[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH0711424A - Production of organic pyroelectric and piezoelectric body and device therefor - Google Patents

Production of organic pyroelectric and piezoelectric body and device therefor

Info

Publication number
JPH0711424A
JPH0711424A JP14782593A JP14782593A JPH0711424A JP H0711424 A JPH0711424 A JP H0711424A JP 14782593 A JP14782593 A JP 14782593A JP 14782593 A JP14782593 A JP 14782593A JP H0711424 A JPH0711424 A JP H0711424A
Authority
JP
Japan
Prior art keywords
substrate
film
polyurea
pyroelectric
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14782593A
Other languages
Japanese (ja)
Other versions
JP3406347B2 (en
Inventor
Masayuki Iijima
正行 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP14782593A priority Critical patent/JP3406347B2/en
Publication of JPH0711424A publication Critical patent/JPH0711424A/en
Application granted granted Critical
Publication of JP3406347B2 publication Critical patent/JP3406347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To simultaneously produce an org. pyroelectric and piezoelectric body excellent in heat resistance and insulating property by forming a large-area polyurea film on a substrate in uniform thicknesss and quality with this device. CONSTITUTION:A positive bias voltage is impressed on a substrate 3, the substrate 3 is irradiated with an electron, monomers of a polyurea are vaporized in vacuum, a polyurea film being deposited and polymerized on the substrate 3 is polarized, and an org. pyroelectric and piezoelectric body is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焦電センサー、赤外線
検出器や、加速センサー、流量センサー、圧力センサー
等の圧電センサー、或いはトランジューサー等にその焦
電性や圧電性を利用して用いる有機焦電・圧電体の製造
方法および、有機焦電・圧電体の製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a pyroelectric sensor, an infrared detector, a piezoelectric sensor such as an acceleration sensor, a flow sensor, a pressure sensor, or a transducer, etc. by utilizing its pyroelectricity or piezoelectricity. The present invention relates to a method for manufacturing an organic pyroelectric / piezoelectric material and an apparatus for manufacturing an organic pyroelectric / piezoelectric material.

【0002】[0002]

【従来の技術】従来、基板上に積層状に配設された例え
ばアルミニウムから成る対向電極間に分極処理(ポーリ
ング処理ともいう)が施されたポリ尿素から成るポリマ
ー膜を介在させた有機焦電・圧電体の製造方法として
は、真空中で、基板上に下部電極、ポリ尿素膜、上部電
極の順に積層して積層体に形成し、或いは更にこの積層
工程を数回行って多層構造の積層体に形成する。
2. Description of the Related Art Conventionally, an organic pyroelectric device in which a polymer film made of polyurea subjected to polarization treatment (also called poling treatment) is interposed between opposed electrodes made of, for example, aluminum arranged in a laminated manner on a substrate. As a method of manufacturing a piezoelectric body, a lower electrode, a polyurea film, and an upper electrode are laminated in this order on a substrate in a vacuum to form a laminated body, or the lamination process is further repeated several times to laminate a multilayer structure. Form on the body.

【0003】そして、該積層体を大気中、或いは例えば
窒素ガス雰囲気中でボリマー膜の上下の電極間に例えば
100MV/mの電界を印加した状態で室温からガラス
転移点以上の温度まで昇温し、一定時間該温度を保持し
た後、室温まで降温してポリマー膜に分極処理を施す方
法、或いは基板(導電性を付与してある)上にポリマー
膜を成膜後、大気中、或いは例えば窒素ガス雰囲気中で
基板と針間に例えば10KV/cmの電界を印加した状
態で室温からガラス転移点以上の温度まで昇温し、一定
時間該温度を保持した後、室温まで降温してポリマー膜
に分極処理を施すコロナポーリング法が知られている。
Then, the laminate is heated from room temperature to a temperature equal to or higher than the glass transition point in the air or in a nitrogen gas atmosphere with an electric field of 100 MV / m applied between the upper and lower electrodes of the polymer film. After maintaining the temperature for a certain period of time, the temperature is lowered to room temperature to subject the polymer film to polarization treatment, or after the polymer film is formed on a substrate (which has conductivity), in the atmosphere or, for example, nitrogen. In a gas atmosphere, an electric field of, for example, 10 KV / cm is applied between the substrate and the needle, the temperature is raised from room temperature to a temperature equal to or higher than the glass transition point, the temperature is maintained for a certain time, and then the temperature is lowered to room temperature to form a polymer film. A corona poling method of performing polarization treatment is known.

