[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07118318B2 - Method for producing active material for organic electrolyte battery - Google Patents

Method for producing active material for organic electrolyte battery

Info

Publication number
JPH07118318B2
JPH07118318B2 JP1200844A JP20084489A JPH07118318B2 JP H07118318 B2 JPH07118318 B2 JP H07118318B2 JP 1200844 A JP1200844 A JP 1200844A JP 20084489 A JP20084489 A JP 20084489A JP H07118318 B2 JPH07118318 B2 JP H07118318B2
Authority
JP
Japan
Prior art keywords
lithium
cobalt
active material
discharge capacity
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1200844A
Other languages
Japanese (ja)
Other versions
JPH0364860A (en
Inventor
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP1200844A priority Critical patent/JPH07118318B2/en
Publication of JPH0364860A publication Critical patent/JPH0364860A/en
Publication of JPH07118318B2 publication Critical patent/JPH07118318B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02P70/54

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池用活物質の製造方法に関する
ものである。
TECHNICAL FIELD The present invention relates to a method for producing an active material for an organic electrolyte battery.

従来の技術 有機電解液電池は、水溶液系の電池に比較して放電電圧
やエネルギー密度が高いので、近年その需要が急速に拡
大している。なかでも二酸化マンガンを正極活物質に備
えた電池は、原料が安価であること、放電電圧が3Vと高
いこと、及び自己放電が少ないこと等から、一般に多く
使用されている。
2. Description of the Related Art Organic electrolyte batteries have higher discharge voltage and energy density than aqueous batteries, so that the demand for them has been expanding rapidly in recent years. Among them, batteries provided with manganese dioxide as a positive electrode active material are generally used in many cases because of inexpensive raw materials, high discharge voltage of 3 V, and low self-discharge.

これに対して、正極活物質にリチウム・コバルト複合酸
化物を用いた有機電解液電池は、K.Mizushimaら(Mat.R
es.Bull.,vol.15,783(1980))が初めて提案したもの
である。K.Mizushimaらは、炭酸リチウムと炭酸コバル
トとを混合して空気中で900℃で焼成するとLiCoO2が合
成されること、そしてこのLiCoO2が1M LiBF4/PC(PC:プ
ロピレンカーボネイト)電解液中で優れた充放電可逆性
を示し、リチウムを負極に用いると4Vを越える放電電圧
が得られることを明らかにした。
On the other hand, an organic electrolyte battery using a lithium-cobalt composite oxide as the positive electrode active material is described by K. Mizushima et al.
It was first proposed by es.Bull., vol.15,783 (1980)). K. Mizushima et al. Reported that LiCoO 2 was synthesized when lithium carbonate and cobalt carbonate were mixed and fired at 900 ° C. in air, and that this LiCoO 2 was a 1M LiBF 4 / PC (PC: propylene carbonate) electrolyte Among them, it showed excellent reversibility of charge and discharge, and it was clarified that a discharge voltage of more than 4V was obtained when lithium was used for the negative electrode.

発明が解決しようとする課題 しかし、その後、このLiCoO2(リチウム・コバルト複合
酸化物)を正極活物質に用いた有機電解液電池に関する
報告はほとんどない。
However, since then, there have been few reports on organic electrolyte batteries using this LiCoO 2 (lithium-cobalt composite oxide) as a positive electrode active material.

そこで発明者は、このリチウム・コバルト複合酸化物の
合成を試みたところ、放電容量が原料混合比によって大
きな影響を受けることを見出した。すなわち、第1図の
(1)に示すように、炭酸リチウムと炭酸コバルトとの
混合物から得られたリチウム・コバルト複合酸化物は、
コバルトとリチウムとの混合比(原子比)が1の場合に
放電容量(リチウムのインターカーレーション数)が最
大であった。そして、コバルトに対するリチウムの混合
比が1未満になっても、1を越えても放電容量が急激に
減少することがわかった。
Then, the inventor tried to synthesize this lithium-cobalt composite oxide, and found that the discharge capacity was greatly affected by the raw material mixing ratio. That is, as shown in (1) of FIG. 1, the lithium-cobalt composite oxide obtained from the mixture of lithium carbonate and cobalt carbonate is
When the mixing ratio (atomic ratio) of cobalt and lithium was 1, the discharge capacity (lithium intercalation number) was the maximum. It was also found that the discharge capacity sharply decreased even when the mixing ratio of lithium to cobalt was less than 1 or exceeded 1.

上記の結果から、コバルトとリチウムとの混合比を厳密
に1:1に調整することが、極めて重要であるといえる。
しかしこのような精密な混合を行うためには、長時間の
混合や、いくつかの混合方法の併用が必要なので、電池
の生産コストの上昇を招く。また、大量生産する場合に
は、原料粉末の混合比を均一にすることは容易ではな
い。
From the above results, it can be said that strictly adjusting the mixing ratio of cobalt and lithium to 1: 1 is extremely important.
However, in order to perform such precise mixing, it is necessary to mix for a long period of time and use a combination of several mixing methods, which leads to an increase in the production cost of the battery. Further, in mass production, it is not easy to make the mixing ratio of the raw material powders uniform.

そこで、混合物に多少の組成の不均一があっても、その
事が放電容量の低下の原因とならないような新しい活物
質の合成方法が求められていた。
Therefore, there has been a demand for a new method for synthesizing an active material that does not cause a decrease in discharge capacity even if the composition has some non-uniform composition.

課題を解決するための手段 本発明は、コバルト化合物とリチウム化合物とを、コバ
ルトに対するリチウムの原子比が、1以上10以下になる
ように混合して熱分解し、次に水または有機物を用いて
洗浄処理したのち乾燥することによってリチウム・コバ
ルト複合酸化物を合成することを特徴としている。そし
て、その効果をより一層明確にするためには、前記の洗
浄処置を超音波洗浄とすることが望ましい。
Means for Solving the Problems In the present invention, a cobalt compound and a lithium compound are mixed and thermally decomposed so that the atomic ratio of lithium to cobalt is 1 or more and 10 or less, and then water or an organic substance is used. It is characterized in that a lithium-cobalt composite oxide is synthesized by washing and then drying. Then, in order to further clarify the effect, it is desirable that the cleaning treatment is ultrasonic cleaning.

作用 発明者は、原料混合時にリチウムに対するコバルトの混
合原子比(以下Li/Coと記述する)が1の場合に、放電
容量が最大になる原因について検討した。その結果、後
述の実施例に詳しく述べるように、放電容量の低下は、
熱分解生成物中にコバルト酸化物または未反応の原料リ
チウム化合物を不純物として含むことに起因するもので
あることを見出した。さらに、熱分解生成物に洗浄処理
を施すと、コバルト酸化物の除去は困難であるが、未反
応の原料リチウム化合物が効果的に除去できること、お
よび超音波洗浄を行うと不純物をより効果的に除去でき
ること、また、洗浄処理を行っても活物質の充放電電圧
の低下や放電容量の減少を招かないこと、さらに、リチ
ウムがあまりに過剰になると未反応原料の洗浄除去が困
難になるので、Li/Co≦10が望ましいことを明らかにし
た。
Action The inventor has examined the cause of the maximum discharge capacity when the mixed atomic ratio of cobalt to lithium (hereinafter referred to as Li / Co) is 1 when the raw materials are mixed. As a result, as described in detail in Examples below, the decrease in discharge capacity is
It was found that this is due to the inclusion of cobalt oxide or unreacted starting lithium compound as an impurity in the thermal decomposition product. Furthermore, although it is difficult to remove the cobalt oxide when the thermal decomposition product is subjected to cleaning treatment, it is possible to effectively remove the unreacted starting lithium compound, and the ultrasonic cleaning makes the impurities more effective. Lithium can be removed, and even if the washing treatment is performed, the charging / discharging voltage of the active material does not decrease and the discharge capacity does not decrease. Furthermore, if lithium is excessive, it is difficult to wash and remove the unreacted raw material. It was clarified that / Co ≦ 10 is desirable.

すなわち、発明者は、独自の研究によってリチウム過剰
な混合比(Li/Coが1以上10以下)で原料を混合したの
ち、熱分解して洗浄処理を行うことにより、混合時の組
成の不均一が放電容量のばらつきに及ぼす影響を少なく
できることを初めて見出した。
That is, the inventor conducted an original study to mix the raw materials at an excessive lithium mixing ratio (Li / Co is 1 or more and 10 or less), and then pyrolyzes the mixture to perform a cleaning treatment, resulting in a nonuniform composition during mixing. It was found for the first time that the influence of the above on the dispersion of the discharge capacity can be reduced.

実施例 炭酸リチウムと炭酸コバルトとをLi/Co=0.4,Li/Co=1.
0及びLi/Co=2.0の種々の割合で混合して空気中で900℃
で20時間熱分解してリチウム・コバルト複合酸化物を合
成した。
Example Li / Co = 0.4, Li / Co = 1.
Mix in various ratios of 0 and Li / Co = 2.0 and 900 ℃ in air
It was pyrolyzed for 20 hours to synthesize a lithium-cobalt composite oxide.

この熱分解生成物をX線回折分析した結果、Li/Co=0.4
の熱分解生成物にはLiCoO2の回折ピークとCoO及びCo3O4
と考えられる回折ピークとが認められた。また、Li/Co
=1.0の熱分解生成物には、LiCoO2の回折ピークのみが
認められた。そしてLi/Co=2.0の熱分解生成物には、Li
CoO2の回折ピークとLi2Co3と考えられる回折ピークとが
認められた。
As a result of X-ray diffraction analysis of this thermal decomposition product, Li / Co = 0.4
The thermal decomposition products of LiCoO 2 include CoO and Co 3 O 4
It was confirmed that the diffraction peak was considered to be. Also, Li / Co
Only the diffraction peak of LiCoO 2 was observed in the thermal decomposition product of 1.0. And the Li / Co = 2.0 thermal decomposition product contains Li
A diffraction peak of CoO 2 and a diffraction peak considered to be Li 2 Co 3 were observed.

上記の結果から、第1図の(1)において、放電容量が
Li/Co=1.0で最大になる原因は、Li/Co=1.0の場合に熱
分解生成物中に含まれる不純物が最も少ないことに起因
するものと考えられる。すなわち、Li/Co<1.0の焼成物
では、コバルトの酸化物を不純物として含み、Li/Co>
1.0の焼成物では、炭酸リチウムを不純物として含むこ
とに起因するものと考えられる。
From the above results, in (1) of FIG. 1, the discharge capacity is
It is considered that the cause of the maximum at Li / Co = 1.0 is due to the minimum amount of impurities contained in the thermal decomposition product when Li / Co = 1.0. That is, in the fired product with Li / Co <1.0, cobalt oxide was included as an impurity, and Li / Co>
It is considered that the fired product of 1.0 is caused by containing lithium carbonate as an impurity.

次に、発明者は、焼成物に含まれる不純物を洗浄処理に
よって除去することを試みた。すなわち、焼成物を精製
水を用いて超音波洗浄して、乾燥したのちX線回折分析
を行った。その結果を第1表に示す。同表中には、ASTM
カードのNo.16-427に示されているLiCoO2のX線回折デ
ータ及び洗浄処理を行っていないリチウム・コバルト複
合酸化物(Li/Co=2.0)のX線回折データも示す。
Next, the inventor tried to remove impurities contained in the fired product by a cleaning treatment. That is, the fired product was ultrasonically washed with purified water, dried and then subjected to X-ray diffraction analysis. The results are shown in Table 1. In the table, ASTM
Also shown are the X-ray diffraction data of LiCoO 2 shown in No. 16-427 of the card and the X-ray diffraction data of the lithium-cobalt composite oxide (Li / Co = 2.0) which has not been washed.

Li/Co=0.4を洗浄処理したものには、コバルトの酸化物
(Co3O4,CoO)のものと考えられる回折ピークが洗浄前
と同様に認められたが、Li/Co=1.0及びLi/Co=2.0を洗
浄処理したものは、炭酸リチウム(Li2Co3)と考えられ
る回折ピークが認められなくなった。又、いずれの場合
もLiCoO2のものと考えられる回折ピークは、洗浄の前後
で変化しなかった。
In the case where Li / Co = 0.4 was washed, the diffraction peaks, which are considered to be those of cobalt oxides (Co 3 O 4 , CoO), were observed in the same manner as before washing, but Li / Co = 1.0 and Li In the case where /Co=2.0 was washed, the diffraction peak considered to be lithium carbonate (Li 2 Co 3 ) disappeared. Further, in all cases, the diffraction peak, which is considered to be due to LiCoO 2 , did not change before and after washing.

次に、Li/Co=0.4,Li/Co=1.0及びLi/Co=2.0の熱分解
生成物を流水洗浄したもの、及び超音波洗浄したものを
120℃で6時間熱風乾燥したのち、テフロンディスパー
ジョンと5wt%のアセチレンブラックを添加混合して、
ニッケル金網で包み混んで電極とした。そして、1M LiC
lO4/PC-DME(DME:ジメトキシエタン)電解液中で1mA/cm
2で充放電した。第1図の(2)に流水洗浄した場合
を、また(3)に超音波洗浄した場合の結果を示す。Li
/Co=0.4の熱分解生成物は、放電容量が洗浄前後で変化
が見られないのに対して、Li/Co=2.0の熱分解生成物
は、流水洗浄によって放電容量が増加した。そして、超
音波洗浄した場合には、放電容量が流水洗浄したものよ
りもさらに向上して、Li/Co=1.0の熱分解生成物と同等
の放電容量を示すようになった。
Next, the thermal decomposition products of Li / Co = 0.4, Li / Co = 1.0 and Li / Co = 2.0 were washed with running water and ultrasonically washed.
After hot air drying at 120 ° C for 6 hours, add Teflon dispersion and 5wt% acetylene black and mix,
It was wrapped with a nickel wire mesh and mixed to form an electrode. And 1M LiC
1mA / cm in lO 4 / PC-DME (DME: dimethoxyethane) electrolyte
Charged and discharged at 2 . FIG. 1 (2) shows the results when washed with running water, and (3) shows the results when ultrasonically washed. Li
The thermal decomposition product of /Co=0.4 showed no change in discharge capacity before and after washing, while the thermal decomposition product of Li / Co = 2.0 increased the discharge capacity by washing with running water. Then, in the case of ultrasonic cleaning, the discharge capacity was further improved as compared with that in running water cleaning, and the discharge capacity became equal to that of the thermal decomposition product of Li / Co = 1.0.

ここで、Li/Co=2.0の熱分解生成物について、洗浄によ
る粒子構造の変化を電子顕微鏡により観察した。その電
子顕微鏡写真を第2図に示す。図中(A)は未洗浄のも
の、(B)は流水洗浄を行ったもの、(C)は超音波洗
浄を行ったものである。同図から、活物質表面に付着し
ている微細な結晶が流水洗浄によって若干除去されてお
り、超音波洗浄を行うとさらに完全に除去されることが
わかった。
Here, with respect to the thermal decomposition product of Li / Co = 2.0, changes in the particle structure due to washing were observed with an electron microscope. The electron micrograph is shown in FIG. In the figure, (A) is an unwashed product, (B) is a product washed with running water, and (C) is a product subjected to ultrasonic cleaning. From the figure, it was found that the fine crystals adhering to the surface of the active material were slightly removed by washing with running water, and were further completely removed by ultrasonic cleaning.

Li/Co>1.0の熱分解生成物を水洗洗浄処理した場合に、
放電容量が増加する原因は明確ではないが、上記の結果
から、残留している炭酸リチウムが、水によく溶けるた
めに洗浄処理によって除去できることに起因するものと
考えられる。事実、残留する炭酸リチウムや酸化リチウ
ムを良く溶かすような有機溶媒を用いて洗浄しても同様
の効果が得られた。また、Li/Co<1.0の焼成物は、洗浄
処理によってもCoO,Co2O3等の不純物が水に不溶なため
除去できないので、放電容量はLi/Co=1.0のものよりも
少ないままであると考えられる。
When the thermal decomposition product of Li / Co> 1.0 is washed with water,
Although the cause of the increase in discharge capacity is not clear, it is considered from the above results that the residual lithium carbonate dissolves well in water and can be removed by a washing treatment. In fact, the same effect was obtained by washing with an organic solvent that dissolves the remaining lithium carbonate and lithium oxide well. Moreover, since the impurities such as CoO and Co 2 O 3 are insoluble in water even if the burned material with Li / Co <1.0 cannot be removed even by the cleaning treatment, the discharge capacity remains smaller than that with Li / Co = 1.0. It is believed that there is.

同様の実験を炭酸コバルトや炭酸リチウムのかわりに、
それぞれの金属,酸化物,水酸化物,硝酸塩,ハロゲン
化物または蓚酸塩を用いて混合し、熱分解したのち超音
波洗浄する実験をおこなった。この結果の一部を第3図
に示す。同図では、酸化リチウムと硝酸コバルトとを混
合した場合を(4)に示し、塩化リチウムと水酸化コバ
ルトとを組み合わせた場合を(5)に示し、さらに蓚酸
リチウムと金属コバルトとを混合した場合を(6)に示
す。これらの場合にも、水又は有機物を用いて超音波洗
浄処理したLi/Co>1.0の熱分解生成物は、放電容量がLi
/Co=1.0の場合と同様になった。また同図より、Li/Co
が10以上になると、放電容量が急速に低下していること
がわかる。これは、リチウム量があまりに過剰になると
洗浄の効果が低下することに起因するものと考えられ
る。したがって、Li/Co≦10が望ましいといえる。
Instead of cobalt carbonate or lithium carbonate
An experiment was conducted in which the respective metals, oxides, hydroxides, nitrates, halides or oxalates were mixed, thermally decomposed and then ultrasonically cleaned. A part of this result is shown in FIG. In the figure, the case where lithium oxide and cobalt nitrate are mixed is shown in (4), the case where lithium chloride and cobalt hydroxide are combined is shown in (5), and the case where lithium oxalate and metallic cobalt are mixed is shown. Is shown in (6). Also in these cases, the thermal decomposition products of Li / Co> 1.0 that were ultrasonically cleaned with water or organic matter had a discharge capacity of Li
It became the same as when /Co=1.0. Also, from the figure, Li / Co
It can be seen that when is 10 or more, the discharge capacity is rapidly decreasing. It is considered that this is because the cleaning effect is reduced when the amount of lithium is excessive. Therefore, it can be said that Li / Co ≦ 10 is desirable.

発明の効果 以上述べたように、本発明の活物質製造方法においては
精密な原料混合工程を必要としないため、放電性能の優
れた有機電解液電池用活物質を安価に、また大量に製造
することができる。
EFFECTS OF THE INVENTION As described above, the active material manufacturing method of the present invention does not require a precise raw material mixing step, and therefore an active material for organic electrolyte batteries having excellent discharge performance can be manufactured inexpensively and in large quantities. be able to.

【図面の簡単な説明】[Brief description of drawings]

第1図は、原料混合比が放電容量に及ぼす影響を示した
図である。第2図(A)〜(C)は、それぞれ未洗浄,
流水洗浄,超音波洗浄を行った場合の熱分解生成物の粒
子構造を示した図(電子顕微鏡写真)である。第3図
は、種々の原料を用いた場合の洗浄処理後の熱分解生成
物の放電容量に及ぼす原料混合比の影響を示した図であ
る。
FIG. 1 is a diagram showing the influence of the raw material mixture ratio on the discharge capacity. 2 (A) to (C) show unwashed,
It is the figure (electron micrograph) which showed the particle structure of the thermal decomposition product at the time of running water washing and ultrasonic washing. FIG. 3 is a diagram showing the influence of the raw material mixing ratio on the discharge capacity of the thermal decomposition product after the cleaning treatment when various raw materials are used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コバルト化合物とリチウム化合物とを、コ
バルトに対するリチウムの原子比が、1以上10以下にな
るように混合して熱分解し、次に水または有機物を用い
て洗浄処理したのち乾燥してリチウム・コバルト複合酸
化物を合成することを特徴とする有機電解液電池用活物
質の製造方法。
1. A cobalt compound and a lithium compound are mixed so that the atomic ratio of lithium to cobalt is from 1 to 10 and thermally decomposed, and then washed with water or an organic substance and dried. A method for producing an active material for an organic electrolyte battery, which comprises synthesizing a lithium-cobalt composite oxide.
JP1200844A 1989-08-02 1989-08-02 Method for producing active material for organic electrolyte battery Expired - Fee Related JPH07118318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1200844A JPH07118318B2 (en) 1989-08-02 1989-08-02 Method for producing active material for organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1200844A JPH07118318B2 (en) 1989-08-02 1989-08-02 Method for producing active material for organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0364860A JPH0364860A (en) 1991-03-20
JPH07118318B2 true JPH07118318B2 (en) 1995-12-18

Family

ID=16431154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1200844A Expired - Fee Related JPH07118318B2 (en) 1989-08-02 1989-08-02 Method for producing active material for organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07118318B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211933A (en) * 1991-04-23 1993-05-18 Bell Communications Research, Inc. Method for preparation of LiCoO2 intercalation compound for use in secondary lithium batteries
DE69409352T2 (en) * 1993-12-24 1998-07-23 Sharp Kk Non-aqueous secondary battery, active material for positive electrode and process for its manufacture
KR20010090982A (en) * 2000-04-08 2001-10-22 최용실 Copper is used to help deodorization
KR100821523B1 (en) * 2006-08-30 2008-04-14 주식회사 엘 앤 에프 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery coprising the same
JP5245538B2 (en) * 2008-05-27 2013-07-24 株式会社豊田中央研究所 Manufacturing method of water-based lithium ion secondary battery
JP2010126422A (en) 2008-11-28 2010-06-10 Panasonic Corp Method for producing lithium-containing compound oxide and non-aqueous secondary battery
WO2010064440A1 (en) 2008-12-04 2010-06-10 戸田工業株式会社 Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
CN102939263B (en) 2010-06-09 2015-05-06 户田工业株式会社 Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121260A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Lightweight secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121260A (en) * 1986-11-08 1988-05-25 Asahi Chem Ind Co Ltd Lightweight secondary battery

Also Published As

Publication number Publication date
JPH0364860A (en) 1991-03-20

Similar Documents

Publication Publication Date Title
KR101021991B1 (en) Positive electrode material for lithium secondary battery and process for producing the same
US7655358B2 (en) Positive active material composition for rechargeable lithium battery and method of preparing positive electrode using same
KR100989537B1 (en) Particulate positive electrode active material for lithium secondary cell
US5820790A (en) Positive electrode for non-aqueous cell
CN1186351A (en) Positive active material for lithium battery, lithium battery having the same, and method for producing the same
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
KR20050084852A (en) Method for preparing positive electrode active material for lithium secondary cell
JP4318002B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
DE19751552C2 (en) Active material for the cathode of a lithium ion battery and method of manufacture
EP1026765B1 (en) Positive active material for lithium secondary battery and method of manufacturing the same
JPH07118318B2 (en) Method for producing active material for organic electrolyte battery
JP3257350B2 (en) Non-aqueous electrolyte secondary battery and method for producing its positive electrode active material
KR19990013782A (en) Method for producing lithium-cobalt composite oxide
JP2001185148A (en) Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JP3289256B2 (en) Method for producing positive electrode active material for lithium battery
JPH11213999A (en) Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JP3312406B2 (en) Lithium / transition metal composite oxide particles, method for producing the same, and non-aqueous electrolyte secondary battery
JPH10279315A (en) Production of lithium-cobalt multiple oxide
JP2001064020A (en) Production of lithium manganate
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
JPH0834102B2 (en) Organic electrolyte battery active material and method for producing the same
JP2002231246A (en) Positive electrode active maerail for nonaqueous electrolyte secondary battery and method of manufacturing the same
CA2298095C (en) Lithium secondary battery
JPH10172569A (en) Lithium secondary battery and manufacture of its positive electrode active material
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees