[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0711326Y2 - Heat transfer tube damage prevention device - Google Patents

Heat transfer tube damage prevention device

Info

Publication number
JPH0711326Y2
JPH0711326Y2 JP1987198087U JP19808787U JPH0711326Y2 JP H0711326 Y2 JPH0711326 Y2 JP H0711326Y2 JP 1987198087 U JP1987198087 U JP 1987198087U JP 19808787 U JP19808787 U JP 19808787U JP H0711326 Y2 JPH0711326 Y2 JP H0711326Y2
Authority
JP
Japan
Prior art keywords
heat transfer
combustion gas
transfer tube
flow
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1987198087U
Other languages
Japanese (ja)
Other versions
JPH01101090U (en
Inventor
実 長迫
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP1987198087U priority Critical patent/JPH0711326Y2/en
Publication of JPH01101090U publication Critical patent/JPH01101090U/ja
Application granted granted Critical
Publication of JPH0711326Y2 publication Critical patent/JPH0711326Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Gas Burners (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、伝熱管群の損傷防止装置に係り、特に燃焼ガ
スに含まれる粉塵による伝熱管の損傷を防止する伝熱管
損傷防止装置に関する。
TECHNICAL FIELD The present invention relates to a damage prevention device for a heat transfer pipe group, and more particularly to a heat transfer pipe damage prevention device for preventing damage to the heat transfer pipe due to dust contained in combustion gas.

〔従来の技術〕[Conventional technology]

石炭等の固体燃料を燃焼させて燃焼ガスを生成し、この
燃焼ガス流の中に伝熱管群を設けて燃焼ガスの熱を回収
する装置においては、燃焼ガスの中に含まれる燃料の未
燃分や灰等の粉塵による伝熱管表面の摩耗が生ずること
が知られている。
In a device that burns solid fuel such as coal to generate combustion gas and installs a heat transfer tube group in this combustion gas flow to recover the heat of the combustion gas, the unburned fuel contained in the combustion gas It is known that the heat transfer tube surface is abraded by dust such as dust and ash.

第5図は紙面向って左の燃焼装置(図示省略)で生成さ
れた燃焼ガスが矢印Aの方向に流入したのち更に紙面上
方から下方に向う流れBとなり、この流れの中に伝熱管
1が配設された状態を示し、第8図は第1図のVIII-VII
I線に沿う部分平面図であって、伝熱管1が炉壁2の近
傍で上下方向に屈曲した部分を上方から下方に向けて見
た図で、燃焼ガスは流路13を紙面に垂直の方向(つまり
上から下)に流れるが、炉壁2の近傍と炉壁2から離れ
た部分とでは流路面積が異なるため、流路位置により燃
焼ガス流速に差を生ずる。
In FIG. 5, combustion gas generated by a combustion device (not shown) on the left side of the drawing flows in the direction of arrow A, and then becomes a flow B further downward from the top of the drawing. FIG. 8 shows the installed state, and FIG. 8 shows VIII-VII of FIG.
FIG. 1 is a partial plan view taken along line I, showing a portion of the heat transfer tube 1 bent in the vertical direction in the vicinity of the furnace wall 2 as seen from above, showing that the combustion gas has a flow path 13 perpendicular to the paper surface. Although it flows in the direction (that is, from the top to the bottom), since the flow passage area is different between the vicinity of the furnace wall 2 and the portion distant from the furnace wall 2, the combustion gas flow velocity varies depending on the flow passage position.

第9図は第8図のIX-IX線に沿って見た断面図で、流速
線Cは伝熱管隙間部14を流れる燃焼ガスの流速の差を概
念的に示し、炉壁2に近いほど、流速が大きいことを示
している。伝熱管の管列部分を通過する燃焼ガスの流れ
は管列の流れに対する抵抗により減速されるが、伝熱管
屈曲部近くでは炉壁2との隙間があるため流炉面積が広
くて抵抗が少なく、伝熱管で遮られた燃焼ガスが流入し
て流速が増加する。この局部的な流量・流速の増加は偏
流と呼ばれている。
FIG. 9 is a sectional view taken along the line IX-IX in FIG. 8, and the flow velocity line C conceptually shows the difference in the flow velocity of the combustion gas flowing through the heat transfer tube gap portion 14, and the closer it is to the furnace wall 2. , Shows that the flow velocity is high. The flow of the combustion gas passing through the tube row portion of the heat transfer tube is slowed down by the resistance to the flow of the tube row. However, since there is a gap with the furnace wall 2 near the bent portion of the heat transfer tube, the flow furnace area is large and the resistance is small. The combustion gas blocked by the heat transfer tube flows in, and the flow velocity increases. This local increase in flow rate and flow velocity is called drift.

この他の部分に比較して流速の早い燃焼ガスに含まれて
いる燃料の未燃分や灰が、伝熱管表面に衝突して摩耗が
生じ、この摩耗量は燃焼ガス流速の2〜3乗に比例して
増大する。前記燃焼ガスの偏流は、一般に炉壁もしくは
燃焼ガス流路側壁に接近して設けられた伝熱管屈曲部に
多く、従って燃焼ガスに含まれている粉塵による摩耗
も、第5図に示されるように伝熱管屈曲部Dや管寄せの
近分Eに生ずることが多い。特に燃焼ガスは燃焼装置に
おいて生成されたのち、燃焼装置に隣接して設けられた
伝熱管群を内装する燃焼ガス流路に導入される場合が多
く、第5図に示されるように矢印Aの方向に流入した燃
焼ガスが矢印Bの方向に向きを変える際に、燃焼ガス中
に含まれている粉塵が、その慣性で流路の後壁部14側に
集まる傾向があり、これらの粉塵による摩耗は、必ずし
も屈曲部に限定されていない。
The unburned fuel and ash contained in the combustion gas with a higher flow velocity than other parts collide with the surface of the heat transfer tube to cause wear, and this wear amount is the power of the combustion gas to the power of 2-3. Increases in proportion to. The uneven flow of the combustion gas is generally large at the bent portion of the heat transfer tube provided close to the furnace wall or the side wall of the combustion gas passage, and therefore wear due to dust contained in the combustion gas is also shown in FIG. In many cases, it occurs in the bent portion D of the heat transfer tube and the near portion E of the tube draw. In particular, after the combustion gas is generated in the combustion device, it is often introduced into the combustion gas flow path that houses the heat transfer tube group provided adjacent to the combustion device, and as shown in FIG. When the combustion gas flowing in the direction changes in the direction of the arrow B, the dust contained in the combustion gas tends to collect on the rear wall portion 14 side of the flow path due to its inertia. Wear is not necessarily limited to bends.

第10図に示されるように、複数の伝熱管が水平に配置さ
れており、更に伝熱管が上下方向に並べられてグループ
をなし、各グループの間が上下方向の燃焼ガス流路を形
成している場合、特に伝熱管屈曲部付近の燃焼ガスは上
下に並んだ伝熱管の間に曲りこむ形の流れとなり、各々
の伝熱管の水平からほぼ45度上方の表面が、燃焼ガス中
の粉塵に衝撃されて摩耗を生ずる。
As shown in FIG. 10, a plurality of heat transfer tubes are horizontally arranged, and the heat transfer tubes are further arranged in a vertical direction to form a group, and a vertical combustion gas flow path is formed between each group. In particular, the combustion gas near the bent portion of the heat transfer tube becomes a flow that bends between the heat transfer tubes arranged vertically, and the surface of each heat transfer tube approximately 45 degrees above the horizontal is dust in the combustion gas. It is subject to abrasion and wear.

上述の如き伝熱管摩耗を防止するために、従来第6図、
第7図に示されるように、炉壁(もしくは燃焼ガス流路
壁)2側にプレート10を、伝熱管1の屈曲部にフィン11
をそれぞれ溶接して取付け、伝熱管屈曲部における燃焼
ガス中の粉塵による摩耗を防止する方法が知られてい
る。
In order to prevent wear of the heat transfer tube as described above, FIG.
As shown in FIG. 7, a plate 10 is provided on the furnace wall (or combustion gas passage wall) 2 side, and a fin 11 is provided on the bent portion of the heat transfer tube 1.
There is known a method of attaching each of them by welding to prevent wear due to dust in the combustion gas at the bent portion of the heat transfer tube.

〔考案が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術においては、伝熱管屈曲部における偏流に
起因する摩耗は防止されるものの、燃焼ガス流路の後壁
側よりの粉塵濃度の高い燃焼ガスによる屈曲部以外の伝
熱管群の摩耗防止については配慮が不足していた。
In the above-mentioned conventional technique, although wear due to uneven flow in the bent portion of the heat transfer tube is prevented, about wear prevention of the heat transfer tube group other than the bent portion due to the combustion gas having a high dust concentration from the rear wall side of the combustion gas passage. Was lacking in consideration.

本考案の課題は、燃焼ガス中に含まれる粉塵が伝熱管表
面に当る速度を低減し、粉塵による伝熱管表面の摩耗を
少なくするにある。
An object of the present invention is to reduce the speed at which the dust contained in the combustion gas hits the surface of the heat transfer tube and reduce the wear of the surface of the heat transfer tube due to the dust.

〔問題点を解決するための手段〕[Means for solving problems]

上記の課題は、多数の孔を設けたじゃま板を、燃焼ガス
の流れをじゃまする方向に、摩耗防止の対象となる伝熱
管部に対応する燃焼ガスの流路断面全体に亘って該伝熱
管部の燃焼ガス流上流側に配置してなる伝熱管損傷防止
装置により達成される。
The above-mentioned problem is that the baffle plate provided with a large number of holes is provided in the direction in which the flow of the combustion gas is obstructed, over the entire cross section of the flow path of the combustion gas corresponding to the heat transfer pipe portion targeted for wear prevention. This is achieved by a heat transfer tube damage prevention device arranged upstream of the combustion gas flow in the section.

〔作用〕[Action]

じゃま板に設けられた孔が燃焼ガスの流量を制限するオ
リフィスとして作用し、この孔を通過した後流路断面積
が増加するので、燃焼ガスの流速がじゃま板通過前より
低下する。燃焼ガスが孔を通過する際に、孔の縁からう
ける抵抗も燃焼ガスの流速を下げる作用をする。燃焼ガ
スの流速が低下すると燃焼ガス中に浮遊している粉塵の
流速も低下し、粉塵が伝熱管表面に当る速度も低下す
る。また、粉塵が一旦じゃま板に衝突し、それまでに粉
塵が得ていた運動エネルギがじゃま板により吸収される
ので、じゃま板の孔を通過したあと粉塵が得る流速は、
じゃま板通過直後は大きい値とならない。また、じゃま
板は伝熱管を囲ってしまうのでなく、伝熱管の上流側に
配置されるので、その伝熱面積を少なくすることもな
い。
The hole provided in the baffle acts as an orifice for limiting the flow rate of the combustion gas, and the flow passage cross-sectional area increases after passing through this hole, so that the flow velocity of the combustion gas becomes lower than that before the passage of the baffle plate. When the combustion gas passes through the hole, the resistance received from the edge of the hole also acts to reduce the flow velocity of the combustion gas. When the flow velocity of the combustion gas decreases, the flow velocity of the dust floating in the combustion gas also decreases, and the speed at which the dust hits the surface of the heat transfer tube also decreases. Also, since the dust once collides with the baffle and the kinetic energy that the dust had acquired up to that point is absorbed by the baffle, the flow velocity of the dust obtained after passing through the baffle plate is:
The value does not become large immediately after passing the baffle. Further, since the baffle plate is arranged not on the heat transfer tube but on the upstream side of the heat transfer tube, the heat transfer area is not reduced.

〔実施例〕〔Example〕

本考案の実施例を第1図及び第2図を参照して説明す
る。水冷炉壁2で形成された燃焼ガス流路に配設された
伝熱管1は上下方向に配置された支持管3により支持さ
れ、第1図のII-II線に沿う側面図である第2図に示さ
れるように、伝熱管1は上下方向に屈曲して180度向き
を変えると共に、その屈曲部のふところに同様に屈曲す
る他の伝熱管が一つのグループをなして配設されてい
る。この一つのグループの内の最上段伝熱管1Aの上面及
び、前記支持管3の側面に接して水平方向にL形鋼8が
配設され、Uボルト9により前記支持管3に固定されて
いる。前記最上段伝熱管1Aの上面より高い位置の炉壁2
に帯板16が水平方向に固着され、この帯板16に多数の小
孔17を備えたじゃま板6の端部が固着されている。じゃ
ま板6は前記帯板16に平行な折れ線18に沿って下方に折
り曲げられており、折り曲げられた側の端は前記L形鋼
8に摺動可能に載置されている。じゃま板は、板厚3.2m
mのSUS304で作られ、小孔17の径は9mm、孔ピッチは第2
図に示すように13.5mmと11.7mmである。本実施例の場合
のじゃま板の開孔率は40%である。
An embodiment of the present invention will be described with reference to FIGS. 1 and 2. 2 is a side view taken along line II-II of FIG. 1 in which a heat transfer tube 1 arranged in a combustion gas flow path formed by a water-cooled furnace wall 2 is supported by a support tube 3 arranged vertically. As shown in the figure, the heat transfer tube 1 is bent in the vertical direction to change its direction by 180 degrees, and other heat transfer tubes which are also bent at the corner of the bent portion are arranged in a group. . The L-shaped steel 8 is horizontally arranged in contact with the upper surface of the uppermost heat transfer tube 1A in this one group and the side surface of the support tube 3, and is fixed to the support tube 3 by a U bolt 9. . Furnace wall 2 at a position higher than the upper surface of the uppermost heat transfer tube 1A
The strip 16 is horizontally fixed to the strip 16, and the end of the baffle 6 having a large number of small holes 17 is fixed to the strip 16. The baffle plate 6 is bent downward along a fold line 18 parallel to the strip plate 16, and the end on the bent side is slidably mounted on the L-shaped steel 8. Baffle board is 3.2m thick
Made of m SUS304, small holes 17 diameter is 9mm, hole pitch is second
As shown in the figure, they are 13.5 mm and 11.7 mm. In the case of this example, the baffle plate has an aperture ratio of 40%.

上述のじゃま板6に粉塵を含む燃焼ガスが当ると、小孔
17によってじゃま板6を通過する燃焼ガス量が制限さ
れ、じゃま板6を通過した後は燃焼ガス流路断面積が再
び大きくなるので、燃焼ガスの流速が低下し、燃焼ガス
中に浮遊している粉塵の流速もじゃま板通過後低下す
る。また、燃焼ガスがじゃま板6に当ると、燃焼ガス中
の粉塵でじゃま板に当るものも多数生じ、これ等の粉塵
は、それまで持っていた運動エネルギを失い、速度が零
となったのち再び燃焼ガスによって運ばれるので、流速
が低下する。上述のように粉塵の流速が低下したので、
粉塵が伝熱管に生ずる摩耗量も低減された。
When combustion gas containing dust hits the baffle plate 6 described above, small holes are generated.
The amount of combustion gas that passes through the baffle plate 6 is limited by 17 and, after passing through the baffle plate 6, the cross-sectional area of the combustion gas flow path increases again, so the flow velocity of the combustion gas decreases, and it floats in the combustion gas. The flow velocity of the dust is also reduced after passing through the baffle. Further, when the combustion gas hits the baffle plate 6, many dust particles in the combustion gas hit the baffle plate, and these dust particles lose their kinetic energy that they had until then and the velocity becomes zero. Since it is carried again by the combustion gas, the flow velocity decreases. Since the dust flow velocity has decreased as described above,
The amount of dust generated on the heat transfer tube was also reduced.

尚伝熱管群が装備されている部分の燃焼ガス流路断面積
Sは、燃焼ガス流路の伝熱管が装備されていない部分の
断面積から、全ての最上段伝熱管1Aを燃焼ガス流れ方向
に投影した面積Kを差し引いた値であり、孔あき板をじ
ゃま板とするときのじゃま板の開孔率Mは、 であることが望ましい。孔の径は、伝熱管の径より小さ
く、粉塵の平均径の3倍より大きい方が望ましい。
The combustion gas flow passage cross-sectional area S of the portion equipped with the heat transfer tube group is determined from the cross-sectional area of the portion of the combustion gas flow passage not equipped with the heat transfer tubes by setting all uppermost heat transfer tubes 1A in the combustion gas flow direction. Is the value obtained by subtracting the area K projected onto the plate, and the aperture ratio M of the baffle plate when the baffle plate is a perforated plate is Is desirable. The diameter of the holes is preferably smaller than the diameter of the heat transfer tube and larger than three times the average diameter of the dust.

また、本実施例によれば、炉壁2と伝熱管1の熱膨張の
大きさ、方向の差が生じても、じゃま板6はL形鋼8に
摺動可能に載置されているので、じゃま板6がL形鋼上
を容易に摺動し、過大な応力が発生することがない。
Further, according to the present embodiment, the baffle plate 6 is slidably mounted on the L-shaped steel 8 even if there is a difference in the magnitude and direction of thermal expansion between the furnace wall 2 and the heat transfer tube 1. The baffle plate 6 easily slides on the L-shaped steel, and excessive stress does not occur.

次に本考案の参考例を第3図及び第4図を参照して説明
する。前記実施例においてはじゃま板6を燃焼ガス流路
方向に対してほぼ垂直になるように設置したが、参考例
においては、上下方向に屈曲している伝熱管1のグルー
プの側面に接して、金網7からなるじゃま板を燃焼ガス
流れ方向に対してほぼ平行に、伝熱管に固縛・装着した
ものである。このじゃま板により、じゃま板を通過して
伝熱管側に曲りこむ燃焼ガスの流速が低下し、燃焼ガス
に含まれる粉塵の速度もおちるので、屈曲部付近の伝熱
管の斜め45度上方向の表面に生ずる摩耗も少なくなる。
また、本実施例においては金網7が燃焼ガス流路に対し
てほぼ平行に設けられたので、燃焼ガスのドラフト増加
をきたすことがない。
Next, a reference example of the present invention will be described with reference to FIGS. In the embodiment, the baffle plate 6 is installed so as to be substantially perpendicular to the combustion gas flow path direction, but in the reference example, the baffle plate 6 is in contact with the side surface of the group of the heat transfer tubes 1 bent in the vertical direction, The baffle plate made of the wire netting 7 is fixed and attached to the heat transfer tube substantially parallel to the flow direction of the combustion gas. This baffle reduces the flow velocity of the combustion gas that passes through the baffle and bends toward the heat transfer tube, and the velocity of the dust contained in the combustion gas also declines. The surface wear is also reduced.
Further, in this embodiment, since the wire netting 7 is provided substantially parallel to the combustion gas passage, the draft of the combustion gas is not increased.

更に上記実施例は伝熱管への溶接を行うことなく装着が
可能であり、溶接による伝熱管材料の熱影響について考
慮する必要がない。尚前記第1の実施例においては、じ
ゃま板を一段だけ装着しているが、必要に応じて上下に
複数段配置することも当然可能であり、実施例の孔あき
プレートの代りに金網をじゃま板に用いることも、可能
である。
Further, in the above embodiment, the heat transfer tube can be mounted without welding, and it is not necessary to consider the heat effect of the heat transfer tube material due to welding. Although only one baffle plate is attached in the first embodiment, it is of course possible to arrange a plurality of baffle plates up and down if necessary, and instead of the perforated plate of the embodiment, a wire mesh is obstructed. It is also possible to use it for a plate.

〔考案の効果〕[Effect of device]

本考案によれば、伝熱管の伝熱面積を少なくすることな
く、燃焼ガス中に含まれた粉塵が伝熱管に当る速度を低
減させることが可能となり、伝熱管の表面の粉塵による
摩耗を低減する効果がある。また、燃焼ガス流路のうち
の1か所にじゃま板を設けることにより、その下流側の
複数の伝熱管の粉塵による摩耗を低減することができ
る。
According to the present invention, the speed at which the dust contained in the combustion gas hits the heat transfer tube can be reduced without reducing the heat transfer area of the heat transfer tube, and the wear of the surface of the heat transfer tube due to the dust is reduced. Has the effect of Further, by providing the baffle plate at one location in the combustion gas flow path, it is possible to reduce the wear of the plurality of heat transfer tubes on the downstream side due to the dust.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例を示す平面図であり、第2図は
第1図のII-II線に沿って見た断面図であり、第3図は
本考案の参考例を示す平面図であり、第4図は第3図の
IV-IV線に沿って見た断面図であり、第5図は燃焼ガス
流路内の伝熱管の配置を示す側面図であり、第6図は従
来技術の例を示す平面図であり、第7図は第6図のVII-
VII線に沿って見た断面図であり、第8図は第5図のVII
I-VIII線に沿って見た平面図であり、第9図は第8図の
IX-IX線に沿って見た断面図であり、第10図は第9図の
X−X線に沿って見た断面図である。 1……伝熱管、6……じゃま板、17……孔(小孔)。
1 is a plan view showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. 3 is a plan view showing a reference example of the present invention. FIG. 4 is a diagram of FIG.
FIG. 5 is a cross-sectional view taken along line IV-IV, FIG. 5 is a side view showing an arrangement of heat transfer tubes in a combustion gas passage, and FIG. 6 is a plan view showing an example of a conventional technique. FIG. 7 is VII- of FIG.
FIG. 8 is a sectional view taken along the line VII, and FIG. 8 is a VII of FIG.
FIG. 9 is a plan view taken along the line I-VIII, and FIG. 9 is a plan view of FIG.
FIG. 10 is a sectional view taken along line IX-IX, and FIG. 10 is a sectional view taken along line XX in FIG. 9. 1 ... Heat transfer tube, 6 ... Baffle plate, 17 ... Hole (small hole).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】多数の孔を設けたじゃま板を、燃焼ガスの
流れをじゃまする方向に、摩耗防止の対象となる伝熱管
部に対応する燃焼ガスの流路断面全体に亘って該伝熱管
部の燃焼ガス流上流側に配置してなる伝熱管損傷防止装
置。
Claim: What is claimed is: 1. A baffle plate provided with a large number of holes, in the direction of obstructing the flow of combustion gas, over the entire cross section of the flow path of the combustion gas corresponding to the heat transfer tube portion to be subjected to wear prevention. Transfer pipe damage prevention device located upstream of the combustion gas flow in this section.
JP1987198087U 1987-12-25 1987-12-25 Heat transfer tube damage prevention device Expired - Lifetime JPH0711326Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987198087U JPH0711326Y2 (en) 1987-12-25 1987-12-25 Heat transfer tube damage prevention device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987198087U JPH0711326Y2 (en) 1987-12-25 1987-12-25 Heat transfer tube damage prevention device

Publications (2)

Publication Number Publication Date
JPH01101090U JPH01101090U (en) 1989-07-06
JPH0711326Y2 true JPH0711326Y2 (en) 1995-03-15

Family

ID=31699893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987198087U Expired - Lifetime JPH0711326Y2 (en) 1987-12-25 1987-12-25 Heat transfer tube damage prevention device

Country Status (1)

Country Link
JP (1) JPH0711326Y2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6076708U (en) * 1983-10-25 1985-05-29 三菱重工業株式会社 fluid heating device
JPS61101279U (en) * 1984-12-05 1986-06-27

Also Published As

Publication number Publication date
JPH01101090U (en) 1989-07-06

Similar Documents

Publication Publication Date Title
KR101036979B1 (en) Exhaust gas treating apparatus
JP2606757B2 (en) Internal impact particle separator for circulating fluidized bed combustor
CA1264606A (en) Fluidized bed combustor having integral solids separator
JPH0724731B2 (en) Discharge control body of collision type solid matter collector
US4202280A (en) Furnace flue apparatus for improved fly ash separation
US7100521B2 (en) Baffle for increased capture of popcorn ash in economizer hoppers
CN210740368U (en) Economizer with water conservancy diversion structure
JP6847649B2 (en) Boiler, how to assemble the boiler and how to install the rectifying member
TWI626984B (en) Exhaust gas treatment device
JPH0711326Y2 (en) Heat transfer tube damage prevention device
WO2017181548A1 (en) Rotary kiln combustion chamber
CN112354359B (en) Fly ash uniform dispersing device for top of SCR reactor
JPH0634103A (en) Erosion preventing device of heat transfer pipes for boiler
KR100635764B1 (en) Apparatus for preventing the heat exchange tube against erosion occurred in solid fuel fired system such as solid fuel fired incineration unit or boiler furnace using particle separation device
CN105927975B (en) A kind of air distribution plate, selective deslagging device and multipath circulating fluidized bed boiler
JPH0536485Y2 (en)
CN218820358U (en) Cyclone separator of circulating fluidized bed boiler
US4635713A (en) Erosion resistant waterwall
JP2005055132A (en) Coal burning boiler
CN213237587U (en) Flue duct
CN216171404U (en) Flue gas duct structure and deNOx systems of half tilting rectification grid of adaptation
CN213840897U (en) W-shaped compound wear-resistant device of circulating fluidized bed boiler
CN215863507U (en) Prevent deposition boiler secondary bellows
JP6814727B2 (en) boiler
RU79641U1 (en) BOILER GAS STROKE