[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07124712A - Continuous casting mold - Google Patents

Continuous casting mold

Info

Publication number
JPH07124712A
JPH07124712A JP27244993A JP27244993A JPH07124712A JP H07124712 A JPH07124712 A JP H07124712A JP 27244993 A JP27244993 A JP 27244993A JP 27244993 A JP27244993 A JP 27244993A JP H07124712 A JPH07124712 A JP H07124712A
Authority
JP
Japan
Prior art keywords
cooling
cooling water
mold
meniscus
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27244993A
Other languages
Japanese (ja)
Inventor
Satoshi Sugimaru
聡 杉丸
Junji Nakajima
潤二 中島
Kenichi Miyazawa
憲一 宮沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27244993A priority Critical patent/JPH07124712A/en
Publication of JPH07124712A publication Critical patent/JPH07124712A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To halve the occurrence ratio of surface flaw on a cast slab by providing the slits flowing cooling water in the direction perpendicular to the casting direction at a meniscus position and the slits flowing the cooling water to the direction parallel to the casting direction at the downstream side from the meniscus. CONSTITUTION:A continuous casting mold is constituted of four sides of mold copper plates 1 and cooling boxes having respectively independent cooling structure. The cooling mechanism is divided into a first zone at the meniscus position and a second zone at the downstream side from the meniscus in the casting direction. Then, the slits 3 flowing the cooling water in the direction perpedicular to the casting direction are formed at the meniscus position and the slits 3 flowing the cooling water in the direction parallel to the casting direction are formed at the downstream side position. According to the casting condition, the cooling water flow rate in each slit at the down-stream side position is adjusted and each cooling degree can be controlled. By this method, the shell strength can sufficiently be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は連続鋳造用鋳型に関す
る。
FIELD OF THE INVENTION The present invention relates to a continuous casting mold.

【0002】[0002]

【従来の技術】連続鋳造における鋳型冷却の目的は、初
期の凝固シェルを確実に形成し、鋳型以降のロール帯で
の引き抜きに耐える強度を得ることにある。そのため、
鋳型での冷却強度をなるべく高くすることに主眼がおか
れ、鋳型全体を均一に冷却する方法が考案され、鋳型銅
板にスリットを刻み、表面にメッキを施す技術が生み出
され、耐用回数を延ばすための工夫がされた。
2. Description of the Related Art The purpose of cooling a mold in continuous casting is to reliably form an initial solidified shell and to obtain strength enough to withstand drawing in a roll band after the mold. for that reason,
Focusing on increasing the cooling strength in the mold as much as possible, a method of uniformly cooling the entire mold was devised, a technology was created to make slits on the copper plate of the mold and to plate the surface, in order to extend the service life. Was devised.

【0003】[0003]

【発明が解決しようとする課題】しかし、近年の品質に
対する要求の厳格化や、歩留まり向上によるコスト削減
等の要求から、鋳片の表面性状が問題にされるようにな
ってきたなかで、鋳型での冷却時に発生する表面疵の改
善が求められてきた。その対策として、鋳造に使用する
パウダーや鋳型振動の改善、鋳型冷却の緩冷却化が行わ
れ、一応の効果を上げてきた。しかし、これらの対策で
も必ずしも充分とはいえないのが現状である。
However, in recent years, due to stricter demands on quality and demands for cost reduction by improving yield, the surface properties of cast slabs have become a problem. There has been a demand for improvement of surface defects that occur during cooling of the steel. As measures against this, the powder used for casting and the vibration of the mold have been improved, and the mold has been cooled slowly, and the effects have been improved. However, at present, these measures are not always sufficient.

【0004】表面疵について調査した結果、特に表面疵
が発生し易い鋼種は凝固時にδ−γ相変態を伴なうもの
であり、表面疵は相変態時の歪によることが明らかとな
った。その対策としては、歪の発生を抑えるために鋳型
での冷却を弱くしてやることが有効である。また、その
他の鋼種での表面疵発生原因は、鋳型内でのシェルの不
均一生成であり、シェル厚みが局部的に薄い部分が発生
すると、そこに応力集中が起こり、割れに到ることが判
明した。その対策としては、幅方向のシェル均一凝固を
図るために、緩冷却することが有効である。しかし従来
の鋳型冷却機構のままで緩冷却を指向することは、初期
シェル強度の低下を指向することになり、ブレークアウ
ト等のトラブルが発生した。そこで、シェル強度を充分
に確保しつつ、表面疵を防止する鋳型冷却機構の開発が
課題となった。
As a result of investigating surface flaws, it has become clear that the steel types that are particularly prone to surface flaws are accompanied by a δ-γ phase transformation during solidification, and the surface flaws are due to strain during the phase transformation. As a countermeasure, it is effective to weaken the cooling in the mold in order to suppress the generation of strain. In addition, the cause of surface flaws in other steel types is the non-uniform formation of the shell in the mold, and if a locally thin shell thickness occurs, stress concentration occurs there and cracking may occur. found. As a countermeasure against this, gentle cooling is effective in order to achieve uniform solidification of the shell in the width direction. However, directing gentle cooling with the conventional mold cooling mechanism tends to reduce the initial shell strength, causing problems such as breakout. Therefore, the development of a mold cooling mechanism that prevents surface defects while ensuring sufficient shell strength has become an issue.

【0005】[0005]

【課題を解決するための手段】表面疵はシェル形成の初
期の段階で形成される。又、シェル厚みが充分に発達し
て強度が発現した領域では、変態による歪に耐える。そ
こで、シェル厚み・強度が不充分なメニスカス近傍での
冷却のみを弱くすることにより変態時の歪を防止し、シ
ェルが充分な強度を持つ領域で強冷却することで鋳型を
以降のロールによる引き抜きに耐えるシェル厚み・強度
を確保することが考えられる。ここで、メニスカス近傍
の冷却水用スリットは、各々が冷却水量の調節が可能で
あり、メニスカスから遠ざかる程、徐々に冷却を弱く
し、鋳型銅板表面温度を銅板の許容温度範囲内上限値で
徐冷することができる。モールド内の溶鋼湯面は、モー
ルド銅板の表面の摩耗、浸漬ノズルの溶損によって変更
されるため、鋳造方向に対して冷却強度を変更する鋳型
冷却手段を考案した。
Surface defects are formed during the early stages of shell formation. Further, in the region where the shell thickness is sufficiently developed and the strength is exhibited, the strain due to transformation is endured. Therefore, the strain during transformation is prevented by weakening only the cooling in the vicinity of the meniscus where the shell thickness / strength is insufficient, and the shell is strongly cooled in the region where it has sufficient strength so that the mold can be pulled out by subsequent rolls. It is conceivable to secure a shell thickness and strength that can withstand Here, each of the cooling water slits in the vicinity of the meniscus can adjust the amount of cooling water, the cooling is gradually weakened as the distance from the meniscus increases, and the mold copper plate surface temperature is gradually increased to the upper limit value within the allowable temperature range of the copper plate. Can be cooled. Since the molten steel surface in the mold is changed by the abrasion of the surface of the mold copper plate and the melting loss of the immersion nozzle, a mold cooling means for changing the cooling strength with respect to the casting direction was devised.

【0006】すなわち、本発明の要旨とするところは、
メニスカス位置とそれより鋳造方向における下流側位置
とに分割された冷却機構を持ち、メニスカス位置では鋳
造方向と垂直に冷却水を流すスリットを有し、下流側で
は鋳造方向に平行に冷却水を流すスリットを有すること
を特徴とする連続鋳造用鋳型にある。
That is, the gist of the present invention is to
It has a cooling mechanism divided into a meniscus position and a position downstream from it in the casting direction.It has a slit that allows cooling water to flow perpendicularly to the casting direction at the meniscus position, and allows cooling water to flow parallel to the casting direction at the downstream side. A continuous casting mold having a slit.

【0007】また、本発明では上記の鋳型において、鋳
造する鋼種、鋳造速度、鋳型内溶鋼湯面レベル等の条件
に応じて、下流側位置のそれぞれのスリット内の冷却水
量を調節し、それぞれの冷却強度を調節できることを特
徴とする。
Further, in the present invention, in the above-mentioned mold, the cooling water amount in each slit at the downstream side position is adjusted according to the conditions such as the type of steel to be cast, the casting speed, the molten steel level in the mold, and the like. The feature is that the cooling strength can be adjusted.

【0008】[0008]

【実施例】以下、図に基づいて説明する。図1は鋼の連
続鋳造用鋳型の構造を模式的に表わしており、矩形の鋳
型は、それぞれ独立の冷却構造を持つ4辺の鋳型銅板1
および冷却水箱2から構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A description will be given below with reference to the drawings. FIG. 1 schematically shows the structure of a continuous casting mold for steel, and the rectangular mold is a four-sided copper plate 1 having four independent cooling structures.
And a cooling water box 2.

【0009】図2に本発明の冷却機構を模式的に表わ
す。溶鋼の熱を直接奪う銅板1と、その背面から機械的
に支持し、冷却水をスリット3に導く冷却水箱2からな
り、両者は、ボルト等で強固に締結される。冷却水はメ
ニスカス部を緩冷却する第1ゾーンとシェル強度を確保
するため強冷却する第2ゾーンに分割され、それぞれ独
立にゾーン毎に制御が可能である。また、上記のスリッ
ト、特に下流側位置のスリットはそれぞれが個別に冷却
水量の調整が可能なようになっている。
FIG. 2 schematically shows the cooling mechanism of the present invention. It consists of a copper plate 1 that directly removes the heat of molten steel, and a cooling water box 2 that mechanically supports it from the back surface and guides cooling water to the slits 3, and both are firmly fastened with bolts or the like. The cooling water is divided into a first zone for gently cooling the meniscus portion and a second zone for strongly cooling the shell to ensure shell strength, and each zone can be independently controlled. Further, each of the above-mentioned slits, particularly the slit at the downstream side position, can individually adjust the amount of cooling water.

【0010】図3は本発明の銅板スリットの加工例であ
る。図示する如く、スリット3は、上流側のメニスカス
位置では鋳造方向と垂直に冷却水を流すように形成さ
れ、下流側では鋳造方向に平行に冷却水を流すように形
成される。
FIG. 3 shows an example of processing the copper plate slit of the present invention. As shown in the figure, the slit 3 is formed so that the cooling water flows at the upstream meniscus position in a direction perpendicular to the casting direction, and the cooling water flows at the downstream side in parallel to the casting direction.

【0011】図4は、本発明による鋳型銅板表面の温度
分布である。メニスカス部で温度が高くなっており、緩
冷却化が図られている。使用中の強度と寿命の点から実
施例では350℃を上限としている。又、メニスカス近
傍の冷却は下流部に向けて徐々に弱くしており、その結
果、350℃という高温状態で一定時期徐冷されてい
る。
FIG. 4 is a temperature distribution on the surface of the mold copper plate according to the present invention. The temperature is high in the meniscus part, and it is being cooled slowly. In terms of strength during use and life, 350 ° C. is set as the upper limit in the examples. Further, the cooling in the vicinity of the meniscus is gradually weakened toward the downstream portion, and as a result, it is gradually cooled at a high temperature of 350 ° C. for a certain period.

【0012】本発明を適用した場合の効果を図5に示
す。本発明による鋳型を採用した結果、鋳片表面疵の発
生率は、疵発生指標として従来を100とした場合、4
8と約半減していることが確認された。
The effect of applying the present invention is shown in FIG. As a result of adopting the mold according to the present invention, the rate of occurrence of slab surface flaws is 4 when the conventional value is 100 as a flaw occurrence index.
It was confirmed that it was about half that of 8.

【0013】[0013]

【発明の効果】本発明により、鋳片の表面疵の発生率は
従来に比較して半減し、かつシェル強度も充分に確保し
得ることが可能となった。
According to the present invention, it has become possible to reduce the occurrence rate of surface flaws in a slab to half that of the conventional one and to ensure sufficient shell strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳型組み立て模式図。FIG. 1 is a schematic view of a mold assembly.

【図2】本発明に係る鋳型冷却模式図。FIG. 2 is a schematic diagram of mold cooling according to the present invention.

【図3】鋳型銅板スリット加工例図。FIG. 3 is a diagram showing an example of slitting a copper plate in a mold.

【図4】鋳型銅板表面温度分布図。FIG. 4 is a temperature distribution diagram of a mold copper plate surface.

【図5】本発明を適用した場合の表面疵発生指標を従来
と比較して示す図。
FIG. 5 is a diagram showing a surface flaw occurrence index when the present invention is applied, in comparison with a conventional index.

【符号の説明】[Explanation of symbols]

1 鋳型銅板 2 冷却箱 3 スリット 1 Mold copper plate 2 Cooling box 3 Slit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造用鋳型において、メニスカス位
置とそれより鋳造方向における下流側位置とに分割され
た冷却機構を持ち、メニスカス位置では鋳造方向と垂直
に冷却水を流すスリットを有し、下流側では鋳造方向に
平行に冷却水を流すスリットを有することを特徴とする
連続鋳造用鋳型。
1. A continuous casting mold has a cooling mechanism divided into a meniscus position and a position downstream thereof from the meniscus position, and has a slit for flowing cooling water perpendicularly to the casting direction at the meniscus position. The continuous casting mold is characterized in that the side has a slit for flowing cooling water parallel to the casting direction.
【請求項2】 鋳造する鋼種、鋳造速度、鋳型内溶鋼湯
面レベル等の条件に応じて、下流側位置のそれぞれのス
リット内の冷却水量を調節し、それぞれの冷却強度を調
節できることを特徴とする請求項1記載の連続鋳造用鋳
型。
2. The amount of cooling water in each slit at the downstream side position can be adjusted according to the conditions such as the type of steel to be cast, the casting speed, the molten steel level in the mold, and the cooling strength of each can be adjusted. The continuous casting mold according to claim 1.
JP27244993A 1993-10-29 1993-10-29 Continuous casting mold Withdrawn JPH07124712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27244993A JPH07124712A (en) 1993-10-29 1993-10-29 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27244993A JPH07124712A (en) 1993-10-29 1993-10-29 Continuous casting mold

Publications (1)

Publication Number Publication Date
JPH07124712A true JPH07124712A (en) 1995-05-16

Family

ID=17514079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27244993A Withdrawn JPH07124712A (en) 1993-10-29 1993-10-29 Continuous casting mold

Country Status (1)

Country Link
JP (1) JPH07124712A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111739B1 (en) * 2010-01-29 2012-02-15 주식회사 풍산 Mold plate, mold plate assembly and mold for casting
KR101111737B1 (en) * 2010-01-29 2012-02-15 주식회사 풍산 Mold plate, mold plate assembly and mold for casting
KR101111738B1 (en) * 2010-01-29 2012-02-15 주식회사 풍산 Mold plate, Mold plate assembly and mold for casting
JP2020121329A (en) * 2019-01-31 2020-08-13 Jfeスチール株式会社 Mold and method for steel continuous casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101111739B1 (en) * 2010-01-29 2012-02-15 주식회사 풍산 Mold plate, mold plate assembly and mold for casting
KR101111737B1 (en) * 2010-01-29 2012-02-15 주식회사 풍산 Mold plate, mold plate assembly and mold for casting
KR101111738B1 (en) * 2010-01-29 2012-02-15 주식회사 풍산 Mold plate, Mold plate assembly and mold for casting
JP2020121329A (en) * 2019-01-31 2020-08-13 Jfeスチール株式会社 Mold and method for steel continuous casting

Similar Documents

Publication Publication Date Title
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JPH07124712A (en) Continuous casting mold
JP4337565B2 (en) Steel slab continuous casting method
JP6365604B2 (en) Steel continuous casting method
JPH038864B2 (en)
WO2018055799A1 (en) Continuous steel casting method
JPH09276994A (en) Mold for continuous casting
WO2018056322A1 (en) Continuous steel casting method
JP2019171435A (en) Method of continuous casting
JPH0751804A (en) Mold for continuous casting
JPH038863B2 (en)
JPH08257715A (en) Continuous casting method
JPH0366980B2 (en)
JPH06339754A (en) Method for continuously casting thin sheet
JP7356016B2 (en) Method for rolling rectangular cross-section steel billets, continuous casting and rolling equipment, and rolling equipment
JPS63126651A (en) Belt type continuous casting method
JP3095951B2 (en) Twin belt continuous casting method
JPH09103845A (en) Austenitic stainless steel thin slab and its production
JP3886774B2 (en) Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same
JPH08257714A (en) Continuous casting apparatus
JPH02247053A (en) Method for cooling pinch roll for continuous casting
JPH0342153A (en) Continuous casting machine for cast strip
JPH08257694A (en) Mold for continuous casting
JP2024004032A (en) Continuous casting method
KR200260645Y1 (en) Mold having round lower edges for reducing surface defects and break-out of slab

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130