【0004】また、ポリマー膜の出発原料としてポリフ
ッ化ビニリデン系の高分子材料を用い、該高分子材料を
真空中で所定温度に加熱された金属製基板またはAu、
Al等を蒸着したガラス基板(導電性を付与してある)
と針状または網状電極の間に例えば10KV/cmの電
界を印加した状態で該高分子原料を蒸発させて、基板上
に蒸着して直接ポリマー膜を形成する方法(電場アシス
トまたは電場中蒸着法)が知られている。
Further, a polyvinylidene fluoride-based polymer material is used as a starting material for the polymer film, and the polymer material is heated to a predetermined temperature in a metal substrate or Au,
Glass substrate with Al vapor deposited (provided conductivity)
A method of evaporating the polymer raw material in a state where an electric field of, for example, 10 KV / cm is applied between the electrode and the needle-shaped or mesh-shaped electrode, and vapor-depositing it on the substrate to directly form a polymer film (electric field assist or vapor deposition in electric field). )It has been known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記方
法のうち、ポリマー膜形成後に分極処理をする方法の場
合は、真空中で基板上に下部電極、ポリマー膜、上部電
極の順に積層して積層体に形成、或いは更にこの積層工
程を複数回行って多層構造の積層体を形成した後、真空
室から電極とポリマー膜の積層体を一旦取り出した後、
ポリマー膜に分極処理を施すため、一つの基板上に複数
のポリマー膜を複数の対向電極間に介在させて配設され
た積層体を製造する際は、夫々の電極の全てから引出し
電極を配線した後、ポリマー膜に一度に分極処理を施す
ため、複数のポリマー膜のうちのいずれか1層が引出電
極の配線時に導電した場合には全てのポリマー膜に分極
処理を施すことが出来ないという問題があり、また、ポ
リマー膜への導電を防止するために複数のポリマー膜に
対してその膜形成毎に分極処理を施す場合は、ポリマー
膜への分極処理に長時間要して生産性が低いという問題
がある。
However, among the above-mentioned methods, in the case of the method in which the polarization treatment is performed after the polymer film is formed, the lower electrode, the polymer film and the upper electrode are laminated in this order on a substrate in vacuum to form a laminate. Or after further performing this lamination step a plurality of times to form a multilayer structure laminated body, and once taking out the laminated body of the electrode and the polymer film from the vacuum chamber,
Since a polymer film is subjected to polarization treatment, when manufacturing a laminated body in which a plurality of polymer films are interposed between a plurality of opposed electrodes on one substrate, the extraction electrodes are wired from all of the respective electrodes. After that, since the polymer film is subjected to polarization treatment at once, if any one of the plurality of polymer films becomes conductive during wiring of the extraction electrode, all the polymer films cannot be subjected to polarization treatment. There is a problem, and when polarization treatment is applied to multiple polymer films for each film formation in order to prevent electrical conduction to the polymer films, it takes a long time to perform polarization treatment on the polymer films, resulting in low productivity. There is a problem of being low.

【0006】また、前記方法のうち、コロナポーリング
法の場合は、前記方法と異なり、一度に全てのポリマー
膜に分極処理を施すことが出来るが、成膜後に真空室か
ら積層体を取り出し、これに分極処理を施した後、最外
側のポリマー膜上に上部電極を蒸着等の手段により取付
けなければならないため、分極処理工程の前後にポリマ
ー膜に粉塵が付着しやすく、粉塵が付着した焦電圧電体
はポリマー膜に絶縁破壊を起こしやすく、有機焦電圧電
体の製品の歩留まりが低下するという問題がある。
In the case of the corona poling method among the above methods, unlike the above method, all the polymer films can be polarized at one time, but after the film formation, the laminate is taken out from the vacuum chamber, Since the upper electrode must be attached to the outermost polymer film by means such as vapor deposition after the polarization treatment, the dust tends to adhere to the polymer film before and after the polarization process, and the pyroelectric voltage on which the dust adheres The electric body has a problem that the dielectric breakdown of the polymer film is likely to occur, and the product yield of the organic pyroelectric voltage electric body is reduced.

【0007】また、前記方法のうち、電場中蒸着法の場
合は、基板と基板の前面に配置された針状または網状電
極に所定電圧を印加しながらポリマー膜の原料を蒸着さ
せて成膜する方法のため、基板上にポリマー膜の成膜と
同時に分極処理を施すことが出来るが、基板の前面に針
状または網状電極が配置されているため、成膜されたポ
リマー膜に電極のかげが生じやすく、膜厚、膜質等に均
一性のあるポリマー膜を形成することが出来ず、また、
基板と電極の間が真空のため印加する電界を十分に大き
くすることが出来ないから、大面積の焦電圧電体を製造
することが出来ないという問題があり、また、基板上に
形成されたポリマー膜は焦電圧電性は有するものの耐熱
性、絶縁性が低く、焦電圧電体としての実用性に問題が
ある。
[0007] Of the above methods, in the case of vapor deposition in an electric field, the raw material of the polymer film is vapor-deposited while applying a predetermined voltage to the substrate and the needle-like or net-like electrodes arranged on the front surface of the substrate. Because of the method, it is possible to perform the polarization treatment simultaneously with the formation of the polymer film on the substrate, but since the needle-shaped or mesh-shaped electrode is arranged on the front surface of the substrate, the formed polymer film is not covered with an electrode. It is easy to occur, it is not possible to form a polymer film with uniform film thickness, film quality, etc.
Due to the vacuum between the substrate and the electrode, the applied electric field cannot be made sufficiently large, so there is a problem that a large-area pyroelectric body cannot be manufactured. Moreover, it was formed on the substrate. Although the polymer film has pyroelectricity, it has low heat resistance and insulating properties, and has a problem in practicality as a pyroelectric body.

【0008】本発明はかかる問題点を解消し、耐熱性、
絶縁性に優れた焦電圧電性を有し、均一な膜厚で膜質を
有する大面積のポリ尿素膜を極めて簡単に基板上に形成
することが出来る有機焦電・圧電体の製造方法、および
その製造装置を提供することを目的とする。
The present invention solves the above problems, heat resistance,
A method for producing an organic pyroelectric / piezoelectric material, which has a pyroelectric property excellent in insulation and can form a large-area polyurea film having a uniform film thickness and a film quality very easily on a substrate, and It is an object of the present invention to provide a manufacturing device thereof.

【0009】[0009]

【課題を解決するための手段】本発明の有機焦電圧電体
の製造方法は、真空中でポリ尿素樹脂の原料モノマーを
蒸発させ、これを基板上で蒸着重合させてポリ尿素膜か
ら成る有機焦電・圧電体の製造方法において、基板に正
バイアス電圧を印加すると共に、電子供給源から基板に
向かって電子を照射しながら、基板上で前記の原料モノ
マーの蒸着重合を行うことを特徴とする。
The method of manufacturing an organic pyroelectric body according to the present invention comprises an organic polyurea film formed by evaporating a raw material monomer of a polyurea resin in a vacuum and subjecting this to vapor deposition polymerization on a substrate. In the method for manufacturing a pyroelectric / piezoelectric material, a positive bias voltage is applied to the substrate, and the raw material monomer is vapor-deposited and polymerized on the substrate while irradiating the substrate with electrons from the electron source. To do.

