[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH07116605B2 - Hydrogenated amorphous germanium film, method for producing the film, and electronic device or electronic apparatus using the film - Google Patents

Hydrogenated amorphous germanium film, method for producing the film, and electronic device or electronic apparatus using the film

Info

Publication number
JPH07116605B2
JPH07116605B2 JP63072381A JP7238188A JPH07116605B2 JP H07116605 B2 JPH07116605 B2 JP H07116605B2 JP 63072381 A JP63072381 A JP 63072381A JP 7238188 A JP7238188 A JP 7238188A JP H07116605 B2 JPH07116605 B2 JP H07116605B2
Authority
JP
Japan
Prior art keywords
film
amorphous germanium
refractive index
hydrogenated
latent image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63072381A
Other languages
Japanese (ja)
Other versions
JPH01246362A (en
Inventor
金雄 渡邉
正幸 岩本
浩二 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63072381A priority Critical patent/JPH07116605B2/en
Publication of JPH01246362A publication Critical patent/JPH01246362A/en
Publication of JPH07116605B2 publication Critical patent/JPH07116605B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は水素化アモルファスゲルマニウム膜、その膜の
製造方法及びその膜を使用した光起電力装置、光セン
サ、静電潜像担持体、レーザプリンタ等の電子デバイス
又は電子装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a hydrogenated amorphous germanium film, a method for manufacturing the film, a photovoltaic device using the film, an optical sensor, an electrostatic latent image carrier, The present invention relates to an electronic device or an electronic device such as a laser printer.

(ロ) 従来の技術 光起電力装置、光センサ、静電潜像担持体等の光活性層
又は光導電層としてアモルファスシリコン(以下a−Si
と略記する)半導体が多く用いられている。現在太陽光
発電に用いられる光起電力装置の高効率化、光センサに
おける赤外線センサとしての応用更には静電潜像担持体
としてのLEDプリンタ、レーザプリンタ等への応用に対
して、長波長光感度を持たせるため、a−Siの光学的禁
止帯幅をナローバンドギャップ化する研究が盛んに進め
られている。斯る半導体材料のナローバンドギャップ化
を図る上で、最も有力と考えられている物質がゲルマニ
ウム(Ge)である。
(B) Conventional technology Amorphous silicon (hereinafter referred to as a-Si) as a photoactive layer or a photoconductive layer of a photovoltaic device, a photosensor, an electrostatic latent image carrier, or the like.
Semiconductors are often used. High-efficiency photovoltaic devices currently used for solar power generation, applications as infrared sensors in photosensors, and LED printers as lasers for electrostatic latent images, laser printers, etc. In order to have sensitivity, research on making the optical bandgap of a-Si into a narrow band gap has been actively pursued. Germanium (Ge) is a substance considered to be the most effective in achieving a narrow band gap in such a semiconductor material.

このGeをa−Siに添加することによって当該半導体材料
の光学的禁止帯幅は、その添加量の増加に伴なって約1.
7eVから0.9eVまで任意の値に設定できる反面、Japan Jo
ural of Applied Physics Vol・25 No.1(1986)L54頁
〜L56頁に記載されている如くGe添加量の増加に伴なっ
てネットワークの低密度化が起こり、膜質が低下するこ
とが知られている。
By adding Ge to a-Si, the optical bandgap of the semiconductor material is about 1.
Although it can be set to any value from 7eV to 0.9eV, Japan Jo
ural of Applied Physics Vol.25 No.1 (1986) L54-L56, it is known that the network density decreases with increasing Ge addition amount, and the film quality decreases. There is.

斯るネットワークの改善策として、水素希釈法やトライ
オード法の成膜方法を用いることが提案されている。し
かし、斯る方法によれば光学的禁止帯幅が1.4eV以上の
膜で効果があるものの、Ge添加量の多い膜、換言すると
光学的禁止帯幅が狭い膜に対してはネットワークを改善
するに至っていない。特に、アモルファスゲルマニウム
(以下a−Geと略記する)はSiを含まない分、上記アモ
ルファスシリコンゲルマニウムに比して光学的禁止帯幅
は0.9〜1.0eVと狭く、長波長帯域における光感度特性の
改善に有望視されているものの、膜の低密度化は依然改
善されていないために、欠陥密度が多いのが実情であ
る。従って、光学的禁止帯幅のナローバンドギャップ材
料が求められる光起電力装置、光センサ、静電潜像担持
体等の電子デバイスや、斯る電子デバイスを組込んだ電
子装置にあっては長波長帯域の光感度特性において満足
のいく結果が得られていない。
As a measure for improving such a network, it has been proposed to use a film forming method such as a hydrogen dilution method or a triode method. However, although this method is effective for a film having an optical bandgap of 1.4 eV or more, it improves the network for a film having a large Ge addition amount, in other words, a film having a narrow optical bandgap. Has not reached. In particular, since amorphous germanium (hereinafter abbreviated as a-Ge) does not contain Si, the optical bandgap is narrower at 0.9 to 1.0 eV as compared with the above amorphous silicon germanium, and the photosensitivity characteristic in a long wavelength band is improved. However, the fact that the density of the film is still low has not been improved, so that the defect density is high. Therefore, in a photovoltaic device, an optical sensor, an electrostatic latent image carrier, or other electronic device for which a narrow bandgap material having an optical band gap is required, or in an electronic device incorporating such an electronic device, a long wavelength is used. Satisfactory results have not been obtained in the band photosensitivity characteristics.

