[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07113585B2 - RTD connection device - Google Patents

RTD connection device

Info

Publication number
JPH07113585B2
JPH07113585B2 JP9883290A JP9883290A JPH07113585B2 JP H07113585 B2 JPH07113585 B2 JP H07113585B2 JP 9883290 A JP9883290 A JP 9883290A JP 9883290 A JP9883290 A JP 9883290A JP H07113585 B2 JPH07113585 B2 JP H07113585B2
Authority
JP
Japan
Prior art keywords
terminal
rtd
terminals
thermocouple
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9883290A
Other languages
Japanese (ja)
Other versions
JPH03295426A (en
Inventor
浩基 後藤
Original Assignee
山武ハネウエル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山武ハネウエル株式会社 filed Critical 山武ハネウエル株式会社
Priority to JP9883290A priority Critical patent/JPH07113585B2/en
Publication of JPH03295426A publication Critical patent/JPH03295426A/en
Publication of JPH07113585B2 publication Critical patent/JPH07113585B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、測温抵抗体を2線式又は4線式に選択的に
接続するのに用いられる測温抵抗体の接続装置に関す
る。
Description: TECHNICAL FIELD The present invention relates to a resistance temperature detector connecting device used for selectively connecting a resistance temperature detector in a two-wire system or a four-wire system.

〔従来の技術〕[Conventional technology]

従来より、白金、銅等から成る測温抵抗体(Resistance
Temperature Device、以下、RTDと言う)を用いた各種
温度センサが知られている。また、熱電対を用いて温度
測定を行う場合、熱電対の冷接点補償を行う必要があ
る。冷接点補償の方式にはいろいろあるが、その一つと
して、上記RTDを冷接点補償用温度センサとして用い、
常温レベルで補償を行う方式が知られている。
Traditionally, resistance thermometers made of platinum, copper, etc. (Resistance
Various temperature sensors using a Temperature Device (hereinafter referred to as RTD) are known. Further, when the temperature is measured using the thermocouple, it is necessary to perform cold junction compensation of the thermocouple. There are various cold junction compensation methods, one of which is to use the RTD as a temperature sensor for cold junction compensation.
A method of performing compensation at a room temperature level is known.

RTDを各種の温度センサとして用いる場合、一般には、
第6図に示すように、入力装置1に設けられた端子2,3
にRTD4を2本の導線5,6を介して接続すると共に、定電
流源7から電流iを流し、このとき端子2,3間に発生す
る電圧Vを測定し、この電圧Vを温度に変換するように
している。しかしながらこの2本の導線5,6を用いる2
線式の方法は、2本の導線5,6が長く、導線抵抗rが大
きい場合は、2r分の電圧降下による測定誤差が生じ、正
確な温度測定ができない。この対策として、第7図に示
すように、RTD4を4つの導線5,6,8,9を用いて入力装置
1の4つの端子2,3,10,11に接続し、端子10から電流i
を流し込むようにした4線式の方法が多く用いられてい
る。この方法によれば、電流iは導線5,6を流れないの
で、端子2,3間の電圧Vは導線抵抗rの影響を受けず、R
TD4の端子間電圧を測定することができる。なお、この
他に3線式の方法があるが、ここでは説明を省略する。
When using the RTD as various temperature sensors, generally,
As shown in FIG. 6, terminals 2 and 3 provided on the input device 1
Is connected to the RTD 4 via two conductors 5 and 6, and a current i is made to flow from the constant current source 7, the voltage V generated between the terminals 2 and 3 at this time is measured, and this voltage V is converted to temperature. I am trying to do it. However, using these two conductors 5,6
In the wire method, when the two conductors 5 and 6 are long and the conductor resistance r is large, a measurement error occurs due to a voltage drop of 2r, and accurate temperature measurement cannot be performed. As a countermeasure against this, as shown in FIG. 7, the RTD 4 is connected to the four terminals 2, 3, 10, 11 of the input device 1 by using the four conductors 5, 6, 8, 9 and the current i is supplied from the terminal 10.
A four-wire method in which the liquid is poured is often used. According to this method, since the current i does not flow through the conductors 5 and 6, the voltage V between the terminals 2 and 3 is not affected by the conductor resistance r and R
The voltage across the TD4 terminals can be measured. In addition to this, there is a three-wire method, but the description is omitted here.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述した第7図の4線式の方法は、正確な測定を行うこ
とができるが、4本の導線5,6,8,9による配線数が増え
るという欠点がある。導線5,6が短く、導線抵抗rが小
さい場合は第6図の2線式の方法が用いられるが、2線
式と4線式とを切換えられるようにする場合は、入力装
置1に4つの端子2,3,10,11を設けると共に、定電流源
7を端子10又は端子2に切換え接線するか、あるいは電
圧Vの測定端子を端子2又は端子10に切換える必要があ
る。
Although the 4-wire method of FIG. 7 described above can perform accurate measurement, it has a drawback in that the number of wirings by the four conductors 5, 6, 8, 9 increases. When the conductors 5 and 6 are short and the conductor resistance r is small, the two-wire method shown in FIG. 6 is used. However, when the two-wire system and the four-wire system can be switched, the input device 1 has 4 units. It is necessary to provide the two terminals 2, 3, 10 and 11 and switch the tangential current source 7 to the terminal 10 or the terminal 2 or connect the measuring terminal for the voltage V to the terminal 2 or the terminal 10.

この発明は上記のような課題を解決するためになされた
もので、RTDを2線式又は4線式に自動的に切換え接続
することができるようにしたRTDの接続装置を得ること
を目的としている。
The present invention has been made to solve the above problems, and an object thereof is to obtain an RTD connection device capable of automatically switching and connecting an RTD to a two-wire system or a four-wire system. There is.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明においては、第1〜4の端子を設け、第1の端
子に電源を接続すると共に、第1及び第2の端子間と第
3及び第4の端子間にそれぞれダイオードを電源に対し
て順方向に接続したものである。
In the present invention, the first to fourth terminals are provided, the power source is connected to the first terminal, and the diodes are respectively connected to the power source between the first and second terminals and between the third and fourth terminals. It is connected in the forward direction.

〔作用〕[Action]

2線式で用いる場合は、RTDを第2及び第3の端子間に
接続することにより、上記2つのダイオードが導通して
RTDに電流が流れ、この第2及び第3の端子間に電圧が
得られる。4線式で用いる場合は、RTDを第1〜4の端
子にそれぞれ接続することにより、2つのダイオードが
非導通となり、電流は第1の端子からRTDを通じて第4
の端子へ流れ、第2及び第3の端子間に電圧が得られ
る。このようにして2線式と4線式との切換えが自動的
に行われる。
When using the 2-wire system, connect the RTD between the second and third terminals to make the above two diodes conductive.
A current flows through the RTD, and a voltage is obtained between the second and third terminals. When using the 4-wire system, by connecting the RTD to the first to fourth terminals respectively, the two diodes become non-conductive, and the current flows from the first terminal to the fourth terminal through the RTD.
, And a voltage is obtained between the second and third terminals. In this way, the switching between the 2-wire system and the 4-wire system is automatically performed.

〔実施例〕〔Example〕

以下、RTDを熱電対の冷接点補償用温度センサとして用
いた場合におけるこの発明の一実施例を図面について説
明する。
An embodiment of the present invention in the case where an RTD is used as a temperature sensor for cold junction compensation of a thermocouple will be described with reference to the drawings.

第4図及び第5図は多数の熱電対の測定信号を入力処理
するシステムを示す。
4 and 5 show a system for input-processing the measurement signals of a large number of thermocouples.

第4図は多数の熱電対20とこれらの熱電対20からの測定
信号を入力処理する熱電対入力装置21とが、比較的近距
離を置いて配された場合を示す。第5図は多数の熱電対
20と熱電対入力装置21とが遠距離を置いて配された場合
を示す。熱電対20の測定信号は、ターミナルパネル22で
中継された後、コネクタ23、多芯ケーブル24及びコネク
タ25を通じて熱電対入力装置21に入力されるように成さ
れている。なお、熱電対20と熱電対入力装置21又はター
ミナルパネル22との間に補償導線が接続される場合があ
るが、ここでは熱電対20は補償導線を含む場合もあるも
のとする。
FIG. 4 shows a case where a large number of thermocouples 20 and a thermocouple input device 21 for input-processing the measurement signals from these thermocouples 20 are arranged relatively close to each other. Figure 5 shows a large number of thermocouples
The case where 20 and the thermocouple input device 21 are arranged at a long distance is shown. The measurement signal of the thermocouple 20 is relayed by the terminal panel 22, and then input to the thermocouple input device 21 through the connector 23, the multicore cable 24 and the connector 25. A compensating lead wire may be connected between the thermocouple 20 and the thermocouple input device 21 or the terminal panel 22, but here, the thermocouple 20 may include a compensating lead wire.

第4図及び第5図において、熱電対20の冷接点補償にRT
Dを用いる場合、第4図では、RTDは熱電対入力装置21の
内部に設けられ、第5図では、RTDはターミナルパネル2
2の内部に設けられることになる。第5図の場合、ター
ミナルパネル22に設けられたRTDの両端電圧Vを、多芯
ケーブル24を通じて熱電対入力装置21側で測定するた
め、導線長が長くなるので、前述した導線抵抗rが問題
となり、従って、第7図の4線式が用いられる。第4図
の場合はRTDの両端電圧Vは直接に熱電対入力装置21に
おいて測定されるので、導線抵抗rは問題とならず、従
って、第6図の2線式が用いられる。
In Figures 4 and 5, RT is used for cold junction compensation of thermocouple 20.
When using D, in FIG. 4, the RTD is provided inside the thermocouple input device 21, and in FIG. 5, the RTD is the terminal panel 2
It will be installed inside 2. In the case of FIG. 5, since the voltage V across the RTD provided on the terminal panel 22 is measured on the thermocouple input device 21 side through the multi-core cable 24, the length of the lead wire becomes long, so the above-mentioned lead wire resistance r is a problem. Therefore, the 4-wire system of FIG. 7 is used. In the case of FIG. 4, since the voltage V across the RTD is directly measured at the thermocouple input device 21, the conductor resistance r does not matter, so the two-wire system of FIG. 6 is used.

第1図は上記の2線式と4線式との自動切換えを行うた
めのこの発明によるRTDの接続装置を示すもので、この
接続装置は、熱電対入力装置21内に設けられている。
FIG. 1 shows an RTD connecting device according to the present invention for automatically switching between the 2-wire type and the 4-wire type. The connecting device is provided in a thermocouple input device 21.

第1図において、31,32,33,34はそれぞれ第1,第2,第3,
第4の端子を示す。第1の端子31には定電流源26が接続
され、第4の端子34は設置電位等の基準電位に接続され
る。第1の端子31と第2の端子32との間には、ダイオー
ド27がアノードを第1の端子31に接続され、カソードを
第2の端子32に接続されて設けられている。第3の端子
33と第4の端子34との間には、ダイオード28がアノード
を第3の端子33に接続され、カソードを第4の端子34に
接続されて設けられている。また第2の端子32と第3の
端子33との間に得られる電圧Vが差動アンプ29に加えら
れるように成されている。
In FIG. 1, 31, 32, 33, 34 are respectively the first, second, third,
The 4th terminal is shown. A constant current source 26 is connected to the first terminal 31, and a fourth terminal 34 is connected to a reference potential such as an installation potential. A diode 27 is provided between the first terminal 31 and the second terminal 32, with the anode connected to the first terminal 31 and the cathode connected to the second terminal 32. Third terminal
A diode 28 is provided between 33 and the fourth terminal 34, with the anode connected to the third terminal 33 and the cathode connected to the fourth terminal 34. The voltage V obtained between the second terminal 32 and the third terminal 33 is applied to the differential amplifier 29.

第2図及び第3図は上記構成によるRTDの接続装置に実
際にRTD30を接続した状態を示す。
2 and 3 show a state in which the RTD 30 is actually connected to the RTD connecting device having the above configuration.

第2図はRTD30を2線式により第1及び第2の端子31,32
間に接続した場合を示し、第4図と対応している。な
お、RTD30は熱電対20の冷接点側の温度を測定するもの
である。この場合は、定電流源26からの電流iは図示の
ように、ダイオード27、第2の端子32、RTD30、第3端
子33及びダイオード28の経路を流れる。これによって生
じた第2及び第3の端子32,33間の電圧Vが差動アンプ2
9に加えられる。
FIG. 2 shows the RTD 30 as a two-wire type having a first terminal 31 and a second terminal 32.
The case of connection between the two is shown and corresponds to FIG. The RTD 30 measures the temperature on the cold junction side of the thermocouple 20. In this case, the current i from the constant current source 26 flows through the path of the diode 27, the second terminal 32, the RTD 30, the third terminal 33 and the diode 28 as shown in the figure. The voltage V generated between the second and third terminals 32 and 33 is generated by the differential amplifier 2
Added to 9.

第3図はRTD30と4線式で接続した場合を示し、第5図
と対応している。ターミナルパネル22にはRTD30を接続
するための4本の導線35,36,37,38がプリント配線によ
り設けられている。これらの導線35〜38はコネクタ23、
多芯ケーブル24及びコネクタ25を通じて第1〜4の端子
31〜34にそれぞれ接続されるように成されている。この
場合は、第1及び第2の端子31,32間の電位差及び第3
及び第4の端子33,34間の電位差は小さくなり、ダイオ
ード27,28は非導通状態となる(ダイオード27,28が導通
するためには、ダイオード27,28の端子間電圧が約0.6ボ
ルト以上となる必要があり、即ち、線路抵抗(riとす
る)にかかる電圧Vr(=ri・i0)が0.6ボルト以上とな
る必要がある。しかしながら、一般的には、電流i0は0.
5mA程度で、線路抵抗riが500オーム程度以下であるの
で、電圧Vrは0.25ボルト程度以下となり、0.6ボルト以
下であるので、ダイオード27,28は導通しない。)。従
って、定電流源26からの電流iは、図示のように、第1
の端子31、コネクタ25、多芯コネクタ24、コネクタ23、
導線35、RTD30、導線38、コネクタ23、多芯ケーブル2
4、コネクタ25及び第4の端子34の経路を流れる。ま
た、第2の端子32、導線36,37及び第3の端子33には電
流は流れず、第2及び第3の端子32,33間に電圧Vが発
生して差動アンプ29に加えられる。
FIG. 3 shows a case where the RTD 30 is connected to the RTD 30 by a four-wire system and corresponds to FIG. The terminal panel 22 is provided with four conducting wires 35, 36, 37, 38 for connecting the RTD 30 by printed wiring. These conductors 35 to 38 are connected to the connector 23,
First to fourth terminals through the multi-core cable 24 and the connector 25
It is configured to be connected to 31 to 34, respectively. In this case, the potential difference between the first and second terminals 31 and 32 and the third
And the potential difference between the fourth terminals 33 and 34 becomes small, and the diodes 27 and 28 become non-conducting (in order for the diodes 27 and 28 to conduct, the voltage between the terminals of the diodes 27 and 28 is about 0.6 V or more) That is, the voltage Vr (= ri · i 0 ) applied to the line resistance ( denoted by ri) needs to be 0.6 V or more.However, in general, the current i 0 is 0.
At about 5 mA, the line resistance ri is about 500 ohms or less, so the voltage Vr is about 0.25 V or less, which is 0.6 V or less, so that the diodes 27 and 28 do not conduct. ). Therefore, the current i from the constant current source 26 is
Terminal 31, connector 25, multi-core connector 24, connector 23,
Conductor 35, RTD30, conductor 38, connector 23, multi-core cable 2
4, through the path of the connector 25 and the fourth terminal 34. No current flows through the second terminal 32, the conductors 36, 37 and the third terminal 33, and a voltage V is generated between the second and third terminals 32, 33 and applied to the differential amplifier 29. .

以上のように、この実施例によりRTDの接続装置によれ
ば、第4図又は第5図のシステムに応じで、RTD30を第
2図の2線式又は第3図の4線式に自動的に接続するこ
とができる。
As described above, according to the RTD connection device according to this embodiment, the RTD 30 is automatically changed to the 2-wire system of FIG. 2 or the 4-wire system of FIG. 3 according to the system of FIG. 4 or 5. Can be connected to.

なお、上記実施例ではRTDを熱電対の冷接点補償用温度
センサとして用いた場合について説明したが、この発明
はRTDを他の各種温度センサとして用いる場合にも適用
することができる。
Although the RTD is used as the temperature sensor for compensating the cold junction of the thermocouple in the above embodiment, the present invention can be applied to the case where the RTD is used as other various temperature sensors.

〔発明の効果〕〔The invention's effect〕

この発明によれば、第1〜4の端子を設け、第1の端子
に電源を接続すると共に、第1及び第2の端子間と第3
及び第4の端子間にそれぞれダイオードを電源に対して
順方向に接続したので、RTDを2線式又は4線式に自動
的に切換えて接続することができる。特に、実施例のよ
うに、RTDを熱電対の冷接点補償に用いる熱電対入力処
理装置に適用した場合は、多芯コネクタ等が接続された
ときに、自動的に4線式に切換えられるので、使い勝手
が良くなる等の効果が得られる。
According to the present invention, the first to fourth terminals are provided, the power source is connected to the first terminal, and the first and second terminals are connected to each other and the third terminal is connected.
Since the diode is connected between the fourth terminal and the fourth terminal in the forward direction with respect to the power supply, the RTD can be automatically switched and connected to the 2-wire type or the 4-wire type. In particular, when the RTD is applied to a thermocouple input processing device used for cold junction compensation of a thermocouple as in the embodiment, it is automatically switched to a 4-wire system when a multi-core connector or the like is connected. It is possible to obtain effects such as improved usability.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による測温抵抗体の接続装
置を示す構成図、第2図は同装置を2線式で用いた状態
を示す構成図、第3図は同装置を4線式で用いた状態を
示す構成図、第4図及び第5図はこの発明を適用し得る
熱電対入力処理システムを示す構成図、第6図は測温抵
抗体を2線式で用いた場合を示す構成図、第7図は測温
抵抗体を4線式で用いた場合を示す構成図である。 26は定電流源、27,28はダイオード、30は測温抵抗体、3
1は第1の端子、32は第2の端子、33は第3の端子、34
は第4の端子。 なお、図中、同一符号の同一、又は相当部分を示す。
FIG. 1 is a block diagram showing a connecting device of a resistance temperature detector according to an embodiment of the present invention, FIG. 2 is a block diagram showing a state in which the device is used in a two-wire system, and FIG. 4 and 5 are configuration diagrams showing a thermocouple input processing system to which the present invention can be applied, and FIG. 6 shows a resistance thermometer as a two-wire type. FIG. 7 is a configuration diagram showing a case, and FIG. 7 is a configuration diagram showing a case where the resistance temperature detector is used in a four-wire system. 26 is a constant current source, 27 and 28 are diodes, 30 is a resistance temperature detector, 3
1 is the first terminal, 32 is the second terminal, 33 is the third terminal, 34
Is the fourth terminal. In the drawings, the same or corresponding parts with the same reference numerals are shown.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電源が接続される第1の端子と、第2の端
子と、第3の端子と、基準電位に接続される第4の端子
と、上記第1の端子にアノードが接続され上記第2の端
子にカソードが接続されたダイオードと、上記第3の端
子にアノードが接続され上記第4の端子にカソードが接
続されたダイオードとを備えた測温抵抗体の接続装置。
1. A first terminal to which a power source is connected, a second terminal, a third terminal, a fourth terminal connected to a reference potential, and an anode connected to the first terminal. A resistance temperature detector connecting device comprising a diode having a cathode connected to the second terminal, and a diode having an anode connected to the third terminal and a cathode connected to the fourth terminal.
JP9883290A 1990-04-13 1990-04-13 RTD connection device Expired - Lifetime JPH07113585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9883290A JPH07113585B2 (en) 1990-04-13 1990-04-13 RTD connection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9883290A JPH07113585B2 (en) 1990-04-13 1990-04-13 RTD connection device

Publications (2)

Publication Number Publication Date
JPH03295426A JPH03295426A (en) 1991-12-26
JPH07113585B2 true JPH07113585B2 (en) 1995-12-06

Family

ID=14230257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9883290A Expired - Lifetime JPH07113585B2 (en) 1990-04-13 1990-04-13 RTD connection device

Country Status (1)

Country Link
JP (1) JPH07113585B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049718A1 (en) * 2000-10-07 2002-04-18 Heidenhain Gmbh Dr Johannes Thermal elongation determination arrangement for machine parts has trimming lines, which can be connected to first metal conductor whose electric resistance is proportional to average temperature of monitored area
EA024514B1 (en) * 2013-12-25 2016-09-30 Павел Эдуардович МЕЛЬНИКОВ Heat metering system for single-pipe vertical heating system in building or structure

Also Published As

Publication number Publication date
JPH03295426A (en) 1991-12-26

Similar Documents

Publication Publication Date Title
US5700090A (en) Temperature sensor transmitter with sensor sheath lead
US5046858A (en) Temperature reference junction for a multichannel temperature sensing system
CA2801464C (en) Process variable transmitter with thermocouple polarity detection
US5171091A (en) Temperature measuring circuit
JP2019529928A (en) Heat flux sensor
JPS589079A (en) Device and method for detecting condition of trouble in cable
US4492123A (en) Thermal conductivity vacuum gage
US4025847A (en) Measurement system including bridge circuit
EP0294159B1 (en) Branched sensor system
US3617886A (en) Transducer open-circuit failure detector
JPH07113585B2 (en) RTD connection device
US4931741A (en) Branched sensor system
US3830105A (en) Temperature measuring device for enamelled apparatus
JP6373979B2 (en) Infrared sensor
JPH08247857A (en) Input device for temperature detecting resistor
JP3254669B2 (en) Thermoelectric thermometer
CN112798130B (en) Multi-path temperature measuring device and multi-path temperature measuring circuit thereof
JPH04340477A (en) Measuring apparatus for multiple resistance
JPS58113870A (en) Testing method for cable
JPS581731B2 (en) Multi-point temperature measuring device
CN112798129B (en) Temperature measuring device
JP2004028612A (en) Three-wire/four-wire compatible measuring circuit of resistance temperature element
SU1520359A1 (en) Device for measuring temperature
JPS5816073Y2 (en) Resistance/electrical signal converter
KR100275568B1 (en) Snap detecting method for temperature measurement sensor