【0010】また、有機焦電圧電体の製造装置は、真空
処理室内にポリ尿素樹脂の原料モノマーを蒸発させる蒸
発源と、該蒸発源から蒸発せる原料モノマーの蒸着重合
でポリ尿素膜から成る有機焦電・圧電体の薄膜を形成さ
せる基板とを互いに対向させて配置した有機焦電・圧電
体の製造装置において、真空処理室内に該基板に向けて
電子を放出し、照射する電子供給源を設けたことを特徴
とする。
The apparatus for manufacturing an organic pyroelectric body comprises an evaporation source for evaporating a raw material monomer of a polyurea resin in a vacuum processing chamber, and an organic polyurea film formed by vapor deposition polymerization of the raw material monomer vaporized from the evaporation source. In an organic pyroelectric / piezoelectric manufacturing apparatus in which a substrate on which a thin film of a pyroelectric / piezoelectric material is formed is arranged to face each other, an electron supply source for emitting and irradiating electrons to the substrate is provided in a vacuum processing chamber. It is characterized by being provided.

【0011】[0011]

【作用】真空中でポリ尿素樹脂の原料モノマーを蒸発さ
せると、原料モノマーの蒸気は基板上に蒸着し、重合に
より基板上にポリ尿素膜が形成される。その際、電界が
ない場合は基板上に形成されるポリ尿素膜中の双極子
(尿素結合)は任意の方向を向いているため形成された
ポリ尿素膜に分極処理が必要である。
When the raw material monomer of the polyurea resin is evaporated in vacuum, the vapor of the raw material monomer is vapor-deposited on the substrate, and the polyurea film is formed on the substrate by polymerization. At that time, when there is no electric field, the diurea (urea bond) in the polyurea film formed on the substrate is oriented in an arbitrary direction, so that the formed polyurea film needs to be polarized.

【0012】本発明では、基板上へのポリ尿素の原料モ
ノマーの蒸着重合時には電界が存在するから、電子供給
源より放出された電子は基板に向かって照射される。こ
の状態で基板上にポリ尿素膜を形成すると、ポリ尿素は
誘電体であるために、膜表面に電子が帯電し、帯電した
電子と基板との間、即ち、ポリ尿素の膜厚に電界がかか
り、この電界でポリ尿素に双極子の配向が起こり、分極
され、その結果、形成されたポリ尿素膜に焦電圧電性が
生じる。
In the present invention, since an electric field exists during the vapor deposition polymerization of the raw material monomer of polyurea on the substrate, the electrons emitted from the electron source are irradiated toward the substrate. If a polyurea film is formed on the substrate in this state, electrons are charged on the film surface because polyurea is a dielectric, and an electric field is generated between the charged electrons and the substrate, that is, the film thickness of polyurea. As a result, the electric field causes the polyurea to have a dipole orientation and is polarized, and as a result, the formed polyurea film is pyroelectric.

【0013】[0013]

【実施例】以下添付図面に従って本発明の実施例につい
て説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0014】先ず、本発明の有機焦電・圧電体の製造装
置について説明する。
First, an apparatus for manufacturing an organic pyroelectric / piezoelectric material according to the present invention will be described.

【0015】図1は本発明の有機焦電・圧電体の製造装
置の1例を示すもので、図中、1は真空処理室を示す。
該真空処理室1内を外部の真空ポンプその他の真空排気
系2に接続すると共に、真空処理室1内の上方に有機焦
電・圧電体の蒸着膜を形成せしめるべき基板3を保持す
る基板ホルダー4を配置した。
FIG. 1 shows an example of an apparatus for manufacturing an organic pyroelectric / piezoelectric material according to the present invention. In the figure, 1 indicates a vacuum processing chamber.
A substrate holder for connecting the inside of the vacuum processing chamber 1 to an external vacuum pump or other vacuum exhaust system 2 and holding a substrate 3 on which an evaporation film of an organic pyroelectric / piezoelectric material is to be formed above the vacuum processing chamber 1. 4 was placed.

【0016】また、真空処理室1内の下方に前記基板3
に対向させて焦電・圧電体のポリ尿素膜の一方の原料モ
ノマーA(例えばジアミン)、および他方の原料モノマ
ーB(例えばジイソシアナート)を蒸発させるためのガ
ラス製、或いは銅製容器から成る蒸発源5,6を配設
し,夫々の蒸発源5,6近傍に配置したヒーター7,8
で前記原料モノマーA,Bを夫々所定温度に加熱出来る
ようにした。
The substrate 3 is provided below the vacuum processing chamber 1.
Of a glass or copper container for evaporating one raw material monomer A (for example, diamine) and the other raw material monomer B (for example, diisocyanate) of the polyurea film of the pyroelectric / piezoelectric material facing each other. Sources 5 and 6 are arranged, and heaters 7 and 8 are arranged near the evaporation sources 5 and 6, respectively.
The raw material monomers A and B can be heated to a predetermined temperature.

【0017】そして、図1に示す装置では、基板ホルダ
ー4内を循環パイプ9を介して循環ポンプ10に接続す
ると共に、該循環ポンプ10で一定温度の液体(例えば
温度25℃の恒温水、或いはエチルアルコールのような
冷媒)を基板ホルダー4内に循環させて基板ホルダー4
に保持される基板3を所定温度に維持出来るようにし
た。
In the apparatus shown in FIG. 1, the inside of the substrate holder 4 is connected to a circulation pump 10 via a circulation pipe 9, and a liquid having a constant temperature (for example, constant temperature water having a temperature of 25 ° C. or A coolant such as ethyl alcohol) is circulated in the substrate holder 4 and the substrate holder 4
The substrate 3 held at the temperature can be maintained at a predetermined temperature.

【0018】また、基板ホルダー4を直流電源11に接
続し、基板ホルダー4に保持された基板3に正のバイア
ス電圧を印加出来るようにした。
Further, the substrate holder 4 is connected to the DC power source 11 so that a positive bias voltage can be applied to the substrate 3 held by the substrate holder 4.

【0019】また、蒸発源5,6の上方近傍であって、
各蒸発源5,6で加熱されて蒸発する原料モノマーA,
Bの蒸気の基板3方向への蒸発に影響のない位置に、タ
ングステン、白金等の電子を放出するためのフィラメン
ト状の電子供給源12を配置すると共に、電子供給源1
2を前記直流電源11に配線13を介して接続し、該配
線13中に電流計14と、電圧計15を夫々配設した。
Further, in the vicinity of above the evaporation sources 5 and 6,
Raw material monomer A, which is heated by each evaporation source 5 and 6 to evaporate,
A filament-shaped electron source 12 for emitting electrons such as tungsten and platinum is arranged at a position that does not affect the evaporation of the vapor of B toward the substrate 3, and the electron source 1
2 was connected to the DC power supply 11 via a wiring 13, and an ammeter 14 and a voltmeter 15 were arranged in the wiring 13.

【0020】そして、直流電源11より基板3に100
V程度の正のバイアス電圧を印加すると共に、電子供給
源12から基板3に電子を照射して、基板3と電子供給
源12との間に直流電界を生じせしめ、基板3上に前記
蒸発源5,6で加熱され蒸発する原料モノマーA,Bの
蒸気の蒸着、重合中に分極処理を施して双極子が一定方
向に配向されたポリ尿素膜から成る有機焦電・圧電体を
得るようにした。この場合、基板3と電子供給源12間
に印加する直流電界は、基板3上に形成する膜厚に対応
させて設定するが、膜厚1μmに対して、直流電源11
よりの電圧を50〜100V程度とし、電流計14が1
〜数μA/cm2(基板の表面積)程度を示すように電
圧計15で印加する電界をコントロールするようにし
た。
Then, the DC power supply 11 is used to connect 100 to the substrate 3.
While applying a positive bias voltage of about V, the electron source 12 irradiates the substrate 3 with electrons to generate a direct current electric field between the substrate 3 and the electron source 12, and the evaporation source on the substrate 3 is generated. In order to obtain an organic pyroelectric / piezoelectric material consisting of a polyurea film in which dipoles are oriented in a certain direction by performing polarization treatment during vapor deposition and polymerization of raw material monomers A and B that are heated and vaporized by 5 and 6 did. In this case, the DC electric field applied between the substrate 3 and the electron supply source 12 is set according to the film thickness formed on the substrate 3, but for the film thickness of 1 μm, the DC power supply 11 is used.
Voltage is about 50 to 100 V and the ammeter 14 is set to 1
The electric field applied was controlled by the voltmeter 15 so as to show about ˜several μA / cm 2 (surface area of the substrate).

【0021】図中、16は基板3と両蒸発源5,6の間
に介在させたシャッター、17は両蒸発源5,6の間に
設けた仕切板、18はアースを夫々示す。
In the figure, 16 is a shutter interposed between the substrate 3 and both evaporation sources 5 and 6, 17 is a partition plate provided between both evaporation sources 5 and 6, and 18 is a ground.

【0022】次に前記図示装置を用いて、本発明方法の
有機焦電・圧電体の製造方法の具体的実施例を対比例と
共に説明する。
Next, a specific embodiment of the method for producing an organic pyroelectric / piezoelectric material of the method of the present invention will be described along with the comparison using the illustrated apparatus.

【0023】実施例1 本実施例では基板3は厚さ0.2μmのアルミニウムの
下部電極を蒸着した50mm×40mm×厚さ25μm(基
板面積20cm2)のポリイミドフィルムを用い、基板
3のフィルム側を銅製の基板ホルダー4に密着保持し、
基板3のアルミニウムの下部電極に直流電源11の陽極
側を接続し、電子供給源12に直流電源11の陰極側を
接続し、基板3と電子供給源12との間隔を5cmと
し、両者3,12間に基板3側を正として、基板単位面
積当たり2μA/cm2の電流を加えて膜厚1μmに対
して100V程度の電界を印加するようにした。
Example 1 In this example, the substrate 3 is a polyimide film of 50 mm × 40 mm × thickness of 25 μm (substrate area 20 cm 2 ) on which a 0.2 μm thick aluminum lower electrode is deposited. Is closely attached to the copper substrate holder 4,
The anode side of the DC power supply 11 is connected to the aluminum lower electrode of the substrate 3, the cathode side of the DC power supply 11 is connected to the electron supply source 12, and the distance between the substrate 3 and the electron supply source 12 is set to 5 cm. The substrate 3 side was positive between 12 and a current of 2 μA / cm 2 was applied per unit area of the substrate to apply an electric field of about 100 V to a film thickness of 1 μm.

【0024】先ず、真空処理室1内の蒸発源5内にポリ
尿素膜の一方の原料モノマーAとして4,4′−ジアミ
ノジフェニルメタン(以下原料モノマーAという)を、
蒸発源6内にポリ尿素膜の他方の原料モノマーBとして
4,4′−ジイソシアナートジフェニルメタン(以下原
料モノマーBという)を夫々充填し、シャッター16を
閉じた状態で真空処理室1内の圧力を真空排気系2によ
り2×10-3Paに設定した。
First, 4,4'-diaminodiphenylmethane (hereinafter referred to as raw material monomer A) is used as one raw material monomer A of the polyurea film in the evaporation source 5 in the vacuum processing chamber 1.
The evaporation source 6 was filled with 4,4′-diisocyanatodiphenylmethane (hereinafter referred to as the raw material monomer B) as the other raw material monomer B of the polyurea film, and the pressure in the vacuum processing chamber 1 was maintained with the shutter 16 closed. Was set to 2 × 10 −3 Pa by the vacuum exhaust system 2.

【0025】次に、原料モノマーAを蒸発源5で110
±0.2℃に、また原料モノマーBを蒸発源6で71±
0.2℃に夫々加熱した。
Next, the raw material monomer A is heated by the evaporation source 5 to 110
To ± 0.2 ° C, and the raw material monomer B is 71 ± by the evaporation source 6
Each was heated to 0.2 ° C.

【0026】また、基板ホルダー4内に循環ポンプ10
より水から成る温冷媒を循環パイプ9を介して循環させ
て基板3を温度50℃に維持せしめた。
Further, the circulation pump 10 is provided in the substrate holder 4.
A warm coolant composed of more water was circulated through the circulation pipe 9 to maintain the substrate 3 at a temperature of 50 ° C.

【0027】次いで、原料モノマーAおよび原料モノマ
ーBが所定温度に達した時点で、シャッター16を開
き、原料モノマーA,Bを0.5〜1Å/secの析出
速度で蒸発させて基板3上に蒸着させると共に、前記電
界を印加しながら蒸着物に重合を起こさせて厚さ500
0Åのポリ尿素膜を形成した。
Next, when the raw material monomers A and B reach a predetermined temperature, the shutter 16 is opened to evaporate the raw material monomers A and B at a deposition rate of 0.5 to 1 Å / sec and deposit them on the substrate 3. While depositing, the deposit is polymerized while applying the electric field to a thickness of 500.
A 0Å polyurea film was formed.

【0028】尚、原料モノマーA,Bは化学量論的にポ
リ尿素膜が形成されるように蒸発量の調整によって1:
1のモル比で蒸発するようにした。また、原料モノマー
A,Bの蒸発時における真空処理室1内の圧力は1×1
-3Paとした。
The raw material monomers A and B are adjusted to 1: by adjusting the evaporation amount so that a polyurea film is stoichiometrically formed.
Evaporation was carried out at a molar ratio of 1. The pressure in the vacuum processing chamber 1 during the evaporation of the raw material monomers A and B is 1 × 1.
It was set to 0 −3 Pa.

【0029】基板3にポリ尿素膜を形成後、該ポリ尿素
膜上に真空蒸着法によりアルミニウムを蒸着(厚さ0.
2μm)してこれを上部電極とした。
After forming a polyurea film on the substrate 3, aluminum is vapor-deposited (thickness: 0.
2 μm) and used as the upper electrode.

【0030】そして、ポリ尿素膜と上部電極が形成され
た下部電極付き基板を真空処理室1内より取り出した
後、上部電極および下部電極から夫々リード線を引き出
し、常法により焦電率および圧電率を調べ、その結果を
表1に示した。
Then, after the substrate with the lower electrode on which the polyurea film and the upper electrode are formed is taken out from the vacuum processing chamber 1, the lead wires are pulled out from the upper electrode and the lower electrode, respectively, and the pyroelectric coefficient and the piezoelectric are obtained by a conventional method. The rate was examined and the results are shown in Table 1.

【0031】対比例1 原料モノマーA,Bの蒸着、重合中に基板3への正のバ
イアス電圧の印加、および電子供給源12からの電子の
照射を一切行わなかった以外は前記実施例1と同様の方
法で基板3上にポリ尿素膜を形成し、該ポリ尿素膜上に
上部電極を形成した。
Comparative Example 1 As in Example 1 except that the raw material monomers A and B were vapor-deposited, a positive bias voltage was not applied to the substrate 3 during the polymerization, and no electron was emitted from the electron source 12. A polyurea film was formed on the substrate 3 by the same method, and an upper electrode was formed on the polyurea film.

【0032】そして、ポリ尿素膜(バイアス電圧の印加
および電子の照射なし)と上部電極が形成された下部電
極付き基板を真空処理室1内より取り出した後、窒素雰
囲気中で上下電極間、即ちポリ尿素膜に50Vの直流を
印加した状態で温度180℃に加熱し、該温度を10分
間維持した後、印加と、加熱を停止し、ポリ尿素膜の温
度を180℃から室温まで徐冷してポリ尿素膜にポーリ
ング処理を施した。
Then, the substrate with the lower electrode on which the polyurea film (without applying bias voltage and electron irradiation) and the upper electrode is formed is taken out from the vacuum processing chamber 1, and then, between the upper and lower electrodes, that is, in the nitrogen atmosphere. The polyurea film was heated to a temperature of 180 ° C. with a direct current of 50 V applied, maintained at the temperature for 10 minutes, then stopped applying and heating, and the polyurea film was gradually cooled from 180 ° C. to room temperature. The polyurea film was subjected to poling treatment.

【0033】ポーリング処理を施した後、上部電極およ
び下部電極から夫々リード線を引き出し、常法により焦
電率および圧電率を調べ、その結果を表1に示した。
After the poling treatment, lead wires were respectively drawn from the upper electrode and the lower electrode, and the pyroelectric and piezoelectric constants were examined by a conventional method. The results are shown in Table 1.

【0034】対比例2 原料モノマーA,Bの蒸着、重合中に基板3への正のバ
イアス電圧の印加、および電子供給源12からの電子の
照射を一切行わなかった以外は前記実施例1と同様の方
法で基板3上にポリ尿素膜を形成した。
Comparative Example 2 The same as Example 1 except that the source monomers A and B were vapor-deposited, a positive bias voltage was not applied to the substrate 3 during the polymerization, and no electron was emitted from the electron source 12. A polyurea film was formed on the substrate 3 by the same method.

【0035】そして、ポリ尿素膜(バイアス電圧の印加
および電子の照射なし)が形成された下部電極付き基板
を真空処理室1内より取り出した後、電源に接続せる針
状電極に2cmの間隔を存して基板上に形成されたポリ
尿素膜側を対向させ、基板の下部電極にも電源を接続
し、大気中で針状電極と下電極間に電界10KVの電圧
を印加した状態で、温度180℃に加熱し、該温度を1
0分間維持した後、印加と、加熱を停止し、ポリ尿素膜
の温度を180℃から室温まで徐冷してポリ尿素膜にコ
ロナポーリング処理を施した。
Then, after taking out the substrate with the lower electrode on which the polyurea film (without applying a bias voltage and without irradiating electrons) was taken out from the vacuum processing chamber 1, an interval of 2 cm was provided between the needle electrodes connected to the power source. The polyurea film side formed on the substrate is made to face each other, the power source is connected to the lower electrode of the substrate, and a voltage of an electric field of 10 KV is applied between the needle electrode and the lower electrode in the atmosphere. Heat to 180 ° C and bring the temperature to 1
After maintaining for 0 minutes, application and heating were stopped, the temperature of the polyurea film was gradually cooled from 180 ° C. to room temperature, and the polyurea film was subjected to corona poling treatment.

【0036】コロナポーリング処理を施した後、ポリ尿
素膜上に真空蒸着法によりアルミニウムを蒸着(厚さ
0.2μm)して上部電極を形成した。
After the corona poling treatment, aluminum was vapor-deposited (thickness: 0.2 μm) on the polyurea film by vacuum vapor deposition to form an upper electrode.

【0037】そして、上部電極および下部電極から夫々
リード線を引き出し、常法により焦電率および圧電率を
調べ、その結果を表1に示した。
Then, lead wires were respectively drawn from the upper electrode and the lower electrode, and the pyroelectric coefficient and piezoelectric coefficient were examined by a conventional method. The results are shown in Table 1.

【0038】対比例3 原料モノマーA,Bの蒸着、重合中に基板3への正のバ
イアス電圧の印加、および電子供給源12からの電子の
照射を一切行わなかった以外は前記実施例1と同様の方
法で基板3上にポリ尿素膜を形成し、該ポリ尿素膜上に
上部電極を形成した。
Comparative Example 3 The same as Example 1 except that the deposition of the raw material monomers A and B, the application of a positive bias voltage to the substrate 3 during the polymerization, and the irradiation of electrons from the electron supply source 12 were not performed at all. A polyurea film was formed on the substrate 3 by the same method, and an upper electrode was formed on the polyurea film.

【0039】そして、ポリ尿素膜(バイアス電圧の印加
および電子の照射なし)と上部電極が形成された下部電
極付き基板を真空処理室1内より取り出した後、上部電
極および下部電極から夫々リード線を引き出し、常法に
より焦電率および圧電率を調べ、その結果を表1に示し
た。
Then, after removing the substrate with the lower electrode on which the polyurea film (without applying bias voltage and electron irradiation) and the upper electrode is taken out from the vacuum processing chamber 1, the lead wires are respectively fed from the upper electrode and the lower electrode. Was extracted and the pyroelectric and piezoelectric constants were investigated by a conventional method, and the results are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】表1から明らかなように、実施例1の焦電
率および圧電率が、成膜後ポーリング処理を施した対比
例1、成膜後コロナポーリング処理を施した対比例2の
夫々の焦電率および圧電率のおおよそ70%の値を示し
ており、このことは成膜中のポリ尿素膜に確実にポーリ
ング処理を施すことが出来て、成膜後にポリ尿素膜への
ポーリング処理、即ち分極処理を施さなくてもよいこと
が確認された。
As is clear from Table 1, the pyroelectric and piezoelectric constants of Example 1 were 1 for the comparative example 1 after the film-forming poling treatment and 2 for the comparative example 2 after the film-forming corona poling treatment. The values of about 70% of the pyroelectric coefficient and the piezoelectric coefficient are shown, which means that the polyurea film during film formation can be reliably subjected to poling treatment, and the poling treatment to the polyurea film after film formation, That is, it was confirmed that the polarization treatment was not required.

【0042】また、実施例1の有機焦電・圧電体は18
0℃まで安定した特性が得られており、実用性に何ら問
題がないことが確認された。
The organic pyroelectric / piezoelectric material of Example 1 has 18
It was confirmed that stable characteristics were obtained up to 0 ° C. and that there was no problem in practicality.

【0043】前述のように、基板に正バイアス電圧が印
加されているから、基板近傍に電界が生じ、電子供給源
から放出された電子は該電界により基板に照射され、こ
の状態でポリ尿素が成膜されるとポリ尿素は誘電体であ
るために膜表面に電子が帯電する。事実、ポリ尿素膜の
成長につれて膜厚が厚くなると、当初1μA/cm2
つた電流は0に近づき、最後には電流は流れなくなる。
帯電した電子と基板との間、即ちポリ尿素の膜厚に電界
がかかり、この電界でポリ尿素が分極される。例えば電
子供給源と基板間に100V印加した場合、最終的にポ
リ尿素を1μm成膜すると100V/1μm=100M
V/mの電界がかかることになる。この電界を強めるこ
とは容易である。
As described above, since the positive bias voltage is applied to the substrate, an electric field is generated in the vicinity of the substrate, the electrons emitted from the electron supply source are irradiated to the substrate, and polyurea is generated in this state. When polyurea is formed, electrons are charged on the surface of polyurea because polyurea is a dielectric. In fact, as the polyurea film grows thicker, the initial current of 1 μA / cm 2 approaches 0, and finally the current stops flowing.
An electric field is applied between the charged electrons and the substrate, that is, the film thickness of the polyurea, and the electric field polarizes the polyurea. For example, when 100 V is applied between the electron supply source and the substrate, when the final polyurea film is 1 μm, 100 V / 1 μm = 100 M
An electric field of V / m will be applied. It is easy to strengthen this electric field.

【0044】[0044]

【発明の効果】このように本発明の有機焦電・圧電体の
製造方法によるときは、基板上へのポリ尿素の原料モノ
マーの蒸着、重合を基板に正のバイアス電圧を印加し、
基板に向かって電子を照射しながら行うようにしたの
で、蒸着重合と同時に形成されるポリ尿素膜に双極子の
配向が起こって耐熱性、絶縁性に優れた焦電圧電性を有
し、針状または網状の電極によるかげが生じることな
く、均一な膜厚で膜質を有する大面積のポリ尿素膜から
成る有機焦電・圧電体を容易にかつ効率良く製造するこ
とが出来る効果がある。
As described above, according to the method for producing an organic pyroelectric / piezoelectric material of the present invention, a positive bias voltage is applied to the substrate by vapor deposition and polymerization of the raw material monomer of polyurea on the substrate,
Since the process is performed while irradiating the substrate with electrons, the polyurea film formed at the same time as the vapor deposition polymerization has the dipole orientation, which has excellent heat resistance and insulation and pyroelectricity. There is an effect that an organic pyroelectric / piezoelectric body composed of a large-area polyurea film having a uniform film thickness and a film quality can be easily and efficiently produced without causing a baldness due to a striped or reticulated electrode.

【0045】また、本発明の有機焦電・圧電体の製造装
置によるときは、真空処理室内に基板に向かって電子を
照射する電子供給源を配置したから、従来装置のような
蒸発源と基板との間に針状または網状の電極がないか
ら、電極によるかげが生じることなく、耐熱性、絶縁性
に優れた焦電圧電性を有し、均一な膜厚で膜質の大面積
の有機焦電・圧電体を容易にかつ効率良く製造すること
が出来る製造装置を提供する効果がある。
Further, according to the apparatus for manufacturing an organic pyroelectric / piezoelectric material of the present invention, since the electron source for irradiating the substrate with electrons is arranged in the vacuum processing chamber, the evaporation source and the substrate as in the conventional apparatus are disposed. Since there is no needle-shaped or mesh-shaped electrode between the and, it has pyroelectricity that is excellent in heat resistance and insulation without causing electrode shading, and has a uniform film thickness and a large-area organic focus. It is effective to provide a manufacturing apparatus that can easily and efficiently manufacture an electric / piezoelectric material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の有機焦電・圧電体を製造する装置の
1例の説明線図。
FIG. 1 is an explanatory diagram of an example of an apparatus for manufacturing an organic pyroelectric / piezoelectric material of the present invention.

【符号の説明】[Explanation of symbols]

1 真空処理室、 2 真空排気系、 3
基板、4 基板ホルダー、 5,6 蒸発源、
11 電源、12 電子供給源、 A,B 原
料モノマー。
1 vacuum processing chamber, 2 vacuum exhaust system, 3
Substrate, 4 substrate holder, 5, 6 evaporation source,
11 power source, 12 electron source, A, B raw material monomer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 真空中でポリ尿素樹脂の原料モノマーを
蒸発させ、これを基板上で蒸着重合させてポリ尿素膜か
ら成る有機焦電・圧電体の製造方法において、基板に正
バイアス電圧を印加すると共に、電子供給源から基板に
向かって電子を照射しながら、基板上で前記の原料モノ
マーの蒸着重合を行うことを特徴とする有機焦電・圧電
体の製造方法。
1. A method for producing an organic pyroelectric / piezoelectric material comprising a polyurea film by evaporating a raw material monomer of a polyurea resin in a vacuum and vapor-depositing and polymerizing the monomer on a substrate to apply a positive bias voltage to the substrate. In addition, the method for producing an organic pyroelectric / piezoelectric material is characterized in that vapor deposition polymerization of the raw material monomer is performed on the substrate while irradiating the substrate with electrons from the electron supply source.
【請求項2】 真空処理室内にポリ尿素樹脂の原料モノ
マーを蒸発させる蒸発源と、該蒸発源から蒸発せる原料
モノマーの蒸着重合でポリ尿素膜から成る有機焦電・圧
電体の薄膜を形成させる基板とを互いに対向させて配置
した有機焦電・圧電体の製造装置において、真空処理室
内に該基板に向けて電子を放出し、照射する電子供給源
を設けたことを特徴とする有機焦電・圧電体の製造装
置。
2. An evaporation source for evaporating a raw material monomer of a polyurea resin in a vacuum processing chamber, and an organic pyroelectric / piezoelectric thin film made of a polyurea film is formed by vapor deposition polymerization of the raw material monomer vaporized from the evaporation source. In an organic pyroelectric / piezoelectric manufacturing apparatus in which a substrate and a substrate are opposed to each other, an electron supply source for emitting and irradiating electrons to the substrate is provided in a vacuum processing chamber. -Piezoelectric manufacturing equipment.
JP14782593A 1993-06-18 1993-06-18 Method and apparatus for manufacturing organic pyroelectric / piezoelectric material Expired - Fee Related JP3406347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14782593A JP3406347B2 (en) 1993-06-18 1993-06-18 Method and apparatus for manufacturing organic pyroelectric / piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14782593A JP3406347B2 (en) 1993-06-18 1993-06-18 Method and apparatus for manufacturing organic pyroelectric / piezoelectric material

Publications (2)

Publication Number Publication Date
JPH0711424A true JPH0711424A (en) 1995-01-13
JP3406347B2 JP3406347B2 (en) 2003-05-12

Family

ID=15439090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14782593A Expired - Fee Related JP3406347B2 (en) 1993-06-18 1993-06-18 Method and apparatus for manufacturing organic pyroelectric / piezoelectric material

Country Status (1)

Country Link
JP (1) JP3406347B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292736B1 (en) 1997-08-08 2001-09-18 Aisin Aw Co., Ltd. Vehicle control system and recording media recorded with programs for the system
WO2007129643A1 (en) * 2006-05-09 2007-11-15 Japan Advanced Institute Of Science And Technology Field effect transistor using organic semiconductor material and method for manufacturing the same
WO2008007551A1 (en) * 2006-07-10 2008-01-17 Konica Minolta Medical & Graphic, Inc. Process for formation of piezoelectric synthetic resin films
JP2008019301A (en) * 2006-07-11 2008-01-31 Konica Minolta Medical & Graphic Inc Method for forming piezoelectric synthetic resin film
JP4868475B1 (en) * 2011-06-20 2012-02-01 ムネカタ株式会社 Method and apparatus for forming piezoelectric / pyroelectric film
WO2017069221A1 (en) * 2015-10-22 2017-04-27 東京エレクトロン株式会社 Film formation apparatus and film formation method
TWI717651B (en) * 2018-11-06 2021-02-01 馗鼎奈米科技股份有限公司 Method and apparatus for manufacturing piezoelectric material film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6292736B1 (en) 1997-08-08 2001-09-18 Aisin Aw Co., Ltd. Vehicle control system and recording media recorded with programs for the system
WO2007129643A1 (en) * 2006-05-09 2007-11-15 Japan Advanced Institute Of Science And Technology Field effect transistor using organic semiconductor material and method for manufacturing the same
WO2008007551A1 (en) * 2006-07-10 2008-01-17 Konica Minolta Medical & Graphic, Inc. Process for formation of piezoelectric synthetic resin films
JP5083213B2 (en) * 2006-07-10 2012-11-28 コニカミノルタエムジー株式会社 Method for forming piezoelectric synthetic resin film
JP2008019301A (en) * 2006-07-11 2008-01-31 Konica Minolta Medical & Graphic Inc Method for forming piezoelectric synthetic resin film
JP4868475B1 (en) * 2011-06-20 2012-02-01 ムネカタ株式会社 Method and apparatus for forming piezoelectric / pyroelectric film
US8465810B2 (en) 2011-06-20 2013-06-18 Munekata Co., Ltd. Method and device for forming piezoelectric/pyroelectric film
WO2017069221A1 (en) * 2015-10-22 2017-04-27 東京エレクトロン株式会社 Film formation apparatus and film formation method
JPWO2017069221A1 (en) * 2015-10-22 2018-06-21 東京エレクトロン株式会社 Film forming apparatus and film forming method
TWI717651B (en) * 2018-11-06 2021-02-01 馗鼎奈米科技股份有限公司 Method and apparatus for manufacturing piezoelectric material film

Also Published As

Publication number Publication date
JP3406347B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
US4427609A (en) Process for producing piezoelectric polymer films
CN103510048B (en) A kind of preparation method of loose structure Arrays of Copper Nanowires and its method for testing of film conductivity
JPH08180959A (en) Corona polarization treating method and corona polarization device
JPH05311399A (en) Method for forming organic pyroelectric and piezoelectric body
JP3406347B2 (en) Method and apparatus for manufacturing organic pyroelectric / piezoelectric material
JP3766453B2 (en) Transparent conductive film and method for producing the same
JP2857366B2 (en) Semiconductor element manufacturing method
JPS6219513B2 (en)
CN101892522B (en) Method for preparing lead-titanate-lead-magnesium niobate films by pulsed laser deposition assisted by oxygen plasmas
JPS5919190B2 (en) Manufacturing method of lead film
JP3002605B2 (en) Method for manufacturing solid electrolytic capacitor
EP0902970A1 (en) Method and apparatus for misted liquid source deposition of thin films with increased yield
JP2001176334A (en) Transparent conductive film and its manufacturing method
US20200087211A1 (en) Structure including a thin-film layer and flash-sintering method of forming same
JP2697753B2 (en) Deposition method of metal film by DC glow discharge
JPH08283932A (en) Method for forming organic pyroelectric piezoelectric body
JPS6147645A (en) Formation of thin film
JPH0860347A (en) Method for depositing dielectric thin film
Bharti et al. Quantitative analysis of piezoelectricity in simultaneously stretched and corona poled polyvinyl chloride films
JP2996922B2 (en) Tin oxide thin film sensor for sensing hydrogen and method of manufacturing the same
JPH04219301A (en) Production of oxide superconductor thin film
JPH04346651A (en) Metallizing method
JPH05226705A (en) Manufacture of organic pyroelectric-piezoelectric substance, and its manufacturing device
JP4729191B2 (en) Method for producing polycrystalline silicon thin film
JP2913319B2 (en) Method for forming vacuum deposited metal thin film with high adhesion strength on stainless steel surface

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees