JPH07113607B2 - Method of changing the setting of defective discharge surface of metal sample in emission spectroscopy - Google Patents
Method of changing the setting of defective discharge surface of metal sample in emission spectroscopyInfo
- Publication number
- JPH07113607B2 JPH07113607B2 JP21105191A JP21105191A JPH07113607B2 JP H07113607 B2 JPH07113607 B2 JP H07113607B2 JP 21105191 A JP21105191 A JP 21105191A JP 21105191 A JP21105191 A JP 21105191A JP H07113607 B2 JPH07113607 B2 JP H07113607B2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- light intensity
- metal sample
- metal
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属材料中の添加元素
とか介在する元素の量を発光分光分析法で分析する場合
の金属サンプル不良放電面の設定替え方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for changing the setting of a defective discharge surface of a metal sample when the amount of an additive element or an intervening element in a metal material is analyzed by emission spectroscopy.
【0002】[0002]
【従来の技術】産業界では種々の金属材料が使用されて
おり、その金属の特性改善、強化のために種々の金属元
素を添加する。あるいはスクラップとなった金属を再生
利用する場合、不可避的に介在する金属元素を把握す
る。これら金属材料中の添加元素とか介在する元素の量
を分析する手法として発光分光分析法が知られている。2. Description of the Related Art Various metal materials are used in the industry, and various metal elements are added to improve and strengthen the characteristics of the metal. Alternatively, when the scrap metal is reused, the intervening metal elements are inevitably grasped. An emission spectroscopic analysis method is known as a method for analyzing the amount of an additive element or an intervening element in these metal materials.
【0003】例えば、製鉄業の製鋼工程においては、精
錬課程で鋼材中の5元素(炭素、珪素、マンガン、硫
黄、燐)などの成分調整のため、精錬操作の途中でサン
プル鋳型を用いて、断面25〜30mmφのブロック状サ
ンプルを採取し、この凝固サンプルを所定の試料調製装
置を用いて切断、研磨して元素分析用測定面に調製した
後、発光分光分析装置により断面5mmφの範囲に電気的
に放電して元素分析を行ない、その分析結果にもとづい
て精錬の良否を判定し、追加精錬とか精錬の終了を決定
するので、迅速にしかも正確な分析結果がもとめられて
いる。For example, in the steelmaking process of the ironmaking industry, in the refining process, a sample mold is used during the refining operation in order to adjust the components such as 5 elements (carbon, silicon, manganese, sulfur, phosphorus) in the steel. A block-shaped sample having a cross section of 25 to 30 mmφ is taken, and the solidified sample is cut and polished using a predetermined sample preparation device to prepare a measurement surface for elemental analysis, and then an electric emission spectroscopic analysis device is used to produce an electric field within a range of 5 mmφ. Discharge is performed, elemental analysis is performed, the quality of refining is judged based on the analysis result, and the additional refining or the end of refining is determined. Therefore, a quick and accurate analysis result is required.
【0004】しかしながら、凝固金属サンプルの分析調
製面には、サンプル凝固時に発生するピンホールとか酸
化物などの介在物が存在することがある。この凝固サン
プルを発光分析装置に装着して発光分光分析する際に、
ピンホールとか酸化物の表出している区域が放電域と合
致しているとか初期放電によって隠れていたピンホール
とか酸化物が表出すると、測定目的である成分元素の分
析ができない致命的な欠陥となる。However, pinholes and inclusions such as oxides, which are generated during solidification of the sample, may be present on the analysis and preparation surface of the solidified metal sample. When this coagulated sample is attached to an emission spectrometer and analyzed by emission spectroscopy,
If pinholes or oxide exposed areas match the discharge area, or if pinholes or oxides hidden by the initial discharge appear, fatal defects that prevent analysis of the constituent elements for measurement Becomes
【0005】凝固金属サンプルの分析調製面に表出して
いるピンホールとか酸化介在物が大きい場合は目視判断
してその区域を避けて放電位置を決めて装着することが
できるが、それらが目視判断が困難なほど小さい場合と
か隠れている場合は適性な装着は不可能である。このよ
うな場合は放電後の放電痕跡を肉眼観察し、放電痕跡が
白ぽいか、黒ぽいかという感応判断もありうるが、判断
者によってバラツキが大きく、しばしば適性でない分析
結果となるので、判断に迷う場合は再度分析することと
なり、判断、迷い、決断に要する時間分だけ上記精錬途
中の待ち時間を延長することとなる。When the pinholes or oxidized inclusions exposed on the analysis and preparation surface of the solidified metal sample are large, the discharge position can be determined by avoiding the area, and the discharge position can be determined. If it is too small or hidden, proper wearing is not possible. In such a case, the discharge trace after discharge can be visually observed, and there may be a sensitive judgment as to whether the discharge trace is white or black. If it is lost, the analysis will be performed again, and the waiting time during the refining process will be extended by the amount of time required for the determination, the loss, and the decision.
【0006】上記直接的な目視判断にかえて、調整した
放電面又は放電痕跡をカメラなどにより光学的に撮影し
モニターするとか、これら光学的データを電子計算機を
用いて画像処理する方法が考えられるが、判断精度を高
め、短時間で処理するためには高価な設備を必要とし、
放電工程後に放電痕跡を走査するという工程を必要とす
るため、この走査所要時間および演算処理時間を必要と
するので、精錬過程で必要としている迅速測定に追従で
きず、発光分光分析時間の延長を余儀無くされるか、人
手が介入するなど半端な自動化態様とならざるを得ない
状況となっている。In place of the above-mentioned direct visual judgment, a method may be considered in which the adjusted discharge surface or discharge trace is optically photographed by a camera or the like and is monitored, or these optical data are subjected to image processing using an electronic computer. However, it requires expensive equipment to improve the judgment accuracy and process in a short time,
Since the process of scanning the discharge traces after the discharge process is required, this scanning required time and calculation processing time are required, so it is not possible to follow the rapid measurement required in the refining process, and the emission spectroscopy analysis time can be extended. It is inevitable that it will be forced to be automated, or that human intervention will be required.
【0007】[0007]
【発明が解決しようとする課題】本発明は、以上のよう
に、凝固金属サンプルの分析調製面にピンホールとか酸
化物介在物が表出することは避けられないことであり、
また、ピンホールとか酸化物介在物の表出した区域と放
電区域が合致することは確率的に避けられないことを前
提とし、上記発光分光分析の途中で適性、不適性、即ち
金属サンプル放電面の良否判定を速やかに定量的に判断
し、不良放電面の場合はできるだけ早い時点に放電を停
止して、該金属サンプル放電面の設定替えをし、適性な
発光分光分析を完了するようにすることにある。SUMMARY OF THE INVENTION As described above, according to the present invention, it is inevitable that pinholes or oxide inclusions are exposed on the analytical preparation surface of a solidified metal sample.
In addition, it is assumed that it is unavoidable that the area where pinholes or oxide inclusions are exposed and the discharge area are stochastically unavoidable. In order to complete the appropriate emission spectroscopic analysis, the quality of the sample is promptly judged quantitatively, and in the case of a defective discharge surface, the discharge is stopped at the earliest possible time and the setting of the discharge surface of the metal sample is changed. Especially.
【0008】[0008]
【課題を解決するための手段】本発明は、 (1)溶融金属から採取した凝固金属サンプルを電気的
に放電し、発光する光強度を光電変換して金属中元素を
定量する発光分光分析法において、放電過程における凝
固金属サンプルの基部金属元素の光強度測定値を設定光
強度値と比較し、連続して複数点の光強度測定値が設定
光強度値に至らない場合は放電を停止し、該凝固金属サ
ンプルの放電位置を変更することを特徴とする発光分光
分析における金属サンプル不良放電面の設定替え方法。 (2)溶融金属から採取した凝固金属サンプルを電気的
に放電し、発光する光強度を光電変換して金属中元素を
定量する発光分光分析法において、放電過程における凝
固金属サンプルの基部金属元素の所定のしきい値以上の
光強度測定値に対応する設定時間当たりの放電パルス数
を計数し、設定放電パルス数に至らない場合は放電を停
止し、該凝固金属サンプルの放電位置を変更することを
特徴とする発光分光分析における金属サンプル不良放電
面の設定替え方法である。The present invention provides (1) an emission spectroscopic analysis method in which a solidified metal sample collected from a molten metal is electrically discharged, and the intensity of emitted light is photoelectrically converted to quantify elements in the metal. In, the light intensity measurement value of the base metal element of the solidified metal sample in the discharge process is compared with the set light intensity value, and if the light intensity measurement values at multiple points do not reach the set light intensity value continuously, the discharge is stopped. A method for changing the setting of a defective discharge surface of a metal sample in emission spectroscopy, which comprises changing the discharge position of the solidified metal sample. (2) In an emission spectroscopic analysis method in which a solidified metal sample collected from a molten metal is electrically discharged, and the emitted light intensity is photoelectrically converted to quantify the elements in the metal, the base metal element of the solidified metal sample in the discharging process is analyzed. Counting the number of discharge pulses per set time corresponding to the light intensity measurement value of a predetermined threshold value or more, and stopping the discharge if the set number of discharge pulses is not reached, and changing the discharge position of the solidified metal sample Is a method of changing the setting of the defective discharge surface of the metal sample in the emission spectroscopic analysis.
【0009】[0009]
【作用】本発明は、発光分光分析法において凝固金属サ
ンプルを放電した際、サンプル放電区域内にピンホール
とか酸化物介在物が表出してれば、その部分での放電が
優先する傾向が見られ、しかも正常放電部での光強度値
より弱い光強度値を示し、また表出していなかったピン
ホールとか酸化物介在物が予備放電とか分析用放電によ
って表出した場合にも正常放電部での光強度値より弱い
光強度値を示すことに着目したものであって、放電過程
における凝固金属サンプルの基部金属元素の光強度測定
値を設定光強度値と比較し、連続して複数点の光強度測
定値が設定光強度値に至らない場合は放電を停止し、該
凝固金属サンプルの放電位置を変更する。あるいは、放
電過程における凝固金属サンプルの基部金属元素の所定
のしきい値以上の光強度測定値に対応する設定時間当た
りの放電パルス数を計数し、設定放電パルス数に至らな
い場合は放電を停止し、該凝固金属サンプルの放電位置
を変更するので、一回の発光分光分析における放電所要
時間の約5〜9割を無駄に浪費することなく、直ちに適
性な発光分光分析を実施するための放電が実行できる。
また、上記二つの手段のうちのいずれかを採用すると、
人手を要することなく、金属サンプルの発光分光分析装
置へのセッティング及び不良放電時の金属サンプルのリ
セットを自動機械操作で実行できることとなる。According to the present invention, when a solidified metal sample is discharged in an emission spectroscopic analysis method, if pinholes or oxide inclusions appear in the sample discharge area, the discharge tends to take precedence in that part. In addition, the light intensity value is weaker than the light intensity value in the normal discharge part, and when the pinholes or oxide inclusions that were not exposed are exposed by the preliminary discharge or the analytical discharge, the normal discharge part also shows. Focusing on showing a light intensity value that is weaker than the light intensity value of, the light intensity measurement value of the base metal element of the solidified metal sample in the discharge process is compared with the set light intensity value, and continuously measured at a plurality of points. When the measured light intensity value does not reach the set light intensity value, the discharge is stopped and the discharge position of the solidified metal sample is changed. Alternatively, the number of discharge pulses per set time corresponding to the light intensity measurement value of the base metal element of the solidified metal sample in the discharge process corresponding to a predetermined threshold value or more is counted, and if the set discharge pulse number is not reached, the discharge is stopped. However, since the discharge position of the solidified metal sample is changed, about 50 to 90% of the discharge required time in one emission spectroscopic analysis is not wasted, and a discharge for performing an appropriate emission spectroscopic analysis is immediately performed. Can be executed.
Also, if either of the above two means is adopted,
It is possible to set the metal sample in the emission spectroscopic analyzer and reset the metal sample at the time of defective discharge by an automatic machine operation without requiring manpower.
【0010】以下、本発明を図面にもとづいて具体的に
説明する。図1は発光分光分析における放電時間と光強
度の関係を示した概要図で、凝固金属サンプルの放電面
が正常な場合、その基部金属元素の光強度は線(a)に
示すように、放電初期から放電後期まで強いレベルで殆
ど変化なく一定に推移する。ところが、放電面にピンホ
ールや酸化物介在物等が表出した状態になっていると、
その部分での放電が優先する傾向が見られることから、
その基部金属元素の光強度は線(b)に示すように、初
期の光強度値は低く後期の光強度値は基部金属元素の値
に近似した値となる推移を示すことに着目した。また、
図示していないが、凝固金属サンプルの放電面にピンホ
ールや酸化物介在物等が表出していないが、放電過程に
おいて、ピンホールとか酸化物介在物が表出した場合に
も正常放電部での光強度値より弱い光強度値を示すこと
に着目したものである。The present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic diagram showing the relationship between discharge time and light intensity in emission spectroscopic analysis. When the discharge surface of a solidified metal sample is normal, the light intensity of the base metal element is as shown in line (a). From the initial stage to the latter stage of discharge, the level remained strong with almost no change. However, if pinholes or oxide inclusions are exposed on the discharge surface,
Since there is a tendency that discharge in that part has priority,
As shown in the line (b), the light intensity of the base metal element was low, and the light intensity value in the early stage was low, and the light intensity value in the latter period showed a transition close to the value of the base metal element. Also,
Although not shown, pinholes, oxide inclusions, etc. do not appear on the discharge surface of the solidified metal sample, but even if pinholes or oxide inclusions appear during the discharge process, normal discharge part This is because the light intensity value is weaker than the light intensity value of.
【0011】従って、上記放電時の光強度を用い信号処
理することによって放電過程において正常放電あるいは
不良放電を判定することにより、不良放電を徒に継続す
ることなく放電を停止し、凝固金属サンプルの放電位置
を速やかに変更し、改めて発光分光分析、即ち放電を再
開できることになる。Therefore, by performing signal processing using the light intensity at the time of discharge, it is possible to judge whether the discharge is normal or defective in the discharge process, so that the discharge is stopped without continuing the defective discharge and the solidified metal sample The discharge position can be changed promptly, and emission spectral analysis, that is, discharge can be restarted again.
【0012】具体的には、放電過程において連続して複
数点の光強度測定値、例えば、少なくとも100点の光
強度測定値が連続して設定光強度値に至らない場合は不
良放電と判定して放電を停止することができる。尚、放
電の良否判定に使用する連続した複数点の光強度値はあ
まり多くなる基部金属元素の光強度値に近似する傾向に
なるので500点までとすることが好ましい。Specifically, in the discharge process, when the light intensity measurement values at a plurality of points, for example, the light intensity measurement values at at least 100 points do not reach the set light intensity value continuously, it is determined that the discharge is defective. Discharge can be stopped. Since the light intensity values at a plurality of consecutive points used for determining the quality of discharge tend to approximate the light intensity value of the base metal element, which is too large, it is preferable to set it to 500 points.
【0013】あるいは図2に示すように、放電過程にお
ける凝固金属サンプルの基部金属元素の所定のしきい値
以上の光強度測定値に対応する設定時間、例えば1秒当
たりの放電パルス数、3個を計数し、該基部金属元素の
設定放電パルス数、例えば300個と比較し、設定放電
パルス数に至らない場合はこの時点において上記放電は
不良放電と判定して放電を停止することができる。Alternatively, as shown in FIG. 2, a set time corresponding to a light intensity measurement value of a base metal element of a solidified metal sample in a discharge process above a predetermined threshold value, for example, the number of discharge pulses per second, 3 Is counted and compared with a set discharge pulse number of the base metal element, for example, 300, and if the set discharge pulse number is not reached, the discharge can be judged to be defective discharge at this point and the discharge can be stopped.
【0014】上記放電停止後には直ちに該凝固金属サン
プルの放電位置を変更する。この凝固金属サンプルの放
電位置の変更は人手によって実施できるものであるが、
凝固金属サンプルの最初の取付け設定及び不良放電にも
とづく放電位置変更のための設定替えを自動機械操作で
行うと効率的かつ迅速に実施できる。Immediately after the discharge is stopped, the discharge position of the solidified metal sample is changed. The change of the discharge position of this solidified metal sample can be performed manually,
It is possible to efficiently and quickly carry out the first attachment setting of the solidified metal sample and the setting change for changing the discharge position based on the defective discharge by the automatic machine operation.
【0015】[0015]
【発明の効果】本発明は、金属材料の元素分析を発光分
光分析で行う場合の調製された金属サンプルの放電面の
良否を発光分光分析時に得られる基部金属元素の光強度
値あるいは特定強度の放電パルスの計数値に定量化する
ので、放電過程で設定値と比較して正確に正常放電ある
いは不良放電が判断でき、不良放電の場合は直ちに放電
を停止して金属サンプルの放電面の放電位置替えを実行
するので、適正な発光分光分析が短時間に達成できる。
従って、人を介した操作の場合も、また、自動機械操作
の場合も金属サンプルの放電位置替えのみとなり、その
産業上の効果は大きい。INDUSTRIAL APPLICABILITY According to the present invention, when the elemental analysis of a metal material is carried out by emission spectroscopic analysis, the quality of the discharge surface of the prepared metal sample is determined by the light intensity value or the specific intensity of the base metal element obtained during the emission spectroscopic analysis. Since it is quantified by the count value of the discharge pulse, it can be accurately compared with the set value in the discharge process to accurately judge normal discharge or defective discharge.In the case of defective discharge, the discharge is stopped immediately and the discharge position of the discharge surface of the metal sample is determined. Since the replacement is performed, proper emission spectroscopic analysis can be achieved in a short time.
Therefore, in the case of man-operated operation and also in the case of automatic mechanical operation, only the discharge position of the metal sample is changed, and its industrial effect is great.
【図1】発光分光分析における放電時間と光強度の関係
を示す図。FIG. 1 is a diagram showing a relationship between discharge time and light intensity in emission spectroscopic analysis.
【図2】所定のしきい値以上の光強度測定値に対応する
放電パルス数を計数する態様の説明図。FIG. 2 is an explanatory diagram of a mode of counting the number of discharge pulses corresponding to a light intensity measurement value equal to or higher than a predetermined threshold value.
Claims (2)
を電気的に放電し、発光する光強度を光電変換して金属
中元素を定量する発光分光分析法において、放電過程に
おける凝固金属サンプルの基部金属元素の光強度測定値
を設定光強度値と比較し、連続して複数点の光強度測定
値が設定光強度値に至らない場合は放電を停止し、該凝
固金属サンプルの放電位置を変更することを特徴とする
発光分光分析における金属サンプル不良放電面の設定替
え方法。1. A base metal of a solidified metal sample in a discharge process in an emission spectroscopic analysis method for electrically discharging a solidified metal sample taken from a molten metal and photoelectrically converting emitted light intensity to quantify elements in the metal. The light intensity measurement value of the element is compared with the set light intensity value, and if the light intensity measurement values of a plurality of points do not reach the set light intensity value continuously, the discharge is stopped and the discharge position of the solidified metal sample is changed. A method of changing the setting of a defective discharge surface of a metal sample in an emission spectroscopic analysis, which is characterized in that:
を電気的に放電し、発光する光強度を光電変換して金属
中元素を定量する発光分光分析法において、放電過程に
おける凝固金属サンプルの基部金属元素の所定のしきい
値以上の光強度測定値に対応する設定時間当たりの放電
パルス数を計数し、設定放電パルス数に至らない場合は
放電を停止し、該凝固金属サンプルの放電位置を変更す
ることを特徴とする発光分光分析における金属サンプル
不良放電面の設定替え方法。2. A base metal of a solidified metal sample during a discharge process in an emission spectroscopic analysis method for electrically discharging a solidified metal sample taken from a molten metal and photoelectrically converting the emitted light intensity to quantify elements in the metal. Count the number of discharge pulses per set time corresponding to the light intensity measurement value above a predetermined threshold value of the element, stop the discharge if the set number of discharge pulses is not reached, and change the discharge position of the solidified metal sample A method of changing the setting of a defective discharge surface of a metal sample in an emission spectroscopic analysis, which comprises:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21105191A JPH07113607B2 (en) | 1991-08-22 | 1991-08-22 | Method of changing the setting of defective discharge surface of metal sample in emission spectroscopy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21105191A JPH07113607B2 (en) | 1991-08-22 | 1991-08-22 | Method of changing the setting of defective discharge surface of metal sample in emission spectroscopy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0552752A JPH0552752A (en) | 1993-03-02 |
JPH07113607B2 true JPH07113607B2 (en) | 1995-12-06 |
Family
ID=16599575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21105191A Expired - Fee Related JPH07113607B2 (en) | 1991-08-22 | 1991-08-22 | Method of changing the setting of defective discharge surface of metal sample in emission spectroscopy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07113607B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100862786B1 (en) * | 2006-12-19 | 2008-10-13 | 주식회사 포스코 | Apparatus measuring impurities of molten iron and method sameof |
-
1991
- 1991-08-22 JP JP21105191A patent/JPH07113607B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0552752A (en) | 1993-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090263005A1 (en) | Impurity measuring method and device | |
US5047851A (en) | Process and device for detecting and evaluating surface cracks in workpieces | |
CA2671278C (en) | Laser welding quality evaluation method and apparatus therefor | |
CN108931536B (en) | Method and device for evaluating the quality of a coated surface | |
JPH07113607B2 (en) | Method of changing the setting of defective discharge surface of metal sample in emission spectroscopy | |
JPH06109545A (en) | Color tone inspecting method | |
JP4760029B2 (en) | Defect inspection method and defect inspection apparatus | |
JPH0552751A (en) | Method for judging quality of discharge surface of metal sample in emission spectral analysis | |
US4842674A (en) | Method of measurement of the rate of oxidation of a metal melt | |
EP1558062B1 (en) | Method for monitoring wear of an electrode | |
Weis | Tool wear measurement on basis of optical sensors, vision systems and neuronal networks (application milling) | |
JPH09182953A (en) | Method for detecting slag | |
JP4254323B2 (en) | Foreign matter inspection method and foreign matter inspection device | |
JPH0472547A (en) | Method for judging cohesive image | |
CN118243689B (en) | Method and system for detecting lens aluminum seat based on mechanical arm | |
KR102603372B1 (en) | Fraction measuring device, fraction measuring system, fraction measuring method, computer program, blast furnace and blast furnace operation method | |
JP3266878B2 (en) | Rubber dispersion degree measuring device | |
JPH0943150A (en) | Method for measuring composition and particle size distribution of inclusion of metal | |
JPH1137923A (en) | Method for discriminating aggregation image | |
JPH01259243A (en) | Method and instrument for automatic determination of microscopic image of opaque ore or the like | |
JPH0781962B2 (en) | Foreign object detection method | |
JPH09192821A (en) | Detection of slag | |
JPH04319778A (en) | Micro porosity detecting and deciding method for oxygen-free copper | |
JPH07209208A (en) | Method and apparatus for deciding cause of surface defect of steel plate | |
JPS61293659A (en) | Method for inspecting soldering appearance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960521 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081206 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |