ場合と、Arガ
スを全く吹込まない場合について、それぞれの粘度P1お
よびP2を測定し、Arガスを全く吹込まない場合の粘度P2
に対する粘度変化率 による粘度変化率の異なる上記A、B、C、Dの4銘柄
を実操業の連続鋳造時に使用して拘束性ブレークアウト
の発生率を調査した。結果は第6図に示すとおりであ
る。Next, the present inventors have prepared four types of test mold powders A and B having the composition shown in Table 1 and the characteristics shown in Table 2.
Using C and D, the viscosities P 1 and P 2 were measured for each case in which 1 cc of Ar gas was blown in per g of powder and no Ar gas was blown at 50 ° C. lower than the solidification temperature. , Viscosity when Ar gas is not injected at all P 2
Change rate of viscosity The above four brands of A, B, C, and D having different viscosity change rates due to the above were used at the time of continuous casting in actual operation, and the occurrence rate of restraint breakout was investigated. The results are shown in Fig. 6.
第6図よりパウダーA、Bは粘度の変化率が70〜100%
に達しブレークアウトの発生率がきわめて高いのに反
し、パウダーC、Dは粘度変化率が25%以下で、ブレー
クアウト発生率がきわめて低いことが判明した。 From Fig. 6, powders A and B have a viscosity change rate of 70-100%.
It was found that while the breakout occurrence rate was extremely high, powders C and D had a viscosity change rate of 25% or less, and the breakout occurrence rate was extremely low.
なお、第1表、第2表に示す銘柄A、B、C、Dの供試
モールドパウダー中、A、C2銘柄は、製造寸法が厚さ22
0mm×幅850〜1500mmの連鋳機において使用したパウダー
であり、該連鋳機は鋳造速度1.0〜1.8m/minで操業さ
れ、一方B、D2銘柄は製造寸法が厚さ215〜310mm×幅14
50〜2500mmの連鋳機において使用したパウダーであつて
鋳造速度0.4〜0.9m/minで操業されているものである。
かくの如く製造スラブ寸法が異なり鋳造速度が異なるた
めにA、C2銘柄については1300℃における粘度の低いも
のを使用し、B、D2銘柄については粘度の高いものを選
択使用したものである。 In the test mold powders of brands A, B, C, and D shown in Tables 1 and 2, brands A and C2 have manufacturing thickness of 22.
Powder used in a continuous casting machine of 0 mm x width 850 to 1500 mm, which is operated at a casting speed of 1.0 to 1.8 m / min, while the B and D2 brands have manufacturing dimensions of thickness 215 to 310 mm x width 14
It is a powder used in a continuous casting machine of 50 to 2500 mm and is operated at a casting speed of 0.4 to 0.9 m / min.
As described above, since the manufactured slab size is different and the casting speed is different, the A and C2 brands with low viscosity at 1300 ° C. are used, and the B and D2 brands with high viscosity are selected and used.
以上の如く、本発明では連鋳時に使用するモールドパウ
ダーの凝固温度より50℃低温におけるArガスを全く吹込
まない場合の粘度P2に対する粘度変化率 と限定することとした。As described above, in the present invention, the viscosity change rate with respect to the viscosity P 2 when Ar gas is not blown at a temperature 50 ° C. lower than the solidification temperature of the mold powder used during continuous casting And decided to limit.
本発明者らは実操業においても上記限定によつてモール
ドパウダーを選択もしくは成分調整することにより拘束
性ブレークアウトをほとんど皆無の域まで低減すること
ができた。In the actual operation, the inventors were able to reduce the restraint breakout to almost zero by selecting the mold powder or adjusting the components according to the above limitation.
モールドパウダーのArガス吹込みによる粘度上昇を抑制
する方法としては、モールドパウダーの次の特性を指向
すればよい。As a method for suppressing the increase in viscosity of the mold powder due to blowing of Ar gas, the following characteristics of the mold powder may be aimed.
(イ)塩基度CaO/SiO2を低下し、好ましくは0.90以下と
する (ロ)BaO、MgOを添加する。(A) Basicity CaO / SiO 2 is lowered to preferably 0.90 or less. (B) BaO and MgO are added.
(ハ)軟化温度、凝固温度の低い銘柄を選択する。(C) Select a brand with a low softening temperature and solidification temperature.
上記特性のうち(イ)、(ロ)は特に効果的である。Among the above characteristics, (a) and (b) are particularly effective.
本発明は連続鋳造における拘束性ブレークアウトの発生
原因が鋳型内に散布するモールドパウダーの特性に依存
する確率がきわめて高いことを究明し、ブレークアウト
を防止するモールドパウダーの適性限定基準の設定につ
いて研究の結果、モールドパウダーの凝固温度より50℃
低温における粘度比較において、該パウダーg当り1cc
のArガスを吹込んだ場合の粘度と、Arガスを吹込まない
場合の粘度との粘度変化率が25%以下になるように成分
調整することにより、これを達成し得ることを見出し、
次の効果の挙げることができた。The present invention clarifies that the probability of occurrence of constrained breakout in continuous casting is extremely high depending on the characteristics of the mold powder scattered in the mold, and researches on the setting of a criterion for limiting the suitability of mold powder for preventing breakout. As a result, the freezing temperature of the mold powder is 50 ℃
When comparing the viscosity at low temperature, 1 cc per g of the powder
It was found that this can be achieved by adjusting the composition so that the viscosity change rate between the case where Ar gas is blown in and the case where Ar gas is not blown is 25% or less,
I was able to list the following effects.
(イ)本発明の適用により拘束性ブレークアウトの発生
を大幅に低減することができ、生産性の著しい向上、コ
ストの低減に寄与することができた。(A) The application of the present invention can significantly reduce the occurrence of restraint breakout, and can contribute to a remarkable improvement in productivity and a reduction in cost.
(ロ)本発明はモールドパウダーの成分調整のみでこと
足るので、予め最適成分のモールドパウダーを配合して
おき、これを使用すればよく方法は簡易で、しかも効果
がきわめて大である。(B) Since the present invention only requires adjustment of the components of the mold powder, it is sufficient to previously mix the mold powder of the optimum component and use this, the method is simple, and the effect is extremely great.
第1図は溶融状態でArガズを吹込んだモールドパウダー
の冷却凝固後の断面を示す模式断面図、第2図は本発明
を得る実験におけるモールドパウダーを1300℃に加熱溶
解中に吹込んだArガス量(cc/gパウダー)の凝固後の相
対的結晶析出度に及ぼす影響を示す相関線図、第3図は
1300℃に加熱溶解中のモールドパウダー中に吹込むArガ
ス量と冷却時におけるモールドパウダーの温度変化との
関係を示す相関図、第4図は本発明者らが使用したモー
ルドパウダーのトルク値測定装置を示す断面図、第5図
は供試モールドパウダーを1130℃の凝固温度から100℃
低温の1030℃までの温度域について、Arガスをパウダー
g当り1cc吹込む場合(●印)と、吹込まない場合(○
印)におけるトルク値の変化を示す線図、第6図は供試
モールドパウダーの凝固温度より50℃低温におけるArガ
スをパウダーg当り1cc吹込む場合とArガスを全く吹込
まない場合の粘度変化率の差異が拘束性ブレークアウト
発生率に及ぼす影響を示す相関線図である。 2……モールドパウダー、4……ガラス質部 6……気泡、8……結晶FIG. 1 is a schematic cross-sectional view showing the cross section of the mold powder in which Ar gas is blown in a molten state after cooling and solidification, and FIG. 2 is the mold powder in the experiment for obtaining the present invention, which is blown during heating and melting at 1300 ° C. Correlation diagram showing the effect of Ar gas amount (cc / g powder) on the relative degree of crystal precipitation after solidification.
Correlation diagram showing the relationship between the amount of Ar gas blown into the mold powder being heated and melted at 1300 ° C. and the temperature change of the mold powder during cooling, and FIG. 4 is the torque value measurement of the mold powder used by the inventors. Fig. 5 is a cross-sectional view showing the equipment. Fig. 5 shows the test mold powder from the solidification temperature of 1130 ℃ to 100 ℃.
In the low temperature range up to 1030 ℃, 1 cc of Ar gas is injected per g of powder (marked with ●) and not blown (○)
Fig. 6 shows the change in the torque value at the mark), and Fig. 6 shows the change in viscosity when 1 cc of Ar gas is blown per g of powder and when no Ar gas is blown at 50 ° C lower than the solidification temperature of the test mold powder. It is a correlation diagram which shows the influence which the difference of a rate has on a restraint breakout occurrence rate. 2 ... Mold powder, 4 ... Glass part 6 ... Bubbles, 8 ... Crystal
Claims (1)
されるモールドパウダーの粘度を調整する連続鋳造時の
拘束性ブレークアウト防止方法において、前記モールド
パウダーの凝固温度より50℃低温における粘度比較にお
いて モールドパウダー中に該パウダーg当り1ccの アルゴンガスを吹込んだ場合の粘度………P1 アルゴンガスを吹込まない場合の粘度……P2 とするとき、 なる関係式を満足するモールドパウダーを使用すること
を特徴とする連続鋳造時の拘束性ブレークアウト防止方
法。1. A method for preventing a constrained breakout during continuous casting, which comprises adjusting the viscosity of a mold powder that is put on the surface of molten steel in a mold during continuous casting of steel, wherein the viscosity at a temperature 50 ° C. lower than the solidification temperature of the mold powder. when the viscosity ...... P 2 in the absence blow or the viscosity ......... P 1 argon gas when forme blowing argon gas in the powder g per 1cc in the mold powder in the comparison, A method for preventing restraint breakout during continuous casting, characterized by using a mold powder satisfying the following relational expression.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14545385A JPH0712531B2 (en) | 1985-07-02 | 1985-07-02 | Method for preventing restraint breakout during continuous casting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14545385A JPH0712531B2 (en) | 1985-07-02 | 1985-07-02 | Method for preventing restraint breakout during continuous casting |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS626746A JPS626746A (en) | 1987-01-13 |
JPH0712531B2 true JPH0712531B2 (en) | 1995-02-15 |
Family
ID=15385575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14545385A Expired - Lifetime JPH0712531B2 (en) | 1985-07-02 | 1985-07-02 | Method for preventing restraint breakout during continuous casting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0712531B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6421058A (en) * | 1987-07-17 | 1989-01-24 | Nippon Telegraph & Telephone | Production of glass film |
JP4881203B2 (en) * | 2007-03-27 | 2012-02-22 | 新日本製鐵株式会社 | Powder for continuous casting |
-
1985
- 1985-07-02 JP JP14545385A patent/JPH0712531B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS626746A (en) | 1987-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2825947A (en) | Method of continuous casting of metal | |
KR20120092708A (en) | Mould powder for continuous casting of steel | |
JP4881203B2 (en) | Powder for continuous casting | |
JP6674093B2 (en) | Mold powder for continuous casting of steel and continuous casting method | |
Lewis et al. | The principles of continuous casting of metals | |
JPH0712531B2 (en) | Method for preventing restraint breakout during continuous casting | |
JP4010929B2 (en) | Mold additive for continuous casting of steel | |
JP3141187B2 (en) | Powder for continuous casting of steel | |
JP3317258B2 (en) | Mold powder for continuous casting of high Mn round section slabs | |
JP3256147B2 (en) | Mold flux for continuous casting of steel | |
JP3891078B2 (en) | Continuous casting method of molten perovskite carbon steel | |
KR960000325B1 (en) | Mold flux of continuous casting | |
JP2004148376A (en) | Powder for continuously casting steel | |
JPH07214263A (en) | Molding powder for continuous casting | |
KR100321022B1 (en) | MOLD FLUX FOR MIDDLE CARBON CONTENT AND Mn RICH STEEL | |
JPS646859B2 (en) | ||
JP3256148B2 (en) | Continuous casting method of steel with large shrinkage during solidification process | |
JP2022177976A (en) | Steel continuous casting method | |
JP3869597B2 (en) | Mold flux for continuous casting | |
JP2676658B2 (en) | Continuous casting mold additive for high cleanliness molten steel casting | |
JP5929744B2 (en) | Continuous casting method for round slabs | |
JPS60234751A (en) | Flux for continuous casting of steel | |
JP7284397B2 (en) | Mold powder for continuous casting | |
JPH10249500A (en) | Powder for continuously casting steel and method for continuously casting steel using the powder | |
JPS61150752A (en) | Mold additive for continuous casting of steel |