(ハ) 発明が解決しようとする課題 本発明は上述の如く光学的禁止帯幅のナローバンドギャ
ップ材料としてa−Geは有望視されているものの、低密
度な膜しか得ることができず、また低密度な膜しか得ら
れないことから欠陥密度が多く当該ナローバンドギャッ
プ材料を用いた電子デバイスや電子装置にあっては長波
長帯域の光感度特性において満足のいく結果が得られて
いない点を解決しようとするものである。
(C) Problem to be Solved by the Invention Although a-Ge is promising as a narrow bandgap material having an optical bandgap as described above, the present invention can obtain only a low-density film and has a low density. Since only dense films can be obtained, there are many defect densities, and in electronic devices and electronic devices that use the narrow bandgap material, satisfactory results cannot be obtained in the photosensitivity characteristics in the long wavelength band. It is what

(ニ) 課題を解決するための手段 本発明は上記課題を解決するために、ナローバンドギャ
ップ材料として水素化されたa−Ge膜を用いると共に、
当該a−Ge膜は1500〜2500nmの波長帯域における屈折率
が約4.0以上であることを特徴とする。また、斯る水素
化a−Ge膜は、基板表面の温度を約225〜275℃とし、反
応容器内に導入される少なくともGeH4ガスを含む原料ガ
スを分解することにより得られる。更に、複数の単位発
電素子を光入射方向に積層した積層型光起電力装置であ
って、1500〜2500nmの波長帯域における屈折率が約4.0
以上の水素化a−Ge膜を光活性層とする単位発電素子を
光入射側から見て背面側に設けると共に、受光面側に配
置された単位発電素子の光活性層は上記a−Ge膜の光学
的禁止帯幅より広いことを特徴とする。
(D) Means for Solving the Problems In order to solve the above problems, the present invention uses a hydrogenated a-Ge film as a narrow band gap material, and
The a-Ge film is characterized by having a refractive index of about 4.0 or more in a wavelength band of 1500 to 2500 nm. Further, such a hydrogenated a-Ge film is obtained by setting the temperature of the substrate surface to about 225 to 275 ° C. and decomposing the source gas containing at least GeH 4 gas introduced into the reaction vessel. Furthermore, in a stacked photovoltaic device in which a plurality of unit power generation elements are stacked in the light incident direction, a refractive index in the wavelength band of 1500 to 2500 nm is about 4.0.
The unit power generating element having the hydrogenated a-Ge film as a photoactive layer is provided on the back side as viewed from the light incident side, and the photoactive layer of the unit power generating element disposed on the light receiving surface side is the a-Ge film. It is characterized by being wider than the optical band gap of.

また、光センサは1500〜2500nmの波長帯域における屈折
率が約4.0以上の水素化a−Ge膜を光活性層としたこと
を特徴とする。更に、静電潜像担持体は1500〜2500nmの
波長帯域における屈折率が約4.0以上の水素化a−Ge膜
を光導電層とし基板の導電表面に配置したことを特徴と
し、またレーザプリンタは斯る静電潜像担持体と、該担
持体に電荷を帯電せしめる帯電手段と、上記担持体に静
電潜像を書き込む赤外線レーザの光ヘッドと、上記静電
潜像を可視像に現像する現像手段と、を備える。
The photosensor is characterized in that the photoactive layer is a hydrogenated a-Ge film having a refractive index of about 4.0 or more in the wavelength band of 1500 to 2500 nm. Further, the electrostatic latent image carrier is characterized in that a hydrogenated a-Ge film having a refractive index of about 4.0 or more in a wavelength band of 1500 to 2500 nm is used as a photoconductive layer and is disposed on the conductive surface of the substrate. Such an electrostatic latent image carrier, charging means for charging the carrier with electric charge, an infrared laser optical head for writing the electrostatic latent image on the carrier, and developing the electrostatic latent image into a visible image. Developing means for

(ホ) 作用 上述の如く水素化a−Ge膜は1500〜2500nmの波長帯域に
おける屈折率が約4.0以上とすることによって、ネット
ワークの高密度化が図れる。更に高密度化が図れること
によって、欠陥密度が減少し膜質の改善されたナローバ
ンドギャップ材料が得られる。また、基板表面の温度を
約225〜275℃とし、反応容器内に導入される少なくとも
GeH4ガスを含む原料ガスを分解することによって、低温
度での基板表面反応不足と高温度での熱分解への移行を
抑制する。
(E) Action As described above, the hydrogenated a-Ge film has a refractive index of about 4.0 or more in the wavelength band of 1500 to 2500 nm, so that the density of the network can be increased. By further increasing the density, a narrow bandgap material having a reduced defect density and improved film quality can be obtained. Further, the temperature of the substrate surface is set to about 225 to 275 ° C., and at least it is introduced into the reaction vessel.
By decomposing the source gas containing GeH 4 gas, the reaction of substrate surface reaction at low temperature and the transition to thermal decomposition at high temperature are suppressed.

(ヘ) 実施例 周知のプラズマCVD法を用いて水素化a−Ge膜を成膜し
た。下記第1表は斯るプラズマCVD法による成膜条件を
示したものである。
(F) Example A hydrogenated a-Ge film was formed by using a well-known plasma CVD method. Table 1 below shows film forming conditions by the plasma CVD method.

第1図は上記プラズマCVD法により得られる水素化a−G
e膜の成膜速度の基板温度依存性を示すものである。斯
る成膜条件においてGeH4ガスに代ってSiH4ガスを用いて
プラズマCVD法により得られる水素化a−Si膜は第1図
に示された水素化a−Ge膜の温度依存性のような顕著な
依存性を示さない。これは、水素化a−Ge膜では水素化
a−Si膜とは異なる特異な反応形態が存在することを示
唆するものである。第2図は斯る成膜速度の特異な温度
依存性が成膜された水素化a−Ge膜に対してどのような
影響力を与えているかを屈折率について測定したもので
ある。斯る屈折率の測定の結果、屈折率は第1図の成膜
速度と密接な関係を有していることが判明した。即ち、
成膜速度が高いほど屈折率が小さく、膜のネットワーク
が低密度となっている。
Figure 1 shows the hydrogenated a-G obtained by the plasma CVD method.
This shows the dependency of the deposition rate of the e-film on the substrate temperature. Under such film forming conditions, the hydrogenated a-Si film obtained by the plasma CVD method using SiH 4 gas instead of GeH 4 gas has the temperature dependence of the hydrogenated a-Ge film shown in FIG. It does not show such remarkable dependence. This suggests that the hydrogenated a-Ge film has a unique reaction mode different from that of the hydrogenated a-Si film. FIG. 2 shows how the specific temperature dependence of the film formation rate has an influence on the formed hydrogenated a-Ge film with respect to the refractive index. As a result of the measurement of the refractive index, it was found that the refractive index has a close relationship with the film forming rate shown in FIG. That is,
The higher the film formation rate, the smaller the refractive index and the lower the density of the film network.

その結果、成膜速度が最も遅い約250℃を中心とした約2
25〜275℃の温度範囲において1500〜2500nmの波長帯域
における屈折率が約4.0以上と高い値が得られることが
判る。即ち、従来a−Ge膜における屈折率としては1986
年11月11日〜14日大阪で開催されたMITI/NEDO−EPRI Jo
int Workshopにおいて発表された3.8程度であり、基板
表面の温度を約225〜275℃に設定することによって、大
幅に屈折率が改善された高密度な水素化a−Ge膜が得ら
れることになる。この要因としては基板温度が低い場合
は基板表面における反応不足のため疎な膜しか形成され
ず、また基板温度が高い場合では原料ガスの分解形態が
プラズマ分解のみならず熱分解に移行して成膜速度が上
昇し疎な膜となったり、仮に密な膜であっても水素が離
脱して最終的には疎な膜となったものと考えられる。従
って、ネットワークの高密度化をもたらす高屈折率なa
−Ge膜を得るためには、基板表面の温度が非常に重要な
ファクタであることが判る。
As a result, the film deposition rate is about 2 ° C, which is the slowest, around
It can be seen that the refractive index as high as about 4.0 or more in the wavelength band of 1500 to 2500 nm can be obtained in the temperature range of 25 to 275 ° C. That is, the refractive index of the conventional a-Ge film is 1986.
MITI / NEDO-EPRI Jo held in Osaka from November 11 to 14, 2014
It was about 3.8 that was announced at the int Workshop, and by setting the substrate surface temperature to about 225 to 275 ° C, a high density hydrogenated a-Ge film with a significantly improved refractive index can be obtained. . The reason for this is that when the substrate temperature is low, only a sparse film is formed due to insufficient reaction on the substrate surface, and when the substrate temperature is high, the decomposition form of the source gas shifts to thermal decomposition as well as plasma decomposition. It is considered that the film speed increased to become a sparse film, or even if the film was a dense film, hydrogen was released and eventually became a sparse film. Therefore, a high refractive index a that brings about a high density of the network
It can be seen that the temperature of the substrate surface is a very important factor for obtaining the -Ge film.

第3図は斯る水素化a−Ge膜のPDS(Photothermal Defl
ection Spectroscopy)スペクトル測定の結果を示す。
高屈折率が得られる250℃で形成した水素化a−Ge膜
は、吸収係数のシャープな減少が見られることから、他
の温度で成膜された低屈折率の水素化a−Ge膜よりエネ
ルギバンドギャップ内の欠陥密度が少ないことを示して
いる。即ち、ネットワークの高密度化は欠陥密度の低減
にも有効に作用し、高品質なナローバンドギャップ材料
であるa−Ge膜を提供する。
Figure 3 shows the PDS (Photothermal Defl) of such hydrogenated a-Ge film.
ection Spectroscopy) Shows the result of spectrum measurement.
The hydrogenated a-Ge film formed at 250 ° C, which can obtain a high refractive index, shows a sharp decrease in absorption coefficient. Therefore, the hydrogenated a-Ge film formed at other temperatures has a lower refractive index. It shows that the defect density in the energy band gap is low. That is, increasing the density of the network effectively acts to reduce the defect density, and provides an a-Ge film that is a high quality narrow band gap material.

第4図は、斯る高品質なa−Ge膜を使用した電子デバイ
スへの適用例としての積層型光起電力装置を示してい
る。この実施例はそれ自体で光電変換動作し得るべく膜
面に平行なpin接合の如き半導体接合を備えた第1〜第
4の単位発電素子(SC1)〜(SC4)をガラス等の透光性
基板(1)のITO、SnO2からなる受光面電極(2)上に
配置し、光入射側から見て最後尾の背面には金属製の背
面電極(3)が設けられた4段積層型光起電力装置であ
る。各単位発電素子(SC1)〜(SC4)は上述の如くpin
接合を備え、光入射があるとその光学的禁止帯幅に基づ
く波長より短波長光に対して主にi型層(i1)〜(i4
において吸収動作し、発電に寄与する電子及び/又は正
孔の光キャリアを発生する。従って、光入射側に設けら
れる第1、第2の単位発電素子(SC1)、(SC2)におい
て光活性層として動作する第1、第2i型層(i1)、
(i2)は光学的禁止帯幅は約1.6〜1.7eVの水素化a−Si
膜からなり、次の第3単位発電素子(SC3)第3i型層(i
3)は光学的禁止帯幅が約1.4eVの水素化a−SiGe膜から
形成され、最後尾の第4単位発電素子(SC4)の第4i型
層(i4)は光学的禁止帯幅が約0.9〜1.0eVであると共に
1500〜2500nmの波長帯域における屈折率が約4.0以上の
水素化a−Ge膜から構成されている。尚、上記第1、第
2i型層(i1)、(i2)の水素化a−Si膜の屈折率は3.4
であり、第3i型層(i3)の水素化a−SiGe膜の屈折率は
3.7と、第1〜第4単位発電素子(SC1)〜(SC4)の各
々のi型層(i1)〜(i4)における屈折率は後段の素子
ほど大きく界面反射を低減する光学的要求を満足してい
る。
FIG. 4 shows a stacked photovoltaic device as an application example to an electronic device using such a high quality a-Ge film. In this embodiment, the first to fourth unit power generating elements (SC 1 ) to (SC 4 ) provided with a semiconductor junction such as a pin junction parallel to the film surface so as to be capable of photoelectric conversion operation by themselves are made of glass or the like. It is placed on the light-receiving surface electrode (2) made of ITO and SnO 2 on the optical substrate (1), and the metal back electrode (3) is provided on the back surface at the rear end as seen from the light incident side. It is a stacked photovoltaic device. Each unit power generation element (SC 1 ) to (SC 4 ) has a pin as described above.
I-type layers (i 1 ) to (i 4 ) that have a junction and are mainly used for light having a wavelength shorter than the wavelength based on the optical band gap when light is incident.
At this point, the photo-carriers of electrons and / or holes, which perform absorption operation and contribute to power generation, are generated. Therefore, the first and second i-type layers (i 1 ) that operate as photoactive layers in the first and second unit power generating elements (SC 1 ) and (SC 2 ) provided on the light incident side,
(I 2 ) is hydrogenated a-Si with an optical band gap of about 1.6 to 1.7 eV.
It is composed of a film, and is composed of the following 3rd unit power generating element (SC 3 ) 3rd i-type layer (i
3 ) is formed from a hydrogenated a-SiGe film having an optical bandgap of about 1.4 eV, and the 4i-th layer (i 4 ) of the 4th unit power generation element (SC 4 ) at the end is an optical bandgap. Is about 0.9-1.0 eV and
It is composed of a hydrogenated a-Ge film having a refractive index of about 4.0 or more in the wavelength band of 1500 to 2500 nm. In addition, the first and the first
The refractive index of the hydrogenated a-Si film of the 2i-type layers (i 1 ) and (i 2 ) is 3.4.
And the refractive index of the hydrogenated a-SiGe film of the third i-type layer (i 3 ) is
3.7, and the optical power of reducing the interface reflection in the i-type layers (i 1 ) to (i 4 ) of each of the first to fourth unit power generating elements (SC 1 ) to (SC 4 ) as much as the latter element Are satisfied with the demand.

斯る本実施例構造の光起電力装置について赤道直下の太
陽光(AM−1、100mW/cm2)を疑似的に照射するソーラ
シミュレータを用いて基本特性を測定した。その結果を
下記第2表に記す。比較のために、第4単位発電素子
(SC4)の第4i型層(i4)として光学的禁止帯幅は同一
であるものの、屈折率が約3.8の水素化a−Ge膜を用い
た以外、同一構成の比較例装置を作成して基本特性を測
定し第2表に併記した。
The basic characteristics of the photovoltaic device having the structure of the present example were measured using a solar simulator that artificially irradiates sunlight (AM-1, 100 mW / cm 2 ) immediately below the equator. The results are shown in Table 2 below. For comparison, a hydrogenated a-Ge film having a refractive index of about 3.8 was used as the fourth i-type layer (i 4 ) of the fourth unit power generation element (SC 4 ) although the optical bandgap was the same. Other than the above, a comparative example device having the same configuration was prepared, basic characteristics were measured, and the results are also shown in Table 2.

このように複数の単位発電素子を光入射方向に積層した
積層型光起電力装置において、受光面側に光学的禁止帯
幅の広いa−Si膜やa−SiGe膜を光活性層(i1)〜
(i3)を備えた第1〜第3単位発電素子(SC1)〜(S
C3)を配置すると共に、斯る第1〜第3単位発電素子
(SC1)〜(SC3)の背面側に光学的禁止帯幅が狭く屈折
率が約4.0以上の水素化a−Ge膜を光活性層(i4)とす
る第4単位発電素子(SC4)を設けることによって、同
じ光学的禁止帯幅であるにも拘らず屈折率が約3.8と小
さい水素化a−Ge膜を光活性層とした第4単位発電素子
を備える比較列装置に比して変換効率にして約16%の向
上がみられた。
In the stacked photovoltaic device in which a plurality of unit power generation elements are stacked in the light incident direction as described above, an a-Si film or an a-SiGe film having a wide optical bandgap is provided on the light receiving surface side of the photoactive layer (i 1 ) ~
(I 3) first to third unit power generating device having a (SC 1) ~ (S
C 3 ), and a hydrogenated a-Ge having a narrow optical band gap and a refractive index of about 4.0 or more on the back side of the first to third unit power generating elements (SC 1 ) to (SC 3 ). By providing a fourth unit power generation element (SC 4 ) having a film as a photoactive layer (i 4 ), a hydrogenated a-Ge film having a small refractive index of about 3.8 despite having the same optical band gap. The conversion efficiency was improved by about 16% as compared with the comparative column device including the fourth unit power generation element having the photoactive layer as a light emitting layer.

第5図は水素化a−Ge膜を波長800〜900nmの赤外領域に
感光のピークが存在する光センサに適用したときの実施
例を示している。即ち、透光性基板(10)の一主面に金
属製のくし型あるいは格子型の集電極構造の受光面電極
(11)を覆ってpin接合型の半導体膜(12)が設けら
れ、最後に金属製の背面電極(13)が積層されている。
上記半導体膜(12)は受光面電極(11)側からみて水素
化a−SiGe膜のp型層(12p)と、光キャリアを発生す
る光活性層として動作する屈折率(1500〜2500nmの波長
帯域の値)約4.0以上の水素化a−Ge膜のi型層(12i)
と、同じく屈折率約4.0以上の水素化a−Ge膜のn型層
(12n)の積層体からなる。このように1500〜2500nmの
波長帯域における屈折率が約4.0以上の水素化a−Ge膜
を光活性層とする光センサは、屈折率が約3.8の水素化
a−Ge膜を光活性層とする従来の光センサに比して、波
長帯域800〜900nmの赤外領域において、短絡光電電流値
にて約20%の上昇が確認された。
FIG. 5 shows an embodiment in which the hydrogenated a-Ge film is applied to an optical sensor having a photosensitive peak in the infrared region of wavelength 800 to 900 nm. That is, a pin-junction type semiconductor film (12) is provided on one main surface of a transparent substrate (10) so as to cover a light-receiving surface electrode (11) of a metal comb-type or lattice-type collector electrode structure. A back electrode (13) made of metal is laminated on.
The semiconductor film (12) is a p-type layer (12p) of a hydrogenated a-SiGe film when viewed from the light-receiving surface electrode (11) side, and a refractive index (wavelength of 1500 to 2500 nm that operates as a photoactive layer that generates photocarriers). I-type layer (12i) of hydrogenated a-Ge film with a band value of about 4.0 or more
And a n-type layer (12n) of hydrogenated a-Ge film having a refractive index of about 4.0 or more. Thus, an optical sensor using a hydrogenated a-Ge film having a refractive index of about 4.0 or more in the wavelength band of 1500 to 2500 nm as a photoactive layer is a hydrogenated a-Ge film having a refractive index of about 3.8 as a photoactive layer. It was confirmed that the short-circuit photoelectric current value increased by about 20% in the infrared region of the wavelength band of 800 to 900 nm, compared with the conventional optical sensor.

第6図は普通紙複写機、レーザプリンタ等の静電潜像担
持体に水素化a−Ge膜を用いたときの適用例を示し、通
常静電潜像担持体は円筒状を呈するが、同図においては
一部分の断面が描かれている。即ち、1500〜2500nmの波
長帯域における屈折率が約4.0以上の水素化a−Ge膜
は、円筒状の基板(20)の導電表面(基板自体がアルミ
ニウム等の導電材料からなる場合はその表面、基板自体
がガラス、耐熱性プラスチック等の絶縁材料とその表面
を被覆するITO、SnO2、金属薄膜等の導電薄膜との複合
体からなる場合は導電薄膜)を覆う光導電層(21)を構
成する。斯る光導電層(21)は光照射を受けた部位が導
電するもので、その表面に電荷を一様に帯電させた後、
選択的に光照射を施すことによって、当該光照射を受け
た部位の光導電層(21)が導通し電荷が放電される。従
って、光導電層(21)の表面には光照射を受けた部位の
電荷が選択的に放電される結果、残留した電荷によって
ポジティブなあるいはネガライブな静電潜像が担持され
る。
FIG. 6 shows an application example in which a hydrogenated a-Ge film is used for an electrostatic latent image carrier such as a plain paper copying machine and a laser printer. Normally, the electrostatic latent image carrier has a cylindrical shape. In the figure, a partial cross section is drawn. That is, the hydrogenated a-Ge film having a refractive index of about 4.0 or more in the wavelength band of 1500 to 2500 nm is a conductive surface of the cylindrical substrate (20) (when the substrate itself is made of a conductive material such as aluminum, its surface, A photoconductive layer (21) is formed to cover the substrate itself, which is a conductive thin film if it consists of a composite of insulating material such as glass or heat-resistant plastic and ITO, SnO 2 , or a conductive thin film such as a metal thin film that covers the surface. To do. Such a photoconductive layer (21) is electrically conductive at a portion irradiated with light, and after uniformly charging the surface thereof,
By selectively irradiating light, the photoconductive layer (21) in the portion that has received the light is electrically connected and the electric charge is discharged. Therefore, the surface of the photoconductive layer (21) is selectively discharged with the electric charge at the portion irradiated with light, and as a result, a positive or negative electrostatic latent image is carried by the remaining electric charge.

このように屈折率が4.0以上の水素化a−Ge膜を静電潜
像を担持する静電潜像担持体の光導電層(21)として用
いることにより、屈折率が3.8の従来の水素化a−Ge膜
を光導電層とする静電潜像担持体に比して帯電能におい
て約10%の増加が図れると共に、800〜900nmの波長帯域
の光感度で約20%の上昇がみられた。
Thus, by using the hydrogenated a-Ge film having a refractive index of 4.0 or more as the photoconductive layer (21) of the electrostatic latent image bearing member carrying an electrostatic latent image, the conventional hydrogenated a-Ge film having a refractive index of 3.8 is used. Compared to an electrostatic latent image carrier having an a-Ge film as a photoconductive layer, the charging ability can be increased by about 10%, and the photosensitivity in the wavelength band of 800 to 900 nm can be increased by about 20%. It was

斯る静電潜像担持体は基板(20)の導電表面に直接光導
電層(21)を形成していたが、基板(20)側からのキャ
リアの注入が発生するようであれば当該基板(20)と光
導電層(21)との間にp型あるいはn型にドープされた
水素化a−Ge膜からなる阻止層を配挿したり、光導電層
(21)の表面にSiN、SiC、SiO等の絶縁体からなる表面
層を適宜設けても良い。
In such an electrostatic latent image carrier, the photoconductive layer (21) was formed directly on the conductive surface of the substrate (20), but if carrier injection from the substrate (20) side occurs, the substrate will be removed. A blocking layer composed of a p-type or n-type doped hydrogenated a-Ge film is inserted between the photoconductive layer (21) and the photoconductive layer (21), or SiN or SiC is formed on the surface of the photoconductive layer (21). A surface layer made of an insulating material such as SiO 2 may be appropriately provided.

第7図は斯る静電潜像担持体を組込んだレーザプリンタ
の概略構成を示している。上記高屈折率の水素化a−Ge
膜の光導電層(21)を備えた円筒状静電潜像担持体(3
0)の外周面に近接して、表面に一様に正あるいは負の
電荷を帯電せしめる帯電手段(31)が設けられ、当該帯
電手段(31)によって電荷が保持された静電潜像担持体
(30)は回転によりレーザビームの照射位置に移動し静
電潜像の書き込み動作が行なわれる。斯る静電潜像の書
き込みは、光導電層(21)が水素化a−Ge膜から構成さ
れ波長800〜900nmの赤外線領域の光感度が約20%上昇し
ている点を考慮し、赤外線レーザ、特に赤外線半導体レ
ーザからなる光ヘッド(32)を用いて行なわれる。即ち
光ヘッド(32)から出射したレーザビームはレンズ系
(33)及び回転多面鏡(34)を経て光導電層(21)に到
達し照射部位の電荷を基板(20)側に流出せしめ残留電
荷により静電潜像を形成する。斯る静電潜像は、担持体
(30)の回転に伴なって現像手段(35)の逆極性に帯電
したトナーにより可視像に現像され、次いで当該トナー
は破線で示す搬送ルートに沿って給紙手段(36)から送
られてきた普通紙に、転写手段(37)上を通過するとき
転写され、排紙トレイ(38)に至る途中で定着手段(3
9)により定着される。転写後の静電潜像担持体(30)
表面はクリーニング手段(40)により残留トナーが除去
されて清浄化され最後に除電手段(41)により除電され
て、次の帯電、書き込み、現像、転写、クリーニングに
至る一連のプロセスに備える。
FIG. 7 shows a schematic structure of a laser printer incorporating such an electrostatic latent image carrier. Hydrogenated a-Ge with high refractive index
Cylindrical electrostatic latent image carrier (3 with photoconductive layer (21)
(0) is provided with a charging means (31) for uniformly charging positive or negative charges on the surface in the vicinity of the outer peripheral surface thereof, and the electrostatic latent image carrier having the charges held by the charging means (31). By rotating, (30) moves to the irradiation position of the laser beam and the electrostatic latent image writing operation is performed. In writing such an electrostatic latent image, considering that the photoconductive layer (21) is composed of a hydrogenated a-Ge film and the photosensitivity in the infrared region of wavelength 800 to 900 nm is increased by about 20%, It is performed by using an optical head (32) composed of a laser, especially an infrared semiconductor laser. That is, the laser beam emitted from the optical head (32) reaches the photoconductive layer (21) through the lens system (33) and the rotating polygon mirror (34), and the charge at the irradiated site is caused to flow out to the substrate (20) side, so that the residual charge To form an electrostatic latent image. Such an electrostatic latent image is developed into a visible image by the toner charged to the opposite polarity of the developing means (35) with the rotation of the carrier (30), and then the toner follows the conveyance route indicated by the broken line. The plain paper sent from the paper feeding means (36) is transferred as it passes over the transfer means (37), and the fixing means (3
It is fixed by 9). Electrostatic latent image carrier after transfer (30)
The surface of the surface is cleaned by removing the residual toner by the cleaning means (40) and finally discharged by the charge removing means (41) to prepare for the next series of processes including charging, writing, development, transfer and cleaning.

(ト) 発明の効果 本発明水素化a−Ge膜は以上の説明から明らかな如く、
ネットワークの高密度化が図れるので、欠陥密度が減少
し膜質の改善されたナローバンドギャップ材料が得られ
る。また、斯る水素化a−Ge膜は、GeH4ガスを原料ガス
とし、基板温度を特定範囲に制御するだけで容易に成膜
することができるので、煩雑な製造工程を経ることもな
い。更に、膜質の改善された水素化a−Ge膜をナローバ
ンドギャップであることが要求される積層型光起電力装
置の背面側単位発電素子の光活性層、赤外用の光センサ
の光活性層、静電潜像担持体の光導電層に用いることに
よって、デバイス自体の特性の向上が図れると共に、上
記静電潜像担持体を組込んだレーザプリンタにあっても
長波長光特性が改善される。
(G) Effect of the Invention The hydrogenated a-Ge film of the present invention is, as is clear from the above description,
Since the density of the network can be increased, a narrow bandgap material having a reduced defect density and improved film quality can be obtained. Further, such a hydrogenated a-Ge film can be easily formed by simply using GeH 4 gas as a source gas and controlling the substrate temperature within a specific range, so that a complicated manufacturing process is not required. Further, a hydrogenated a-Ge film having an improved film quality is required to have a narrow bandgap, a photoactive layer of a rear-side unit power generation element of a stacked photovoltaic device, a photoactive layer of an infrared photosensor, By using it for the photoconductive layer of the electrostatic latent image carrier, the characteristics of the device itself can be improved, and long-wavelength light characteristics can be improved even in the laser printer incorporating the electrostatic latent image carrier. .

【図面の簡単な説明】[Brief description of drawings]

第1図乃至第7図は本発明を説明するためのものであっ
て、第1図は基板温度と成膜速度の関係を示す測定図、
第2図は基板温度と屈折率の関係を示す測定図、第3図
は種々の基板温度により形成された水素化アモルファス
ゲルマニウムのPDSスペクトル特性図、第4図は積層型
光起電力装置の実施例を示す模式的断面図、第5図は光
センサの実施例を示す模式的断面図、第6図は静電潜像
担持体の実施例を示す模式的断面図、第7図はレーザプ
リンタの実施例を示す概念的構成図、を夫々示してい
る。 (SC1)〜(SC4)……第1〜第4単位発電素子、(i1
〜(i4)……第1〜第4i型層、(12)……半導体膜、
(20)……基板、(21)……光導電層、(30)……静電
潜像担持体、(31)……帯電手段、(32)……光ヘッ
ド、(35)……現像手段、(36)……給紙手段、(37)
……転写手段、(39)……定着手段、(40)……クリー
ニング手段、(41)……除電手段。
1 to 7 are for explaining the present invention, and FIG. 1 is a measurement diagram showing the relationship between the substrate temperature and the film formation rate,
Fig. 2 is a measurement diagram showing the relationship between substrate temperature and refractive index, Fig. 3 is a PDS spectrum characteristic diagram of amorphous germanium hydride formed at various substrate temperatures, and Fig. 4 is an implementation of a stacked photovoltaic device. FIG. 5 is a schematic sectional view showing an example of an optical sensor, FIG. 6 is a schematic sectional view showing an example of an electrostatic latent image carrier, and FIG. 7 is a laser printer. And a conceptual configuration diagram showing the embodiment of FIG. (SC 1 ) to (SC 4 ) ... 1st to 4th unit power generating elements, (i 1 )
~ (I 4 ) …… first to fourth i-type layers, (12) …… semiconductor film,
(20) ... Substrate, (21) ... Photoconductive layer, (30) ... Electrostatic latent image carrier, (31) ... Charging means, (32) ... Optical head, (35) ... Development Means, (36) …… Paper feeding means, (37)
...... Transfer means, (39) …… Fixing means, (40) …… Cleaning means, (41) …… Electrifying means.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/205 31/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 21/205 31/04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】1500〜2500nmの波長帯域における屈折率が
約4.0以上の水素化アモルファスゲルマニウム膜。
1. A hydrogenated amorphous germanium film having a refractive index of about 4.0 or more in a wavelength band of 1500 to 2500 nm.
【請求項2】少なくともGeH4ガスを含む原料ガスを反応
容器内に導入し、当該原料ガスを分解して基板表面に水
素化アモルファスゲルマニウム膜を製造する方法であっ
て、上記基板表面の温度を約225〜275℃としたことを特
徴とする水素化アモルファスゲルマニウム膜の製造方
法。
2. A method for producing a hydrogenated amorphous germanium film on a substrate surface by introducing a raw material gas containing at least GeH 4 gas into a reaction vessel and decomposing the raw material gas, wherein the temperature of the substrate surface is controlled. A method for producing a hydrogenated amorphous germanium film, characterized in that the temperature is about 225 to 275 ° C.
【請求項3】複数の単位発電素子を光入射方向に積層し
た積層型光起電力装置であって、1500〜2500nmの波長帯
域における屈折率が約4.0以上の水素化アモルファスゲ
ルマニウム膜を光活性層とする単位発電素子を光入射側
から見て背面側に設けると共に、受光面側に配置された
単位発電素子の光活性層は上記アモルファスゲルマニウ
ム膜の光学的禁止帯幅より広いことを特徴とする積層型
光起電力装置。
3. A stacked photovoltaic device in which a plurality of unitary power generating elements are stacked in the light incident direction, wherein a photoactive layer comprises a hydrogenated amorphous germanium film having a refractive index of about 4.0 or more in a wavelength band of 1500 to 2500 nm. And a photoactive layer of the unit power generating element arranged on the light receiving surface side is wider than the optical bandgap of the amorphous germanium film. Stacked photovoltaic device.
【請求項4】1500〜2500nmの波長帯域における屈折率が
約4.0以上の水素化アモルファスゲルマニウム膜を光活
性層としたことを特徴とする光センサ。
4. An optical sensor comprising a photoactive layer of a hydrogenated amorphous germanium film having a refractive index of about 4.0 or more in a wavelength band of 1500 to 2500 nm.
【請求項5】1500〜2500nmの波長帯域における屈折率が
約4.0以上の水素化アモルファスゲルマニウム膜を光導
電層とし基板の導電表面に配置したことを特徴とする静
電潜像担持体。
5. An electrostatic latent image carrier comprising a photoconductive layer of an amorphous germanium hydride film having a refractive index of about 4.0 or more in a wavelength band of 1500 to 2500 nm, which is disposed on a conductive surface of a substrate.
【請求項6】請求項5記載の静電潜像担持体と、該担持
体に電荷を帯電せしめる帯電手段と、上記担持体に静電
潜像を書き込む赤外線レーザの光ヘッドと、上記静電潜
像を可視像に現像する現像手段と、を備えたことを特徴
とするレーザプリンタ。
6. An electrostatic latent image carrier according to claim 5, charging means for charging the carrier with an electric charge, an infrared laser optical head for writing an electrostatic latent image on the carrier, and the electrostatic device. A laser printer comprising: a developing unit that develops a latent image into a visible image.
JP63072381A 1988-03-25 1988-03-25 Hydrogenated amorphous germanium film, method for producing the film, and electronic device or electronic apparatus using the film Expired - Fee Related JPH07116605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63072381A JPH07116605B2 (en) 1988-03-25 1988-03-25 Hydrogenated amorphous germanium film, method for producing the film, and electronic device or electronic apparatus using the film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63072381A JPH07116605B2 (en) 1988-03-25 1988-03-25 Hydrogenated amorphous germanium film, method for producing the film, and electronic device or electronic apparatus using the film

Publications (2)

Publication Number Publication Date
JPH01246362A JPH01246362A (en) 1989-10-02
JPH07116605B2 true JPH07116605B2 (en) 1995-12-13

Family

ID=13487655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63072381A Expired - Fee Related JPH07116605B2 (en) 1988-03-25 1988-03-25 Hydrogenated amorphous germanium film, method for producing the film, and electronic device or electronic apparatus using the film

Country Status (1)

Country Link
JP (1) JPH07116605B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024211A1 (en) * 2008-08-29 2010-03-04 株式会社カネカ Thin-film photoelectric converter and fabrication method therefor
EP2755241A4 (en) 2011-09-07 2015-07-08 Kaneka Corp Thin film photoelectric conversion device and method for manufacturing same
US10247865B2 (en) 2017-07-24 2019-04-02 Viavi Solutions Inc. Optical filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140984A (en) * 1988-11-22 1990-05-30 Nec Corp Laser power source for generating enhanced pulse current
JPH04276674A (en) * 1991-03-05 1992-10-01 Matsushita Electric Ind Co Ltd Laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140984A (en) * 1988-11-22 1990-05-30 Nec Corp Laser power source for generating enhanced pulse current
JPH04276674A (en) * 1991-03-05 1992-10-01 Matsushita Electric Ind Co Ltd Laser device

Also Published As

Publication number Publication date
JPH01246362A (en) 1989-10-02

Similar Documents

Publication Publication Date Title
KR960015500B1 (en) Photovolatic device
US4722879A (en) Electrophotographic photoreceptor with super lattice structure
JPS6155268B2 (en)
US5172163A (en) Photovoltaic photo-receptor and electrophotographing apparatus
JPH07116605B2 (en) Hydrogenated amorphous germanium film, method for producing the film, and electronic device or electronic apparatus using the film
JP2003337437A (en) Negative charging electrophotographic photoreceptor and electrophotographic device using the same
JP3754751B2 (en) Light receiving member
KR20180076433A (en) Bifacial tandem solar cell and method of manufacturing the same
JP2855300B2 (en) Non-single-crystal germanium semiconductor
JP2815934B2 (en) Method for manufacturing photoelectric conversion element
JP3559655B2 (en) Light receiving member for electrophotography
US4803139A (en) Electrophotographic photoreceptor
JP3245962B2 (en) Manufacturing method of thin film solar cell
JPH1090929A (en) Electrophotographic light receiving member
US4704343A (en) Electrophotographic photosensitive member containing amorphous silicon and doped microcrystalline silicon layers
Carlson The doping of hydrogenated amorphous silicon and its impact on devices
JP2528283B2 (en) Photoreceptive member having ultra-thin layered structure
Omelyanovich Affordable light-trapping metamaterials for thin-film photovoltaic cells
Tsuda et al. Integrated type multi-bandgap a-Si solar cells
JP2010093101A (en) Structure of coaxial solar cell, and method of continuously manufacturing long linear structure
JPH0572780A (en) Electrophotographic sensitive body
JPS6343159A (en) Electrophotographic sensitive body
JPS6343160A (en) Electrophotographic sensitive body
Cotter Pigmented materials for light trapping in thin-film polycrystalline silicon solar cells
JPS61238064A (en) Amorphous electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees